以抗氧化为策略改善皮肤光老化的研究进展
Research Progress on Improving Skin Photoaging through Antioxidant Strategies
DOI: 10.12677/acm.2024.1441193, PDF, HTML, XML, 下载: 57  浏览: 84 
作者: 彭思雨:重庆医科大学研究生学院,重庆;宋锦璘*:重庆医科大学附属口腔医院,重庆
关键词: 紫外线光老化活性氧氧化应激抗氧化UV Photoaging Reactive Oxygen Species Oxidative Stress Antioxidant
摘要: 光老化是指由于紫外线照射引起的以皮肤干燥、皱纹增多、色素沉积甚至可能诱发皮肤癌为主要特征,严重影响人们对美丽和健康的需求的皮肤外源性老化。因此缓解光老化成为当代医学的重要研究内容之一。紫外线通过多种机制影响光老化,其中以促进皮肤产生过量活性氧,直接损伤组织及引发相关信号通路为主要特征。以抗氧化为策略缓解或治疗光老化是目前研究的一个关键方向,主要包括不同类别的抗氧化剂及抗氧化活性物质的局部或全身使用。缓解由紫外线辐射引起的过度氧化应激,已成为今后深入研究抗光老化的一个关键方向。
Abstract: Photoaging is exogenous skin aging caused by excessive ultraviolet (UV) radiation, which is manifested by dry skin, increased wrinkles, pigment deposition and even skin cancer, which seriously affects the aesthetic needs and health of people. Therefore, alleviating photoaging has become one of the important research contents of contemporary medicine. UV affects photoaging through a variety of mechanisms, which are mainly characterized by promoting the production of excess reactive oxygen species in the skin, directly damaging tissues and triggering related signaling pathways. Taking antioxidation as a strategy to alleviate or treat photoaging is a key direction of current research, mainly including the local or systemic use of different classes of antioxidants and antioxidant active substances. Alleviating the excessive oxidative stress induced by UV light has become a key direction for further research on anti photoaging in the future.
文章引用:彭思雨, 宋锦璘. 以抗氧化为策略改善皮肤光老化的研究进展[J]. 临床医学进展, 2024, 14(4): 1573-1581. https://doi.org/10.12677/acm.2024.1441193

1. 引言

缓解衰老一直是困扰当代医学的重大难题。然而在机体发生的所有衰老中,皮肤的衰老是其中最直观最外在的表现。皮肤的衰老一般分为内源性衰老和外源性衰老 [1] 。内源性衰老为机体本身的内源性因素所导致难以干涉的生理性变化。而外源性衰老由环境因素导致,太阳的紫外线辐射是造成皮肤光老化的主要因素之一 [2] [3] 。光老化是由于皮肤长期过度暴露于紫外线后引起的皮肤衰老损伤改变,通常表现为皮肤皱纹形成、弹性降低、色素沉着和皮下脂肪减少 [1] [4] 。此外,许多皮肤病和皮肤肿瘤的发生与光老化有关 [5] 。紫外线加速的皮肤衰老不仅影响了人们对美的需求,并且对健康照成了极大危害,近年来抗光老化问题逐渐引起人们关注。

能够到达地球表面并对人们造成威胁的紫外线有波长290~320 nm的中波紫外线(UVB)和波长320~400 nm的长波紫外线(UVA) [6] 。UVA相对波长较长,可导致真皮和表皮中产生活性氧(ROS),导致各种氧化应激途径的激活。UVB相对波长较短,其主要穿透表皮层,虽其穿透范围小,但其仍是导致光老化的一大要素,UVB不仅像UVA一样促使皮肤产生ROS,而且还直接损害DNA [7] 。

光老化发生的主要特征是诱导ROS的过量产生从而促进氧化应激而导致损伤 [1] [5] [8] [9] 。过量的紫外线诱导皮肤大量ROS的产生,同时抑制抗氧化系统中抗氧化酶如过氧化物酶和谷胱甘肽还原酶的产生 [10] [11] 。低水平的ROS是机体的第一道防线,参与多种生理功能;然而过量的ROS或抗氧化系统不足会照成病理性损伤。局部抗氧化剂在紫外线诱导的损伤预防中的功效也证实了光老化的主要病因是由于机体氧化体系不平衡 [12] 。过量的紫外线照射不仅会攻击皮肤组织中的蛋白质、脂质和DNA等大分子,其诱导产生的ROS还可以氧化蛋白质、脂质和DNA等,并通过ROS介导的氧化应激反应影响一系列信号通路,造成间接的皮肤损伤 [1] [3] [8] [11] [12] [13] [14] 。

2. 紫外线促进氧化应激调控的光老化

2.1. 紫外线诱导ROS直接损害组织

太阳紫外线照射可诱导组织产生过量ROS,最终导致皮肤炎症、光老化和促进癌症的发生 [10] 。过量产生的ROS可直接影响皮肤某些蛋白质,其可氧化损伤真皮层胶原蛋白和弹性蛋白,促使蛋白质构象的改变,进而影响皮肤的机械性能,产生皮肤松弛、皱纹增多等 [3] [15] 。其次,ROS影响脂质氧化。ROS与不饱和脂肪酸之间的酰基双键反应可影响脂质过氧化物酶产生 [16] 。脂质过氧化物酶可照成生物膜如细胞膜或线粒体膜等的通透性增加,从而加重氧化应激对细胞的损伤及进一步促使相邻细胞恶化。同时,也导致了血管收缩,促进炎症,表现为红斑、肿胀或形成囊泡等的炎症反应 [12] 。紫外线过量照射诱导产生的过量ROS可通过单碱基或嘌呤修饰、链间交联、DNA-蛋白交联、去嘌呤或嘧啶位点形成等途径,对细胞核DNA造成氧化损伤 [17] 。在进入氧化应激状态的紫外线损伤皮肤中,突变的线粒体DNA复制明显增强,这表明紫外线照射产生的ROS也会损伤线粒体DNA。线粒体DNA的这种突变使线粒体功能障碍,损伤了电子传递链和氧化磷酸化过程,最终导致ATP产生减少及更多的线粒体DNA突变 [18] 。

2.2. 紫外线诱导ROS进而调控光老化相关通路

光老化过程中发生的氧化应激,ROS的过量产生扮演了及其重要的角色 [10] [11] [14] 。ROS不仅直接氧化损伤组织大分子,还间接调控影响光老化的信号通路,主要包括NF-κB/P65信号通路、MAPK信号通路和Nrf2/ARE信号通路。

2.2.1. NF-κB/P65信号通路

过量紫外线辐射使细胞内产生大量ROS后激活了B细胞中的α核因子kappa轻多肽基因增强子(i-κB)激酶磷酸化并降解i-κB蛋白。随后,活化B细胞核因子kappa轻链增强子(NF-κB)被激活并转移至细胞核,与炎症、增殖、肿瘤发生相关的编码基因如P65结合,使白介素-6 (IL-6)、白介素-8 (IL-8)、白介素-10 (IL-10)、肿瘤坏死因子α (TNF-α)、环氧化酶-2 (COX-2)等促炎因子表达上调,基质金属蛋白酶(MMPs)等转录上调,促进细胞增殖和血管生成等炎症表现 [1] [8] [19] 。MMPs可促进皮肤中的胶原、弹性纤维、细胞外基质的降解,导致皮肤松弛和皱纹等症状。此外,NF-κB/p65通路是丝裂原活化蛋白激酶(MAPK)信号转导通路的下游靶点,其与MAPK通路相互交叉协作,共同参与调节光老化和光致癌 [19] 。

2.2.2. MAPK信号通路

紫外线诱导的过量ROS可以引发MAPKs的级联反应,进而调节细胞外调节蛋白激酶(ERK1/2),c-Jun氨基末端蛋白激酶(JNKs)和p38MAPK转运至细胞核,触发激活蛋白-1 (AP-1),上调环氧化酶-2 (COX-2)基因表达 [13] 。促进了IL-10、IL-8、血管内皮因子(VEF)、前列腺素G2 (PGG2)等炎症因子的分泌,加剧了免疫抑制、炎症、增殖、血管生成过程等 [20] 。紫外线诱导产生的ROS也间接促进皮肤表皮神经酰胺池的增加亦可触发AP-1的进一步激活,AP-1通过转录上调MMPs和组织蛋白酶K的表达,从而加重光老化 [21] 。此外,ROS水平升高可促进凋亡蛋白Bax和p53的表达上调,促进p38MAPK的磷酸化,抗凋亡蛋白Blc-2的表达下调。同时,在细胞凋亡的早期,紫外线诱导的ROS可以直接从线粒体向细胞质释放细胞色素C,诱导细胞凋亡 [1] [17] 。

2.2.3. Nrf2/ARE信号通路

核转录因子e2相关因子2 (Nrf2)是调节抗氧化应激的重要细胞内转录因子,其调节相关抗氧化酶如谷胱甘肽s-转移酶(GST)、烟酰胺醌氧化还原酶(NQ01)、udp-葡萄糖醛基转移酶(UGT)、γ-谷氨酰谷氨酸半胱氨酸连接酶(GCL)、血红素加氧酶-1 (HO-1)、谷胱甘肽还原酶(GR)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)的表达,可保护皮肤免受紫外线引起的氧化应激损伤 [22] 。在正常条件下,Nrf2与果蝇肌动蛋白结合蛋白1 (Keap1)结合在细胞质中,Keap1调控Nrf2的定位和降解。Keap1的中间区富含半胱氨酸,对氧化非常敏感 [23] 。当低剂量紫外线诱导一定量ROS产生并引起氧化应激时,氧化的Keap1失去与Nrf2结合的能力,从而促使Nrf2从细胞质转移到细胞核并识别结合抗氧化反应元件(ARE),激活Nrf2/ARE信号通路,促进细胞内抗氧化保护基因的表达 [24] 。然而,高剂量紫外线照射后的ROS过量增加致使Nrf2失活,不能转移到细胞核,抑制Nrf2/ARE信号通路,降低抗氧化酶或抗氧化剂水平,使得ROS清除变慢而累积 [14] 。从而持续增多的ROS继续加剧其余光老化相关通路NF-κB/P65、MAPKs信号通路的激活。

3. 以抗氧化为核心改善光老化

在紫外线照射下,细胞内ROS水平持续增加并诱导氧化应激是光老化进展的重要机制之一。抗氧化剂被定义为“任何直接清除ROS或间接上调抗氧化防御或抑制ROS产生的物质” [25] 。抗氧化剂一般可分为内源性和外源性,即由身体自身产生或从外界中获得。通过外源性补充抗氧化剂,缓解氧化应激是改善皮肤光老化的关键。外源性补充膳食抗氧化剂或皮肤接受紫外线辐射前局部使用以抗氧化剂为基础的乳液或敷剂预防是对抗与光老化相关的皮肤氧化损伤的一种成功策略 [26] 。内源性抗氧化剂抑制ROS的形成,外源性和内源性抗氧化剂协同抑制氧化反应,促进细胞损伤修复。最后,如果这些抗氧化剂相关网络之间的合作能够抵消氧化应激损伤,细胞将在适应过程后存活并恢复生理抗氧化水平;否则,在长时间或过度的应激下,细胞将会发生细胞死亡 [5] 。

目前研究中使用的抗光老化外源性来源相关抗氧化剂主要包括合成的氮氧化物、辅酶Q类似物等以及天然来源的水果、植物中的维生素(C和E)、多酚类、类胡萝卜素类、海洋藻类衍生剂等。以及臭氧疗法也被运用于抗光老化。

3.1. 合成的抗光老化相关的外源性抗氧化剂

3.1.1. 氮氧化物

氮氧化物是一类具有多种抗氧化活性的化合物。基于氮氧化物的防晒霜的局部制剂,作为对抗光老化和预防可能的光致癌具有有效的作用 [27] 。过去的研究显示氮氧化物之一Tempol具有抗氧化能力,其对UVA光照下的人真皮成纤维细胞的SOD活性、脂质过氧化以及I、III型胶原和MMP-1、MMP-3表达具有保护作用,可作为抗光老化剂 [28] 。

3.1.2. 辅酶Q类似物

依地苯酮是辅酶Q10的低分子量抗氧化剂类似物,其被证明是一种非常有效的抗氧化剂,能够保护细胞免受氧化应激的损伤,包括抑制活皮肤中晒伤细胞形成的能力。在D H McDanie等人的临床研究中确定了局部护肤配方中的艾地苯酮在对治疗光损伤皮肤具有一定疗效 [29] 。

3.2. 天然的抗光老化相关的外源性抗氧化剂

3.2.1. 维生素类

维生素C是几种酶促反应中必需的辅助因子,但由于它不能由人体合成,因此必须通过饮食引入生物体,维生素C的抗氧化活性使其成为防御紫外线照射损伤的良好选择 [30] [31] [32] 。外部补充维生素C可产生抗光老化有益效果,特别是当体内维生素C水平明显低于正常状态时 [33] 。Pullar等人证明维生素C可以防止脂质过氧化并保护暴露于紫外线辐射下的角质细胞免于凋亡 [34] 。在人体中,已发现维生素C在超过最小红斑剂量时可作为光保护剂,刺激胶原合成,防止紫外线辐射损伤,并减轻皮肤炎症 [31] [32] 。维生素C作为药妆活性成分也是皮肤抗光老化的一种有吸引力的方案,局部使用适宜浓度的维生素C对紫外线损伤的皮肤有很高的疗效 [34] 。然而,维生素C的局部应用也有局限性,其容易氧化,而不易被皮肤吸收 [33] 。

维生素E也被报道称其使皮肤具有对抗紫外线诱导氧化应激的保护作用 [35] 。维生素E由皮脂腺通过其α-生育酚和γ-生育酚形式产生。它被应用于许多护肤品中,因为它在紫外线和红外线环境中具有光保护作用,且具有出色的保湿能力,并在化妆品中起到防腐剂的作用。除了抗氧化能力外,它还可能通过稳定溶酶体和减少前列腺素E2的合成对皮肤产生抗炎作用。尽管如此,大多数关于维生素E的文献都集中在动物和体外研究上,需要更多的临床研究 [36] 。此外,也有报道称维生素C和E的联合使用使得抗氧化活性产生协同作用 [37] 。局部维生素C和E的组合应用可以获得明显的光保护作用,可以预防光致皮肤癌和光老化 [38] 。

3.2.2. 多酚类化合物

用于抗光老化的酚类化合物,包括黄酮类(儿茶素、异黄酮、花青素等)、酚酸(苯甲酸、没食子酸、肉桂酸等),以及从葡萄、蕨菜和红橙等多种植物中提取的二苯乙烯 [5] 。它们可以抑制ROS的产生,维持稳定的脂质过氧化水平,并影响几种信号通路,抑制角质细胞凋亡,抑制胶原降解,抑制MMP-1表达,减少与上皮损伤相关的炎症状态,促进细胞修复关键因子的表达,以保护皮肤免受紫外线损伤 [5] [39] [40] 。

从南美棕榈树果实中提取的两种酚类化合物,二甲花翠素(malvidin)和矢车菊素(cyanidin),能够抵消UVA诱导的成纤维细胞中氧化应激,干扰ROS的产生,并保持抗氧化酶水平和脂质过氧化水平与正常细胞水平相当 [39] 。

白藜芦醇是例如葡萄籽等许多植物受到刺激时产生的一种植物抗毒素,其是一种具有多种功效的天然多酚,包括抗氧化、抗衰老和抗肥胖作用。其局部应用于抗光老化已被证明是有益的。白藜芦醇可以增加抗氧化酶的表达,降低促炎细胞因子的表达,增加增殖细胞核抗原(PCNA)和神经生长因子(NGF)等抗衰老生物标志物的表达 [41] 。在暴露于UVB辐射之前,在无毛小鼠皮肤上单次应用白藜芦醇可抑制皮肤水肿、环加氧酶和鸟氨酸脱羧酶的诱导和皮肤脂质过氧化 [42] 。白藜芦醇在表皮角质层局部使用时最有效,它可以产生更强的ROS清除能力,并防止紫外线辐射 [43] 。此外,有研究表明,以不同形式口服白藜芦醇对于抗光老化也是有益的 [44] 。

绿茶提取物表没食子儿茶素没食子酸酯(EGCG),当局部应用于皮肤可显著降低UVB辐射照射皮肤中p53的表达和角质形成细胞凋亡的数量 [45] 。服用绿茶提取物的治疗持续也可减少因暴露于紫外线辐射而引起的红斑大小 [46] 。然而,当局部应用EGCG时,应注意使用低剂量EGCG才具有抗氧化作用,当使用高剂量EGCG时,其具有促氧化剂的作用 [47] 。

肉桂醛也是一种有效的多酚类植物化学抗氧化剂。已有研究报道皮肤局部应用肉桂醛可以抑制因反复暴露于UVB而引起光老化损伤 [48] 。

葛根素是葛根的一种异黄酮,具有较强的抗氧化能力,能在多种疾病模型显著提高抗氧化酶的活性,降低氧化产物的含量,显示出抗氧化应激的作用。在小鼠皮肤的初步研究中显示葛根素具有提高皮肤组织抗氧化能力、防止皮肤光老化的作用 [49] 。

山奈酮是一种天然存在于多种药用植物中的异黄酮。Jong-Kyu Choi等人的研究表明山奈酮可以减弱UVB诱导的ROS升高,从而引起抗光老化活性,表明山奈酮可以作为一种潜在的天然抗光老化剂开发 [50] 。

3.2.3. 类胡萝卜素

类胡萝卜素是一大类存在于各种植物、水果和蔬菜中的天然色素 [51] 。在日常饮食或皮肤中大量存在的最常见的类胡萝卜素是β-胡萝卜素、α-胡萝卜素、β-隐黄质、叶黄素等。类胡萝卜素的抗氧化特性也使其在皮肤光保护方面显示出有益的效果。它们能够与ROS相互作用并使其稳定 [52] 。许多研究证明了类胡萝卜素作为预防光老化可能的辅助治疗的有效性。Rizwan等人的试验确定了番茄酱中的类胡萝卜素对保护20名健康女性的皮肤免受紫外线辐射的影响具有有利作用 [53] 。类胡萝卜素的摄入可增加皮肤类胡萝卜素水平,需更高剂量的照射才能诱导紫外线辐射引起的红斑和色素沉着,增强了对皮肤对紫外线辐射的抵抗作用 [54] 。

3.2.4. 海洋藻类衍生剂

最近的研究表明,海洋藻类衍生剂含有几种对皮肤有益的抗氧化特性,被认为是光老化可能的治疗靶点。其中类真菌菌素氨基酸(MAAs)被证明可在紫外线诱导的光老化小鼠模型中调节NF-κB通路,使抗氧化酶升高,促炎细胞因子降低 [55] 。MAAs具有可以减轻和预防紫外线辐射造成的皮肤损伤的潜能 [55] [56] 。

3.3. 其余抗氧化相关疗法

臭氧疗法也被用于抗光老化,这种疗法具有抗氧化和抗炎潜力,因为它可以正向调节Nrf2和SOD、HO-1等抗氧化酶的表达 [57] 。虽然臭氧治疗在一些老年患者中显示出抗衰老和皮肤保护能力 [58] ,但需要进一步的研究来证实该方法作为辅助治疗光老化的方法。

4. 结论

当皮肤长期暴露于紫外线辐射下可导致光老化,从而发生皮肤皱纹增多、弹性降低、色素沉着等一系列病理变化。改善皮肤光老化是一直以来的研究热点。紫外线诱导光老化的核心机制是促进过量ROS的产生,加剧皮肤氧化应激,调控光老化相关通路。因此,以抗氧化剂为核心的预防与治疗是对抗与光老化相关的皮肤氧化损伤的一种关键策略。本文总结了目前不同来源的抗氧化剂或抗氧化成分在局部或全身对改善缓解光老化的应用。在未来对于抗光老化的研究仍需继续深入,其中,以抗氧化为主要策略将是其中的重要研究方向。

NOTES

*通讯作者。

参考文献

[1] Chen, X., Yang, C. and Jiang, G. (2021) Research Progress on Skin Photoaging and Oxidative Stress. Postepydermatologii I Alergologii, 38, 931-936.
https://doi.org/10.5114/ada.2021.112275
[2] Park, K.M., Yoo, Y.J., Ryu, S. and Lee, S.H. (2016) Nelumbo Nucifera Leaf Protects against UVB-Induced Wrinkle Formation and Loss of Subcutaneous Fat through Suppression of MCP3, IL-6 and IL-8 Expression. Journal of Photochemistry and Photobiology B, Biology, 161, 211-216.
https://doi.org/10.1016/j.jphotobiol.2016.04.006
[3] Kammeyer, A. and Luiten, R.M. (2015) Oxidation Events and Skin Aging. Ageing Research Reviews, 21, 16-29.
https://doi.org/10.1016/j.arr.2015.01.001
[4] Fisher, G.J., Kang, S., Varani, J., Bata-Csorgo, Z., Wan, Y., Datta, S. and Voorhees, J.J. (2002) Mechanisms of Photoaging and Chronological Skin Aging. Archives of Dermatology, 138, 1462-1470.
https://doi.org/10.1001/archderm.138.11.1462
[5] Petruk, G., Del Giudice, R., Rigano, M.M. and Monti, D.M. (2018) Antioxidants from Plants Protect against Skin Photoaging. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 1454936.
https://doi.org/10.1155/2018/1454936
[6] Kim, B.H., Choi, M.S., Lee, H.G., Lee, S.H., Noh, K.H., Kwon, S., Jeong, A.J., Lee, H., Yi, E.H., Park, J.Y., Lee, J., Joo, E.Y. and Ye, S.K. (2015) Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin. Molecules and Cells, 38, 982-990.
https://doi.org/10.14348/molcells.2015.0169
[7] Kim, D.J., Iwasaki, A., Chien, A.L. and Kang, S. (2022) UVB-Mediated DNA Damage Induces Matrix Metalloproteinases to Promote Photoaging in an AhR-and SP1-Dependent Manner. JCI Insight, 7, e156344.
https://doi.org/10.1172/jci.insight.156344
[8] 任倩倩, 袁永雷, 曲丽萍. 影响皮肤光老化信号通路的植物提取物[J]. 日用化学品科学, 2023(3): 34-41.
[9] Berneburg, M., Plettenberg, H. and Krutmann, J. (2000) Photoaging of Human Skin. Photodermatology, Photoimmunology & Photomedicine, 16, 239-244.
https://doi.org/10.1034/j.1600-0781.2000.160601.x
[10] Ichihashi, M., Ueda, M., Budiyanto, A., et al. (2003) UV-Induced Skin Damage. Toxicology, 189, 21-39.
https://doi.org/10.1016/S0300-483X(03)00150-1
[11] Ryu, J., Park, S.J., Kim, I.H., Choi, Y.H. and Nam, T.J. (2014) Protective Effect of Porphyra-334 on UVA-Induced Photoaging in Human Skin Fibroblasts. International Journal of Molecular Medicine, 34, 796-803.
https://doi.org/10.3892/ijmm.2014.1815
[12] Chung, J.H. and Eun, H.C. (2007) Angiogenesis in Skin Aging and Photoaging. The Journal of Dermatology, 34, 593-600.
https://doi.org/10.1111/j.1346-8138.2007.00341.x
[13] Xu, Q., Hou, W., Zheng, Y., Liu, C., Gong, Z., Lu, C., Lai, W. and Maibach, H.I. (2014) Ultraviolet A-Induced Cathepsin K Expression Is Mediated via MAPK/AP-1 Pathway in Human Dermal Fibroblasts. PLOS ONE, 9, E102732.
https://doi.org/10.1371/journal.pone.0102732
[14] Zhu, S., Qin, W., Liu, T., Liu, T., Ma, H., Hu, C., Yue, X., Yan, Y., Lv, Y., Wang, Z., Zhao, Z., Wang, X., Liu, Y., Xia, Q., Zhang, H. and Li, N. (2022) Modified Qing’e Formula Protects against UV-Induced Skin Oxidative Damage via the Activation of Nrf2/ARE Defensive Pathway. Frontiers in Pharmacology, 13, Article ID: 976473.
https://doi.org/10.3389/fphar.2022.976473
[15] Krieg, T., Hein, R., Hatamochi, A. and Aumailley, M. (1988) Molecular and Clinical Aspects of Connective Tissue. European Journal of Clinical Investigation, 18, 105-123.
https://doi.org/10.1111/j.1365-2362.1988.tb02400.x
[16] Marionnet, C., Pierrard, C., Golebiewski, C. and Bernerd, F. (2014) Diversity of Biological Effects Induced by Longwave UVA Rays (UVA1) in Reconstructed Skin. PLOS ONE, 9, e105263.
https://doi.org/10.1371/journal.pone.0105263
[17] Romanhole, R.C., Ataide, J.A., Moriel, P. and Mazzola, P.G. (2015) Update on Ultraviolet A and B Radiation Generated by the Sun and Artificial Lamps and Their Effects on Skin. International Journal of Cosmetic Science, 37, 366-370.
https://doi.org/10.1111/ics.12219
[18] Birch-Machin, M.A. and Swalwell, H. (2010) How Mitochondria Record the Effects of UV Exposure and Oxidative Stress Using Human Skin as a Model Tissue. Mutagenesis, 25, 101-107.
https://doi.org/10.1093/mutage/gep061
[19] Rebel, H.G., Bodmann, C.A., Van De Glind, G.C. and De Gruijl, F.R. (2012) UV-Induced Ablation of the Epidermal Basal Layer Including P53-Mutant Clones Resets UV Carcinogenesis Showing Squamous Cell Carcinomas to Originate from Interfollicular Epidermis. Carcinogenesis, 33, 714-720.
https://doi.org/10.1093/carcin/bgs004
[20] Wölfle, U., Seelinger, G., Bauer, G., Meinke, M.C., Lademann, J. and Schempp, C.M. (2014) Reactive Molecule Species and Antioxidative Mechanisms in Normal Skin and Skin Aging. Skin Pharmacology and Physiology, 27, 316-332.
https://doi.org/10.1159/000360092
[21] Freitas-Rodríguez, S., Folgueras, A.R. and López-Otín, C. (2017) The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and beyond. Biochimica et Biophysica Acta. Molecular Cell Research, 1864, 2015-2025.
https://doi.org/10.1016/j.bbamcr.2017.05.007
[22] Reisman, S.A., Lee, C.Y., Meyer, C.J., Proksch, J.W. and Ward, K.W. (2014) Topical Application of the Synthetic Triterpenoid RTA 408 Activates Nrf2 and Induces Cytoprotective Genes in Rat Skin. Archives of Dermatological Research, 306, 447-454.
https://doi.org/10.1007/s00403-013-1433-7
[23] Sajadimajd, S. and Khazaei, M. (2018) Oxidative Stress and Cancer: The Role of Nrf2. Current Cancer Drug Targets, 18, 538-557.
https://doi.org/10.2174/1568009617666171002144228
[24] Krajka-Kuźniak, V., Paluszczak, J. and Baer-Dubowska, W. (2017) The Nrf2-ARE Signaling Pathway: An Update on Its Regulation and Possible Role in Cancer Prevention and Treatment. Pharmacological Reports: PR, 69, 393-402.
https://doi.org/10.1016/j.pharep.2016.12.011
[25] Khlebnikov, A.I., Schepetkin, I.A., Domina, N.G., Kirpotina, L.N. and Quinn, M.T. (2007) Improved Quantitative Structure-Activity Relationship Models to Predict Antioxidant Activity of Flavonoids in Chemical, Enzymatic, and Cellular Systems. Bioorganic & Medicinal Chemistry, 15, 1749-1770.
https://doi.org/10.1016/j.bmc.2006.11.037
[26] Godic, A., Poljšak, B., Adamic, M. and Dahmane, R. (2014) The Role of Antioxidants in Skin Cancer Prevention and Treatment. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 860479.
https://doi.org/10.1155/2014/860479
[27] Venditti, E., Brugè, F., Astolfi, P., Kochevar, I. and Damiani, E. (2011) Nitroxides and a Nitroxide-Based UV Filter Have the Potential to Photoprotect UVA-Irradiated Human Skin Fibroblasts against Oxidative Damage. Journal of Dermatological Science, 63, 55-61.
https://doi.org/10.1016/j.jdermsci.2011.03.008
[28] Yan, S.X., Hong, X.Y., Hu, Y. and Liao, K.H. (2005) Tempol, One of Nitroxides, Is a Novel Ultraviolet-A1 Radiation Protector for Human Dermal Fibroblasts. Journal of Dermatological Science, 37, 137-143.
https://doi.org/10.1016/j.jdermsci.2004.11.005
[29] McDaniel, D.H., Neudecker, B.A., DiNardo, J.C., Lewis, J.A. and Maibach, H.I. (2005) Clinical Efficacy Assessment in Photodamaged Skin of 0.5% and 1.0% Idebenone. Journal of Cosmetic Dermatology, 4, 167-173.
https://doi.org/10.1111/j.1473-2165.2005.00305.x
[30] Njus, D., Kelley, P.M., Tu, Y.J. and Schlegel, H.B. (2020) Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radical Biology & Medicine, 159, 37-43.
https://doi.org/10.1016/j.freeradbiomed.2020.07.013
[31] Fitzpatrick, R.E. and Rostan, E.F. (2002) Double-Blind, Half-Face Study Comparing Topical Vitamin C and Vehicle for Rejuvenation of Photodamage. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery, 28, 231-236.
https://doi.org/10.1046/j.1524-4725.2002.01129.x
[32] Pullar, J.M., Carr, A.C. and Vissers, M.C.M. (2017) The Roles of Vitamin C in Skin Health. Nutrients, 9, Article No. 866.
https://doi.org/10.3390/nu9080866
[33] Boo, Y.C. (2022) Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants (Basel, Switzerland), 11, Article No. 1663.
https://doi.org/10.3390/antiox11091663
[34] Nusgens, B.V., Humbert, P., Rougier, A., Colige, A.C., Haftek, M., Lambert, C.A., Richard, A., Creidi, P. and LapiÈRe, C.M. (2001) Topically Applied Vitamin C Enhances the MRNA Level of Collagens I and III, Their Processing Enzymes and Tissue Inhibitor of Matrix Metalloproteinase 1 in the Human Dermis. The Journal of Investigative Dermatology, 116, 853-859.
https://doi.org/10.1046/j.0022-202x.2001.01362.x
[35] Offord, E.A., Gautier, J.C., Avanti, O., Scaletta, C., Runge, F., Krämer, K. and Applegate, L.A. (2002) Photoprotective Potential of Lycopene, Beta-Carotene, Vitamin E, Vitamin C and Carnosic Acid in UVA-Irradiated Human Skin Fibroblasts. Free Radical Biology & Medicine, 32, 1293-1303.
https://doi.org/10.1016/S0891-5849(02)00831-6
[36] Poon, F., Kang, S. and Chien, A.L. (2015) Mechanisms and Treatments of Photoaging. Photodermatology, Photoimmunology & Photomedicine, 31, 65-74.
https://doi.org/10.1111/phpp.12145
[37] Placzek, M., Gaube, S., Kerkmann, U., Gilbertz, K.P., Herzinger, T., Haen, E. and Przybilla, B. (2005) Ultraviolet B-Induced DNA Damage in Human Epidermis Is Modified by the Antioxidants Ascorbic Acid and D-Alpha-Tocopherol. The Journal of Investigative Dermatology, 124, 304-307.
https://doi.org/10.1111/j.0022-202X.2004.23560.x
[38] Lin, J.Y., Selim, M.A., Shea, C.R., Grichnik, J.M., Omar, M.M., Monteiro-Riviere, N.A. and Pinnell, S.R. (2003) UV Photoprotection by Combination Topical Antioxidants Vitamin C and Vitamin E. Journal of the American Academy of Dermatology, 48, 866-874.
https://doi.org/10.1067/mjd.2003.425
[39] Petruk, G., Illiano, A., Del Giudice, R., Raiola, A., Amoresano, A., Rigano, M.M., Piccoli, R. and Monti, D.M. (2017) Malvidin and Cyanidin Derivatives from Açai Fruit (Euterpe oleracea Mart.) Counteract UV-A-Induced Oxidative Stress in Immortalized Fibroblasts. Journal of Photochemistry and Photobiology B, Biology, 172, 42-51.
https://doi.org/10.1016/j.jphotobiol.2017.05.013
[40] Auh, J.H. and Madhavan, J. (2021) Protective Effect of a Mixture of Marigold and Rosemary Extracts on UV-Induced Photoaging in Mice. Biomedicine & Pharmacotherapy, 135, Article ID: 111178.
https://doi.org/10.1016/j.biopha.2020.111178
[41] Lephart, E.D., Sommerfeldt, J.M. and Andrus, M.B. (2014) Resveratrol: Influences on Gene Expression in Human Skin. Journal of Functional Foods, 10, 377-384.
https://doi.org/10.1016/j.jff.2014.07.017
[42] Afaq, F., Adhami, V.M. and Ahmad, N. (2003) Prevention of Short-Term Ultraviolet B Radiation-Mediated Damages by Resveratrol in SKH-1 Hairless Mice. Toxicology and Applied Pharmacology, 186, 28-37.
https://doi.org/10.1016/S0041-008X(02)00014-5
[43] Alonso, C., Martí, M., Barba, C., Carrer, V., Rubio, L. and Coderch, L. (2017) Skin Permeation and Antioxidant Efficacy of Topically Applied Resveratrol. Archives of Dermatological Research, 309, 423-431.
https://doi.org/10.1007/s00403-017-1740-5
[44] Biswas, P., Dellanoce, C., Vezzoli, A., Mrakic-Sposta, S., Malnati, M., Beretta, A. and Accinni, R. (2020) Antioxidant Activity with Increased Endogenous Levels of Vitamin C, E and A Following Dietary Supplementation with a Combination of Glutathione and Resveratrol Precursors. Nutrients, 12, Article No. 3224.
https://doi.org/10.3390/nu12113224
[45] Mnich, C.D., Hoek, K.S., Virkki, L.V., Farkas, A., Dudli, C., Laine, E., Urosevic, M. and Dummer, R. (2009) Green Tea Extract Reduces Induction of P53 and Apoptosis in UVB-Irradiated Human Skin Independent of Transcriptional Controls. Experimental Dermatology, 18, 69-77.
https://doi.org/10.1111/j.1600-0625.2008.00765.x
[46] Chiu, A.E., Chan, J.L., Kern, D.G., Kohler, S., Rehmus, W.E. and Kimball, A.B. (2005) Double-Blinded, Placebo-Controlled Trial of Green Tea Extracts in the Clinical and Histologic Appearance of Photoaging Skin. Dermatologic Surgery: Official Publication for American Society for Dermatologic Surgery [et al.], 31, 855-860.
https://doi.org/10.1111/j.1524-4725.2005.31731
[47] Kim, H.S., Quon, M.J. and Kim, J.A. (2014) New Insights into the Mechanisms of Polyphenols beyond Antioxidant Properties; Lessons from the Green Tea Polyphenol, Epigallocatechin 3-Gallate. Redox Biology, 2, 187-195.
https://doi.org/10.1016/j.redox.2013.12.022
[48] Tanaka, Y., Uchi, H. and Furue, M. (2019) Antioxidant Cinnamaldehyde Attenuates UVB-Induced Photoaging. Journal of Dermatological Science, 96, 151-158.
https://doi.org/10.1016/j.jdermsci.2019.11.001
[49] Mo, Q., Li, S., You, S., Wang, D., Zhang, J., Li, M. and Wang, C. (2022) Puerarin Reduces Oxidative Damage and Photoaging Caused by UVA Radiation in Human Fibroblasts by Regulating Nrf2 and MAPK Signaling Pathways. Nutrients, 14, Article No. 4724.
https://doi.org/10.3390/nu14224724
[50] Choi, J.K., Kwon, O.Y. and Lee, S.H. (2022) Kaempferide Prevents Photoaging of Ultraviolet-B Irradiated NIH-3T3 Cells and Mouse Skin via Regulating the Reactive Oxygen Species-Mediated Signalings. Antioxidants (Basel, Switzerland), 12, Article No. 11.
https://doi.org/10.3390/antiox12010011
[51] Calniquer, G., Khanin, M., Ovadia, H., Linnewiel-Hermoni, K., Stepensky, D., Trachtenberg, A., Sedlov, T., Braverman, O., Levy, J. and Sharoni, Y. (2021) Combined Effects of Carotenoids and Polyphenols in Balancing the Response of Skin Cells to UV Irradiation. Molecules (Basel, Switzerland), 26, Article No. 1931.
https://doi.org/10.3390/molecules26071931
[52] Zerres, S. and Stahl, W. (2020) Carotenoids in Human Skin. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids, 1865, Article ID: 158588.
https://doi.org/10.1016/j.bbalip.2019.158588
[53] Rizwan, M., Rodriguez-Blanco, I., Harbottle, A., Birch-Machin, M.A., Watson, R.E. and Rhodes, L.E. (2011) Tomato Paste Rich in Lycopene Protects against Cutaneous Photodamage in Humans in Vivo: A Randomized Controlled Trial. The British Journal of Dermatology, 164, 154-162.
https://doi.org/10.1111/j.1365-2133.2010.10057.x
[54] Baswan, S.M., Marini, A., Klosner, A.E., Jaenicke, T., Leverett, J., Murray, M., Gellenbeck, K.W. and Krutmann, J. (2020) Orally Administered Mixed Carotenoids Protect Human Skin against Ultraviolet A-Induced Skin Pigmentation: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Photodermatology, Photoimmunology & Photomedicine, 36, 219-225.
https://doi.org/10.1111/phpp.12541
[55] Ying, R., Zhang, Z., Zhu, H., Li, B. and Hou, H. (2019) The Protective Effect of Mycosporine-Like Amino Acids (MAAs) from Porphyra yezoensis in a Mouse Model of UV Irradiation-Induced Photoaging. Marine Drugs, 17, Article No. 470.
https://doi.org/10.3390/md17080470
[56] Wang, K., Deng, Y., He, Y., Cao, J., Zhang, L., Qin, L., Qu, C., Li, H. and Miao, J. (2023) Protective Effect of Mycosporine-Like Amino Acids Isolated from an Antarctic Diatom on UVB-Induced Skin Damage. International Journal of Molecular Sciences, 24, Article No. 15055.
https://doi.org/10.3390/ijms242015055
[57] Zeng, J. and Lu, J. (2018) Mechanisms of Action Involved in Ozone-Therapy in Skin Diseases. International Immunopharmacology, 56, 235-241.
https://doi.org/10.1016/j.intimp.2018.01.040
[58] Fridman, N.V., Linkova, N.S., Polyakova, V.O., Drobintseva, A.O., ТRofimova, S.V., Kvetnoy, I.M. and Khavinson, V.K. (2017) Effect of Combined Application of Ozone Therapy and Gravitational Therapy on the Remote Results of Complex Treatment of Geriatric Patients. Advances in Gerontology, 30, 698-702.