[1]
|
Griebel, C.P., Halvorsen, J., Golemon, T.B., et al. (2005) Management of Spontaneous Abortion. American Family Physician, 72, 1243-1250.
|
[2]
|
Deng, T., Liao, X. and Zhu, S. (2022) Recent Advances in Treatment of Recurrent Spontaneous Abortion. Obstetrical & Gynecological Survey, 77, 355-366. https://doi.org/10.1097/ogx.0000000000001033
|
[3]
|
Guan, D., Sun, W., Gao, M., Chen, Z. and Ma, X. (2024) Immunologic Insights in Recurrent Spontaneous Abortion: Molecular Mechanisms and Therapeutic Interventions. Biomedicine & Pharmacotherapy, 177, Article ID: 117082. https://doi.org/10.1016/j.biopha.2024.117082
|
[4]
|
Dimitriadis, E., Menkhorst, E., Saito, S., Kutteh, W.H. and Brosens, J.J. (2020) Recurrent Pregnancy Loss. Nature Reviews Disease Primers, 6, Article No. 98. https://doi.org/10.1038/s41572-020-00228-z
|
[5]
|
(2020) Recurrent Pregnancy Loss. Nature Reviews Disease Primers, 6, Article No. 97.
|
[6]
|
Devall, A.J. and Coomarasamy, A. (2020) Sporadic Pregnancy Loss and Recurrent Miscarriage. Best Practice & Research Clinical Obstetrics & Gynaecology, 69, 30-39. https://doi.org/10.1016/j.bpobgyn.2020.09.002
|
[7]
|
Tan, Y., Wang, J., Liu, C., Wu, S., Zhou, M., Zhang, Y., et al. (2024) KLF4 Regulates Trophoblast Function and Associates with Unexplained Recurrent Spontaneous Abortion. Journal of Translational Medicine, 22, Article No. 922. https://doi.org/10.1186/s12967-024-05707-5
|
[8]
|
Zhu, D., Zou, H., Liu, J., Wang, J., Ma, C., Yin, J., et al. (2021) Inhibition of HMGB1 Ameliorates the Maternal-Fetal Interface Destruction in Unexplained Recurrent Spontaneous Abortion by Suppressing Pyroptosis Activation. Frontiers in Immunology, 12, Article 782792. https://doi.org/10.3389/fimmu.2021.782792
|
[9]
|
Nong, Y., Zhai, Q., Liu, W., Wei, J., Wang, Z., Lv, X., et al. (2025) AQP3 Influences Unexplained Recurrent Abortion by Regulating Trophoblast Cell Migration and Invasion via the METTL14/IGF2BP1/AQP3/PI3K/AKT Pathway. Journal of Cellular and Molecular Medicine, 29, e70325. https://doi.org/10.1111/jcmm.70325
|
[10]
|
Yao, Y., Ye, Y., Chen, J., Zhang, M., Cai, X. and Zheng, C. (2024) Maternal‐Fetal Immunity and Recurrent Spontaneous Abortion. American Journal of Reproductive Immunology, 91, e13859. https://doi.org/10.1111/aji.13859
|
[11]
|
朱璟希. 基于甲基化和表达谱芯片探究不明原因复发性流产的发生机制[D]: [硕士学位论文]. 南京: 南京医科大学, 2021.
|
[12]
|
Mattei, A.L., Bailly, N. and Meissner, A. (2022) DNA Methylation: A Historical Perspective. Trends in Genetics, 38, 676-707. https://doi.org/10.1016/j.tig.2022.03.010
|
[13]
|
Tisato, V., Silva, J.A., Scarpellini, F., Capucci, R., Marci, R., Gallo, I., et al. (2024) Epigenetic Role of LINE-1 Methylation and Key Genes in Pregnancy Maintenance. Scientific Reports, 14, Article No. 3275. https://doi.org/10.1038/s41598-024-53737-2
|
[14]
|
Fu, Y., Song, Y., Zhang, J., Wei, L. and Sun, X. (2023) Decreased Expression and DNA Hypermethylation of Syncytin-1 in Human Villus Tissues with Unexplained Recurrent Spontaneous Abortion. Journal of Reproductive Immunology, 155, Article ID: 103784. https://doi.org/10.1016/j.jri.2022.103784
|
[15]
|
Long, H.K., King, H.W., Patient, R.K., Odom, D.T. and Klose, R.J. (2016) Protection of CPG Islands from DNA Methylation Is DNA-Encoded and Evolutionarily Conserved. Nucleic Acids Research, 44, 6693-6706. https://doi.org/10.1093/nar/gkw258
|
[16]
|
周鑫辰, 张卓, 董姝含, 等. G-四链体结构与DNA甲基化修饰的交互影响: 当前研究与未来展望[J]. 化学通报, 2024, 87(9): 1098-1106.
|
[17]
|
Le Stunff, C., Castell, A., Todd, N., Mille, C., Belot, M., Frament, N., et al. (2018) Fetal Growth Is Associated with CPG Methylation in the P2 Promoter of the IGF1 Gene. Clinical Epigenetics, 10, Article No. 57. https://doi.org/10.1186/s13148-018-0489-9
|
[18]
|
Greenberg, M.V.C. and Bourc’his, D. (2019) The Diverse Roles of DNA Methylation in Mammalian Development and Disease. Nature Reviews Molecular Cell Biology, 20, 590-607. https://doi.org/10.1038/s41580-019-0159-6
|
[19]
|
汤慧君, 郏晓骏, 赵欣之, 等. 子痫前期胎盘中印记差异甲基化区域特征分析[J]. 中国临床医学, 2025, 32(1): 65-71.
|
[20]
|
Lyu, Q., Yang, Q., Hao, J., Yue, Y., Wang, X., Tian, J., et al. (2022) A Small Proportion of X-Linked Genes Contribute to X Chromosome Upregulation in Early Embryos via BRD4-Mediated Transcriptional Activation. Current Biology, 32, 4397-4410.e5. https://doi.org/10.1016/j.cub.2022.08.059
|
[21]
|
Bu, G., Zhu, W., Liu, X., Zhang, J., Yu, L., Zhou, K., et al. (2022) Coordination of Zygotic Genome Activation Entry and Exit by H3K4me3 and H3K27me3 in Porcine Early Embryos. Genome Research, 32, 1487-1501. https://doi.org/10.1101/gr.276207.121
|
[22]
|
Timalsina, B., Choi, H.J. and Moon, I.S. (2023) N-acetylglucosamine Kinase-Small Nuclear Ribonucleoprotein Polypeptide N Interaction Promotes Axodendritic Branching in Neurons via Dynein-Mediated Microtubule Transport. International Journal of Molecular Sciences, 24, Article 11672. https://doi.org/10.3390/ijms241411672
|
[23]
|
彭红莉, 胡海翔, 王友信, 等. 印记基因H19和SNRPN CpG位点甲基化状态与精液参数的关联研究[J]. 中国性科学, 2018, 27(1): 70-75.
|
[24]
|
Erdoğan, K., Sanlier, N.T. and Sanlier, N. (2023) Are Epigenetic Mechanisms and Nutrition Effective in Male and Female Infertility? Journal of Nutritional Science, 12, e103. https://doi.org/10.1017/jns.2023.62
|
[25]
|
Jazayeri, M., Eftekhari-Yazdi, P., Sadighi Gilani, M.A., Sharafi, M. and Shahverdi, A. (2022) Epigenetic Modifications at DMRs of Imprinting Genes in Sperm of Type 2 Diabetic Men. Zygote, 30, 638-647. https://doi.org/10.1017/s0967199422000107
|
[26]
|
Cannarella, R., Crafa, A., Condorelli, R.A., Mongioì, L.M., La Vignera, S. and Calogero, A.E. (2021) Relevance of Sperm Imprinted Gene Methylation on Assisted Reproductive Technique Outcomes and Pregnancy Loss: A Systematic Review. Systems Biology in Reproductive Medicine, 67, 251-259. https://doi.org/10.1080/19396368.2021.1909667
|
[27]
|
Rajender, S., Avery, K. and Agarwal, A. (2011) Epigenetics, Spermatogenesis and Male Infertility. Mutation Research/Reviews in Mutation Research, 727, 62-71. https://doi.org/10.1016/j.mrrev.2011.04.002
|
[28]
|
Khambata, K., Raut, S., Deshpande, S., Mohan, S., Sonawane, S., Gaonkar, R., et al. (2020) DNA Methylation Defects in Spermatozoa of Male Partners from Couples Experiencing Recurrent Pregnancy Loss. Human Reproduction, 36, 48-60. https://doi.org/10.1093/humrep/deaa278
|
[29]
|
Ginno, P.A., Lott, P.L., Christensen, H.C., Korf, I. and Chédin, F. (2012) R-Loop Formation Is a Distinctive Characteristic of Unmethylated Human CPG Island Promoters. Molecular Cell, 45, 814-825. https://doi.org/10.1016/j.molcel.2012.01.017
|
[30]
|
Yu, N., Kwak-Kim, J. and Bao, S. (2023) Unexplained Recurrent Pregnancy Loss: Novel Causes and Advanced Treatment. Journal of Reproductive Immunology, 155, Article ID: 103785. https://doi.org/10.1016/j.jri.2022.103785
|
[31]
|
Monteagudo-Sánchez, A., Noordermeer, D. and Greenberg, M.V.C. (2024) The Impact of DNA Methylation on CTCF-Mediated 3D Genome Organization. Nature Structural & Molecular Biology, 31, 404-412. https://doi.org/10.1038/s41594-024-01241-6
|
[32]
|
Gu, C., Park, S., Seok, J., Jang, H.Y., Bang, Y.J. and Kim, G.I.J. (2020) Altered Expression of ADM and ADM2 by Hypoxia Regulates Migration of Trophoblast and HLA-G Expression. Biology of Reproduction, 104, 159-169. https://doi.org/10.1093/biolre/ioaa178
|
[33]
|
Gonen-Gross, T., Goldman-Wohl, D., Huppertz, B., Lankry, D., Greenfield, C., Natanson-Yaron, S., et al. (2010) Inhibitory NK Receptor Recognition of HLA-G: Regulation by Contact Residues and by Cell Specific Expression at the Fetal-Maternal Interface. PLOS ONE, 5, e8941. https://doi.org/10.1371/journal.pone.0008941
|
[34]
|
Zhou, Q., Meng, Q., Meng, T., He, Q., Zhao, Z., Li, Q., et al. (2020) Deletion of BAF250a Affects Oocyte Epigenetic Modifications and Embryonic Development. Molecular Reproduction and Development, 87, 550-564. https://doi.org/10.1002/mrd.23339
|
[35]
|
Kalsner, L. and Chamberlain, S.J. (2015) Prader-Willi, Angelman, and 15q11-Q13 Duplication Syndromes. Pediatric Clinics of North America, 62, 587-606. https://doi.org/10.1016/j.pcl.2015.03.004
|
[36]
|
Heimdörfer, D., Vorleuter, A., Eschlböck, A., Spathopoulou, A., Suarez-Cubero, M., Farhan, H., et al. (2024) Truncated Variants of MAGEL2 Are Involved in the Etiologies of the Schaaf-Yang and Prader-Willi Syndromes. The American Journal of Human Genetics, 111, 1383-1404. https://doi.org/10.1016/j.ajhg.2024.05.023
|
[37]
|
Shi, C., Zhang, J., Yan, Z., Gao, L., Gao, C., Wu, W., et al. (2022) Epigenetic Effect of Putrescine Supplementation during in Vitro Maturation of Oocytes on Offspring in Mice. Journal of Assisted Reproduction and Genetics, 39, 681-694. https://doi.org/10.1007/s10815-022-02448-6
|
[38]
|
Knill, C., Henderson, E.J., Johnson, C., Wah, V.Y., Cheng, K., Forster, A.J., et al. (2023) Defects of the Spliceosomal Gene SNRPB Affect Osteo‐ and Chondro‐Differentiation. The FEBS Journal, 291, 272-291. https://doi.org/10.1111/febs.16934
|
[39]
|
Zou, H., Yin, J., Zhang, Z., Xiang, H., Wang, J., Zhu, D., et al. (2020) Destruction in Maternal-Fetal Interface of URSA Patients via the Increase of the HMGB1-RAGE/TLR2/TLR4-NF-κB Signaling Pathway. Life Sciences, 250, Article ID: 117543. https://doi.org/10.1016/j.lfs.2020.117543
|
[40]
|
Santulli-Marotto, S., Qian, Y., Ferguson, S. and Clarke, S.H. (2001) Anti-Sm B Cell Differentiation in Ig Transgenic MRL/Mp-lpr/lpr Mice: Altered Differentiation and an Accelerated Response. The Journal of Immunology, 166, 5292-5299. https://doi.org/10.4049/jimmunol.166.8.5292
|
[41]
|
Li, H., Xu, H.M., Zhao, Y., et al. (2013) [Genotyping and Parental Related Methylation of SNRPN Gene rs220030]. Journal of Forensic Medicine, 29, 103-106, 115.
|
[42]
|
Peng, H., Zhao, P., Liu, J., Zhang, J., Zhang, J., Wang, Y., et al. (2018) Novel Epigenomic Biomarkers of Male Infertility Identified by Methylation Patterns of CPG Sites within Imprinting Control Regions of H19 and SNRPN Genes. OMICS: A Journal of Integrative Biology, 22, 354-364. https://doi.org/10.1089/omi.2018.0019
|
[43]
|
Nakayashiki, N., Takamiya, M., Shimamoto, K., Aoki, Y. and Hashiyada, M. (2009) Investigation of the Methylation Status around Parent-Of-Origin Detectable SNPs in Imprinted Genes. Forensic Science International: Genetics, 3, 227-232. https://doi.org/10.1016/j.fsigen.2009.02.004
|
[44]
|
Dukatz, M., Dittrich, M., Stahl, E., Adam, S., de Mendoza, A., Bashtrykov, P., et al. (2022) DNA Methyltransferase DNMT3A Forms Interaction Networks with the CPG Site and Flanking Sequence Elements for Efficient Methylation. Journal of Biological Chemistry, 298, Article ID: 102462. https://doi.org/10.1016/j.jbc.2022.102462
|
[45]
|
Bernier-Latmani, J., Baumer, A. and Shaw, P. (2009) No Evidence for Mutations of CTCFL/BORIS in Silver-Russell Syndrome Patients with IGF2/H19 Imprinting Control Region 1 Hypomethylation. PLOS ONE, 4, e6631. https://doi.org/10.1371/journal.pone.0006631
|
[46]
|
Poulin, M., Zhou, J.Y., Yan, L. and Shioda, T. (2018) Pyrosequencing Methylation Analysis. In: Dumitrescu, R. and Verma, M., Eds., Cancer Epigenetics for Precision Medicine, Springer, 283-296. https://doi.org/10.1007/978-1-4939-8751-1_17
|
[47]
|
Sergeeva, A., Davydova, K., Perenkov, A. and Vedunova, M. (2023) Mechanisms of Human DNA Methylation, Alteration of Methylation Patterns in Physiological Processes and Oncology. Gene, 875, Article ID: 147487. https://doi.org/10.1016/j.gene.2023.147487
|
[48]
|
Zeng, Y., Li, F., Yuan, S., Tang, H., Zhou, J., He, Q., et al. (2021) Prevalence of Hyperhomocysteinemia in China: An Updated Meta-Analysis. Biology, 10, Article 959. https://doi.org/10.3390/biology10100959
|
[49]
|
Joshi, K., Liu, S., Breslin S.J., P. and Zhang, J. (2022) Mechanisms That Regulate the Activities of TET Proteins. Cellular and Molecular Life Sciences, 79, Article No. 363. https://doi.org/10.1007/s00018-022-04396-x
|
[50]
|
Kremsky, I. and Corces, V.G. (2020) Protection from DNA Re-Methylation by Transcription Factors in Primordial Germ Cells and Pre-Implantation Embryos Can Explain Trans-Generational Epigenetic Inheritance. Genome Biology, 21, Article No. 118. https://doi.org/10.1186/s13059-020-02036-w
|