偏微分方程在数学模型中的应用Application of Partial Differential Equations in Mathematical Models
代 莹, 杨 洁, 张 宁, 肖 冰 科研立项经费支持
理论数学Vol.9 No.6, 全文下载: PDF HTML XML DOI:10.12677/PM.2019.96097, August 16 2019
应用(G'/G' + G + A)展开法求解mKdV方程的精确值解Applying the (G'/G' + G + A) Expansion Method to Solve the Exact Value Solution of mKdV Equation
翁琨锋, 邵廷朗
应用数学进展Vol.13 No.7, 全文下载: PDF XML DOI:10.12677/aam.2024.137316, July 19 2024
一阶偏微分方程的应用:交通流建模分析Application of First-Order Partial Differential Equations: Traffic Flow Modeling and Analysis
胡玉玺, 郑瑞牧 科研立项经费支持
流体动力学Vol.12 No.4, 全文下载: PDF XML DOI:10.12677/ijfd.2024.124006, December 10 2024
基于物理信息神经网络求解偏微分方程Solving Partial Differential Equations Based on Physics-Informed Neural Networks
贾兴卓
统计学与应用Vol.14 No.3, 全文下载: PDF XML DOI:10.12677/sa.2025.143076, March 28 2025
基于(G'/G)展开法求解(1 + 1)维积分微分Ito方程的新精确解New Exact Solution for (1 + 1)-Dimensional Integro-Differential Ito Equation Based on Expansion (G'/G) Method
邵廷朗, 翁琨锋
应用数学进展Vol.13 No.7, 全文下载: PDF XML DOI:10.12677/aam.2024.137299, July 12 2024
数学物理方程中的极值原理——具有斜导数边界条件的椭圆方程The Maximum Principles of Differential Equations in Mathematical Physics—Elliptic Equations with Oblique Derivative Boundary Condition
马 雷
理论数学Vol.14 No.6, 全文下载: PDF XML DOI:10.12677/pm.2024.146242, June 27 2024