深圳小漠湾填海工程对潮流水动力及冲淤影响研究
Study on the Influence of the Reclamation Project of Xiaomo Bay in Shenzhen on Tidal Water Dynamics and Erosion and Deposition
DOI: 10.12677/ag.2024.145061, PDF, 下载: 28  浏览: 49 
作者: 何明珠, 陈 斌*:广州大学地理科学与遥感学院,广东 广州
关键词: 围填海工程潮流模型岸线变化冲淤Reclamation Project Tidal Models Shoreline Changes Erosion and Deposition
摘要: 基于长序列潮位资料,使用MIKE21建立大范围二维潮流数学模型,以深圳小漠湾国际物流港口与华润电厂等大型工程为研究对象,研究人类活动影响下的小漠湾及附近海域水动力变化特征。研究表明,围填海工程致使小漠湾海域潮流场有不同程度的变化,流速方面大多呈现减小状态,流向方面有一定局部改变,但总体变化不大。基本上是越靠近工程区,潮流场变化越为明显。通过数值模型计算工程实施后工程区周边泥沙冲淤强度分布显示,受工程建设影响,在潮流作用下工程区附近海域均有不同程度的冲刷和淤积,最大淤积量在0.08 m,最大冲刷量在−0.18 m。
Abstract: Based on the long-series tide level data, a large-scale two-dimensional power flow mathematical model was established using MIKE21, and the hydrodynamic change characteristics of Xiaomowan and the surrounding sea areas under the influence of human activities were studied by taking large-scale projects such as Shenzhen Xiaomowan International Logistics Port and China Resources Power Plant as research objects. The results show that the tidal current field in Xiaomowan area has changed to varying degrees due to reclamation projects, and most of the current velocities have decreased, and the flow direction has changed locally, but the overall change is not large. Basically, the closer you get to the engineering area, the more obvious the change in the tidal force field. By using numerical models to calculate the distribution of sediment erosion and sedimentation intensity around the engineering area after implementation, it was found that due to the influence of engineering construction, the sea area near the engineering area has varying degrees of erosion and sedimentation under the action of tides. The maximum sedimentation amount is 0.08 m, and the maximum erosion amount is −0.18 m.
文章引用:何明珠, 陈斌. 深圳小漠湾填海工程对潮流水动力及冲淤影响研究[J]. 地球科学前沿, 2024, 14(5): 662-675. https://doi.org/10.12677/ag.2024.145061

参考文献

[1] 张晓宁. 河口余流场的数值模拟研究[D]: [硕士学位论文]. 天津: 天津大学, 2017.
[2] 孙永根, 高俊国, 朱晓明. 钦州保税港区填海造地工程对海洋环境的影响[J]. 海洋科学, 2012, 36(12): 84-89.
[3] 王诺, 颜华锟, 左书华, 等. 大连海上机场人工岛建设对区域水动力及海床冲淤影响分析[J]. 水运工程, 2012(4): 5-11.
https://doi.org/10.16233/j.cnki.issn1002-4972.2012.04.004
[4] 王学昌, 孙长青, 孙英兰, 等. 填海造地对胶州湾水动力环境影响的数值研究[J]. 海洋环境科学, 2000(3): 55-59.
[5] 安永宁. 离岸人工岛群建设对龙口湾冲淤特征的影响研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2010.
[6] Wisha, U.J., Tanto, T.A., Pranowo, W.S., et al. (2018) Current Movement in Benoa Bay Water, Bali, Indonesia: Pattern of Tidal Current Changes Simulated for the Condition before, during, and after Reclamation. Regional Studies in Marine Science, 18, 177-187. ttps://doi.org/10.1016/j.rsma.2017.10.006
[7] Chen, H.L.Y. and Yua, H.T. (2015) Study on the Influences of Coastline Changes in Hydrodynamic Force and Tidal Prism of Tianjin Offshore Area. MATEC Web of Conferences, 25, Article No. 04013. ttps://doi.org/10.1051/matecconf/20152504013
[8] 聂超辉, 吴园园, 朱金龙, 等. 莱州湾西南部岸线变迁对海域水动力影响的数值研究[J]. 海洋环境科学, 2023, 42(2): 228-236.
https://doi.org/10.13634/j.cnki.mes.2023.02.006
[9] 张功瑾, 罗小峰, 路川藤, 等. 围填海工程对澳门及附近海域水动力影响研究[J]. 海洋工程, 2022, 40(4): 34-43.
https://doi.org/10.16483/j.issn.1005-9865.2022.04.005
[10] 张秋丰, 靳玉丹, 李希彬, 等. 围填海工程对近岸海域海洋环境影响的研究进展[J]. 海洋科学进展, 2017, 35(4): 454-461.
[11] 彭伟伟, 娄琦, 徐艳东, 等. 锚地工程建设对海南清澜湾水动力影响数值模拟研究[J]. 海洋湖沼通报, 2023, 45(4): 31-39.
[12] 冯秀丽, 隋倩倩, 林霖, 等. 威海靖海湾港区张家埠新港建设对泥沙冲淤影响预测分析[J]. 海洋科学, 2011, 35(3): 72-76.
[13] Danish Hydraulic Institute (DHI) (2007) MIKE 21 Flow Model: Hydrodynamic Module User Guide. Danish Hydraulic Institute Water and Environment, 1-89.
[14] Warner J.C., Rockwell Geyer, W. and Lerczak, J.A. (2005) Numerical Modeling of an Estuary: A Comprehensive Skill Assessment. Journal of Geophysical Research: Oceans, 110, 1-13.
https://doi.org/10.1029/2004JC002691
[15] Zhong, L. and Ming, L. (2006) Tidal Energy Fluxes and Dissipation in the Chesapeake Bay. Continental Shelf Research, 26, 752-770.
https://doi.org/10.1016/j.csr.2006.02.006