放射性肠炎营养综合治疗的临床及基础研究进展
Advances in Clinical and Basic Research on the Comprehensive Nutritional Treatment of Radiation Enteritis
DOI: 10.12677/acm.2025.1592647, PDF, HTML, XML,   
作者: 俞诗云, 徐寅洒:绍兴文理学院医学院,浙江 绍兴;蔡 斌*:浙江大学医学院附属邵逸夫医院,浙江 杭州
关键词: 放射性肠炎肠道损伤营养治疗营养支持Radiation Enteritis Intestinal Injury Nutritional Therapy Nutritional Support
摘要: 放射性肠炎(radiation enteritis, RE)是盆腹腔放疗患者主要并发症之一,影响肿瘤患者治疗和生存质量。目前主要是一些药物和营养治疗。营养治疗在放射性肠炎综合治疗发挥着重要作用,本文基于放射性肠炎肠道损伤机制和潜在的营养治疗方式,为后续放射性肠炎的研究提供新思路。
Abstract: Radiation enteritis (RE) is one of the main complications of pelvic and abdominal radiotherapy patients, which affects the treatment and survival quality of tumor patients. At present, it is mainly treated with some drugs and nutritional therapy. Nutritional therapy plays an important role in the comprehensive treatment of radiation enteritis, and this paper provides new ideas for the subsequent research of radiation enteritis based on the mechanism of intestinal injury and potential nutritional treatment modalities of radiation enteritis.
文章引用:俞诗云, 徐寅洒, 蔡斌. 放射性肠炎营养综合治疗的临床及基础研究进展[J]. 临床医学进展, 2025, 15(9): 1477-1484. https://doi.org/10.12677/acm.2025.1592647

1. 前言

放射治疗是恶性肿瘤的主要治疗方法之一,主要放射部位包括头颈部、胸部和腹部。放疗可以提高肿瘤患者生存率,但仍有不少患者在放疗后出现不同程度的损伤,如放射性皮炎、放射性口腔黏膜炎、放射性肺炎、放射性肠炎、放射性膀胱炎等,影响后续的抗肿瘤治疗及降低患者生存质量。放射性肠炎(radiation enteritis, RE)是盆腹腔恶性肿瘤患者接受放疗后引起的肠道放射性损伤,可表现为腹痛、腹泻、便频、便急等症状,如治疗不及时,甚至会发生肠出血、肠穿孔、肠梗阻、肠瘘等严重并发症。随着肿瘤发病率的增加,RE的患病率也呈上升趋势,在盆腔放射治疗患者中,约90%的患者在放疗后会出现排便习惯改变[1]。有报道显示,接受45 Gy~70 Gy剂量的患者更易发生放射治疗引起的继发的肠道损伤[2]。大约超过75%的盆腔放疗患者会发生急性放射性直肠炎,如果治疗不及时,一部分患者会发展为慢性放射性直肠炎[3],给患者带来身体、心理和经济负担。

放射性肠炎治疗基本上是药物和营养治疗,目前还没有理想的治疗手段。本文利用动物和人类研究的证据总结了放射性肠道的损伤机制和一些营养治疗手段,为后续放射性肠炎的研究提供新思路。

2. 放射性肠炎损伤的机制

肠道不仅是人体的消化器官,同时也是内分泌及免疫器官,负责消化吸收、输送食物及免疫屏障作用。RE的形成是一个复杂的多机制过程,电离辐射会导致胃肠道细胞损伤和DNA结构破坏,照射后会引起肠道的菌群失调、粘液分泌减少、肠上皮屏障破坏、免疫失衡和血管内皮破坏[4]

肠道分布在腹部及盆腔内,盆腹腔肿瘤放疗不可避免地会引起肠道损伤。电离辐射会破坏肠上皮细胞及细胞间紧密连接,损伤肠屏障并引起DNA损伤[5]

辐射导致肠隐窝底部未分化的细胞过度增生,发生变性、坏死,绒毛结构被破坏,肠道上皮层缺失、肠道通透性增加。辐射会引起紧密连接中ZO-1、claudin-1和occludin蛋白发生重组或断裂,细胞间隙增大,细胞通透性升高,肠上皮屏障破坏[6]。此外,辐射会导致杯状细胞数量和粘蛋白2 (MUC2)的表达降低,引起粘液分泌减少,加重消化酶及有害物质的产生。同时,辐射诱导血管内皮损伤,改变内皮细胞之间的粘附并促进巨噬细胞的募集,从而影响血管通透性和局部炎症反应,诱导内皮血管损伤[7]。肠道微血管内皮细胞和上皮细胞损伤,导致水肿和粘膜损伤,引起腹痛、腹泻、恶心、呕吐、食欲不振和体重下降、肠梗阻和肠出血等症状。正常的肠道菌群有助于形成肠道生物屏障,辐射可直接杀灭、抑制、扰乱肠道正常菌群。放疗后益生菌定值减少,有害菌定值增加,肠道微生物群失调导致RE的发生和进展。有学者[8]在宫颈癌患者的粪便样本中发现菌群失调,α多样性显着降低但β多样性增加。16S数据显示[9],局部照射导致拟杆菌门与厚壁菌门的比率降低,并进一步的预测表明甘油磷脂代谢与RE进展相关,肠道菌群可能通过其代谢产物调节。肠道免疫系统是人体最大的免疫系统,肠道免疫系统由肠道相关淋巴组织(GALT)和分泌的免疫球蛋白组成,在放射性肠炎中,免疫细胞和免疫细胞因子的水平发生变化。研究表明,辐射可通过增加L铁死亡相关因子的表达,提高了免疫相关因子INF-γ和TGF-β mRNA的水平,降低了IL-17 mRNA的水平[10],损害肠道免疫功能。

放射性肠炎的产生是多种因素相互作用的复杂过程。正常的肠机械屏障和免疫屏障被破坏,肠粘膜的通透性增加,另一方面,肠道菌群稳态失衡导致免疫细胞激活及炎性因子释放,加重肠粘膜屏障功能障碍,引起肠组织损伤,导致RE。辐射引起细胞内的水产生氧自由基(ROS),是导致放射性肠炎的关键因素。ROS可与蛋白质、核酸和脂质等大分子迅速反应,导致细胞功能障碍和凋亡。此外,RE的机制涉及多种信号通路,包括NF-κB、PI3K/AKT、MAPK和TLR等[11]-[13]。有研究表明,辐射还可能通过影响自噬、坏死损伤肠屏障而引起RE。

3. 治疗

目前为止,RE的治疗还没有确切有效的手段。现在放射性肠炎的治疗主要包括预防、药物和营养综合治疗。当药物治疗无效时,则需要手术。

3.1. 预防

照射前给予特定药物可降低正常细胞的辐射损伤。氨磷汀是美国食品药品监督管理局(Food and Drug Administration)批准的第一种临床辐射防护剂。在放疗前15~30分钟内给予氨磷汀可以减低正常组织的放射毒性。照射前多巴胺纳米颗粒灌饲可保护小鼠免受照射诱导的隐窝绒毛单位损伤,抑制LGR5+肠道干细胞(ISC)的耗竭,促进细胞再生,显著抑制肠道细胞凋亡、炎性坏死和DNA损伤[14]。成纤维细胞生长因子(FGF)可有效促进伤口愈合和防止辐射诱导的肠道损伤,研究表明,照射前给予成纤维细胞生长因子1 (FGF1)与高硫酸化透明质酸(HA-HS)和肝素(HP)的组合可以提高隐窝的存活率[15]。此外,照射前使用放射增敏剂可减少辐射剂量,减弱照射的副作用。如化合物(E)-5-(2-([1,1′-联苯]-4-基)乙烯基)-2-羟基苯甲酸(DC10)通过抑制胱氨酸摄取起着放射增敏剂的作用[16],SET8(唯一已知的能使组蛋白H4的赖氨酸20单甲基化的赖氨酸甲基转移酶)的基因缺失在小鼠肿瘤模型中显著增强了放疗,SET8抑制剂可通过抑制DNA损伤修复增强放射敏感性[17]

3.2. 营养综合治疗

放疗引起的消化道不适症状会降低患者进食欲望并影响肠道对营养物质的吸收,导致营养不良。同时,营养状况下降可降低放射敏感性及精度,增加放疗相关不良反应的发生率。在放疗期间应更加重视营养状况,可以利用营养风险筛查(NRS-2002)、患者主观全面评定法(PG-SGA)、营养不良评定标准共识(GLIM)、人体成分分析及饮食调查等方式,定期进行营养风险评估和个体化营养干预,指导患者营养治疗[18]

3.2.1. 营养支持

研究表明,BMI水平与患者的急性放射性肠炎呈正相关,当BMI达到一定水平时,将促进急性放射性肠炎的发生[19]。因此,营养支持是一种可行的手段,应用营养支持可以降低患者营养不良风险、改善肠道功能,提高免疫。当患者出现较严重的胃肠道症状时,应给予空腹和肠外营养支持。研究者在动物实验中证明放疗前禁食可以有效地改善肠道干细胞的再生和小鼠的存活率[20]。然而,长期给予肠外营养会有副作用,肠内营养是一种较安全的方式,是营养治疗的首选手段。对于可经口进食的患者,优先选择口服营养补充(oral nutritional supplements, ONS)。ONS是一种医学用途配方食品,将含有多种营养素的制剂加入饮品及食物中经口服用,以满足机体对营养物质的需求。放射性肠炎患者是ONS的适用人群,ONS对于患者放疗前的营养改善和放疗后预防有着积极的作用。在配置营养剂中添加某些营养物质如谷氨酰胺、亚油酸(LA)、维生素等都可能有助于病情的恢复,谷氨酰胺可以为肠道提供必需的营养,防止肠粘膜萎缩并改善肠道免疫功能,但谷氨酰胺对于放疗患者肠道黏膜修复功能尚存在争议。亚油酸(LA)是脂肪酸的一种omega-6 (Ω-6)形式,主要存在于大豆油中,在炎症中起着核心作用,包括免疫反应、凝血、血管活化和骨代谢[21]。营养素维生素D通过抑制PMAIP (佛波醇肉豆蔻酸酯诱导蛋白)介导的隐窝干/祖细胞凋亡来防止照射诱导的小鼠肠道损伤[22]。补充抗氧化剂维生素A、C、E或番茄红素可降低ROS免受照射并保护上皮细胞并恢复其对接受治疗的患者的吸收功能。特别是与维生素A和C相比,维生素E补充剂被证明在改善肠道消化酶的活性方面最有效[23]。此外,应用富含TGF-β2的配方奶粉营养补充剂可改善接受盆腔放疗患者辐射诱发的腹泻[24]

3.2.2. 饮食

饮食模式与肠道毒性相关,限制热量和禁食可以改善组织中的成体干细胞功能,促进组织再生,而如高脂饮食、西式饮食和含有过量食品添加剂的饮食等不健康的饮食习惯,会促进营养过剩并导致肠上皮细胞结构的改变和隐窝–绒毛组织被侵蚀[25] [26],这可能是通过食物–肠道微生物群–宿主之间复杂的相互作用。此外,在炎症性肠病研究中发现[27],低蛋白饮食通过NUFIP1-DDR信号传导激活坏死性凋亡来促进肠道炎症,由此可进一步推断高蛋白饮食可能改善肠道炎症,进而减轻放射性肠炎并发症。膳食多酚广泛存在于植物性食物中,多酚可通过调节活性氧(ROS)的产生和促进ROS清除来发挥抗氧化作用,并可通过调节炎症信号通路和释放炎症因子来实现抗炎作用。在放射炎症中,多酚可以通过减少放射损伤引起的炎症反应,促进组织修复、再生并加速损伤部位的愈合。使其成为对抗细胞氧化应激的有效膳食补充剂。但膳食多酚在食品中含量较低,并且由于稳定性和溶解度差,在人体吸收率及生物利用度低。对此,运用脂质体、纳米颗粒、水凝胶、微针作为膳食多酚的生物输送系统,可以提高膳食多酚的功效[28]。这些研究对放射诱发性肠炎患者功能性食品的开发具有巨大价值。

3.2.3. 肠道菌群

人体内肠道菌群与消化健康和饮食的营养价值密切相关,放射性肠炎患者肠道菌群失调,针对微生物的疗法可以直接逆转微生物群失调,目前,益生菌和菌群移植(fecal microbiota transplantation, FMT)已用于放射性肠炎的临床治疗。一些益生菌在研究中证明显着降低了放射治疗诱发的副反应。如嗜粘蛋白阿克曼菌(A. muciniphila)分泌丙酸与肠上皮表面的G蛋白偶联受体43 (GRP43)结合,并增加了组蛋白乙酰化,从而增强了紧密连接蛋白occludin和ZO-1的表达,并提高粘蛋白的水平,从而增强了肠上皮屏障的完整性并减少了辐射引起的肠损伤,并且其对电离辐射诱导的小鼠肠道损伤的辐射防护作用优于乳酸菌[29]。在接受50Gy的盆腔外照射治疗的宫颈癌患者中,给予双歧杆菌 + 嗜酸乳杆菌,结果显示腹泻发生率较安慰剂组明显减少[30]。鼠李糖乳杆菌GG (LGG)对放射诱导性肠炎炎症反应具有调节作用,应用益生菌后粪便中α多样性增加,抗炎相关微生物增多[31]。但益生菌在肠道中快速转运,难以定植,利用率低,会限制其治疗作用,新技术用双层壳聚糖/单宁酸涂层和微球包埋益生菌可以提高治疗效果[32]。口服EcN-Se@SA (一种封装在海藻酸钠凝胶中的载硒益生菌(大肠杆菌Nissle 1917))可以抵抗胃酸和肠液,延长在肠道留存时间[33]。多种益生菌联合制剂会增强疗效,而益生元菊粉水凝胶(IG)和多菌株益生菌(MSP)形成的合生元对电离辐射诱导的损伤具有协同作用[34]

FMT可以缓解放射性肠炎,将健康小鼠的肠道微生物群移植到辐射损伤小鼠的肠道中,发现FMT增加了辐射损伤小鼠的胃肠道功能和上皮细胞完整性,同时维持了照射小鼠肠道微生物群的多样性[35]。FMT可能是通过调节肠道微生物群和代谢物来减轻RE [36]。在小鼠放射性肠炎研究中,发现FMT通过调节肠道微生物介导的色氨酸代谢修复放射性肠炎[37]。纳入接受肠菌移植治疗并随访3个月以上肠道菌群失调相关疾病患者15,000例的临床资料,其中放射性肠炎432例,发现FMT对放射性肠炎有明显的改善效果[38]

3.3. 其他治疗

放射性肠炎常用的治疗药物主要通过对症、抗炎、抗氧化发挥作用。非甾体类抗炎药物如柳氮磺胺砒啶、巴柳氮等可减少腹泻发生,广泛应用于放射性肠炎患者中。辐射产生的活性氧是放射毒性的关键因素,抗氧化是治疗放射性肠炎的关键。超氧化物歧化酶(SOD)和过氧化氢酶(CAT)具有较高的ROS清除效率,但这些抗氧化剂生物利用度低并易失活,来自北京的研究团队通过基因工程改造大肠杆菌Nissle 1917 (EcN),使大肠杆菌Nissle 1917作为SOD/CAT载体来清除ROS,在预防和治疗放射性肠炎方面具有出色的效果[39]。大黄素具有抗炎、抗氧化、抗病毒、抗菌和抗癌作用,研究表明,大黄素可能通过抑制AKT/ERK/NF-κB/VEGF通路以及诱导JNK和p38介导的细胞凋亡减弱小鼠的放射性肠炎[12]

一些中医药的研究也证明对放射性肠炎具有一定的疗效。安昌组方(ACZF)基于传统的白头翁汤和四军子汤,在缓解放射性肠炎症状方面具有临床疗效,其抑制PI3K/AKT通路激活具有关键作用[11]。淫羊藿苷Ⅱ (ICS Ⅱ)是从经典中草药淫羊藿中提取纯化的高效单体化合物,ICS II可以通过调节PINK/Parkin介导的线粒体自噬,减轻肠道损伤及辐射引起的氧化应激和炎症反应[40]。西黄丸是一种具有显著抗肿瘤和抗炎活性的中药,放射性肠炎具有治疗效果[41]。大鼠放射性肠炎研究提示,在腹腔注射复方苦参注射液(CKI)的大鼠回肠组织中免疫细胞标志物CD68和CD16b的浸润显著降低,CKI可能通过靶向大麻素受体1 (CB1或CB1R)具有抗放射性肠炎作用[42]

干细胞移植可能是治疗放射性肠炎的可行方法。自体骨髓间充质干细胞(ABMSC)移植可促进Beagle犬急性放射性损伤后的肠道恢复,与对照组相比,ABMSC移植后血清和肠道组织中抗炎细胞因子IL-10的水平迅速升高[43]。铁死亡是电离辐射诱导肠道损伤的关键机制,IVIg (静脉内免疫球蛋白)可以通过激活mTOR通路来防止RE诱导的肠道上皮屏障损伤并抑制铁死亡[44]。高压氧疗法对晚期放射病变有积极作用,HBOT可以改善肠道炎症反应,促进肠粘膜的愈合,对放射性肠道损伤有一定的预防作用[45] [46]。糖尿病和吸烟是急性放射性肠炎的危险因素[19] [23],因此,治疗基础疾病和良好的健康习惯可能会降低放射性肠炎的发病率和并发症,可为诊断和预防提供指导和新思路。当放射性肠损伤出现肠梗阻、肠坏死或肠穿孔等严重并发症时,则需要进行手术治疗。

4. 总结

随着放疗技术的发展,放疗对盆腹腔恶性肿瘤的疗效得到了证实。然而,放疗不可避免地会照射周围的正常组织,并且肠上皮细胞对放疗高度敏感且耐受性差,由此导致放射性肠炎并发症发生率增加。我们目前已经揭示了调节放射性肠炎的发生发展的一些机制,但其明确机制尚不清楚,目前的一些治疗及预防手段的临床证据仍然不足。多数研究人类标本数量较少、动物研究居多,建立离体肿瘤模型系统繁琐及肿瘤细胞反应的全身影响等复杂性因素,无法准确定义效果,需要进一步的研究证据。类器官培养的使用可减轻其中一些限制,使用患者来源的类器官评估肠道辐射副反应及治疗效果,以制定个性化的放射治疗策略。总之,我们需要进一步了解放射性肠炎的发病机制并制定规范有效的治疗方法。营养治疗是放射性肠炎综合治疗不可或缺的一部分,有必要对患者提供营养知识和指导,建立健康有益的生活习惯,通过调整饮食、肠内外营养补充额外的营养素及调整肠道菌群进行精准营养干预,从而减轻和预防放射性肠炎并发症。但放射性肠炎患者的营养治疗尚缺乏专门的研究关注,未来可重点关注基于多组学层面的研究。可对RE患者进行特定营养干预,通过临床样本和多组学数据研究,挖掘关键菌属和代谢物,利用粪便、血液和组织样本进行代谢和蛋白组学等分析研究,验证关键发现,从而实现个性化治疗。我们未来有望通过饮食干预、营养支持、调节肠道菌群来治疗和预防放射性肠炎。

NOTES

*通讯作者。

参考文献

[1] Wang, Y., Kong, W., Lv, N., Li, F., Chen, J., Jiao, S., et al. (2018) Incidence of Radiation Enteritis in Cervical Cancer Patients Treated with Definitive Radiotherapy versus Adjuvant Radiotherapy. Journal of Cancer Research and Therapeutics, 14, S120-S124.
https://doi.org/10.4103/0973-1482.163762
[2] Dahiya, D.S., Kichloo, A., Tuma, F., Albosta, M. and Wani, F. (2022) Radiation Proctitis and Management Strategies. Clinical Endoscopy, 55, 22-32.
https://doi.org/10.5946/ce.2020.288
[3] 中国医师协会外科医师分会, 中华医学会外科学分会结直肠外科学组, 王磊, 等. 中国放射性直肠炎诊治专家共识(2018版) [J]. 中华胃肠外科杂志, 2018, 21(12): 1321-1336.
[4] Lu, Q., Liang, Y., Tian, S., Jin, J., Zhao, Y. and Fan, H. (2023) Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. Toxics, 11, Article No. 1011.
https://doi.org/10.3390/toxics11121011
[5] Jang, H., Kim, S., Kim, H., Oh, S.H., Kwak, S.Y., Joo, H., et al. (2022) Metformin Protects the Intestinal Barrier by Activating Goblet Cell Maturation and Epithelial Proliferation in Radiation-Induced Enteropathy. International Journal of Molecular Sciences, 23, Article No. 5929.
https://doi.org/10.3390/ijms23115929
[6] 王中秋, 王清鑫, 袁智勇. 放射性肠炎肠黏膜屏障损伤及其相关机制的研究进展[J]. 胃肠病学, 2018, 23(7): 440-443.
[7] Venkatesulu, B.P., Mahadevan, L.S., Aliru, M.L., Yang, X., Bodd, M.H., Singh, P.K., et al. (2018) Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC: Basic to Translational Science, 3, 563-572.
https://doi.org/10.1016/j.jacbts.2018.01.014
[8] Wang, Z., Wang, Q., Wang, X., Zhu, L., Chen, J., Zhang, B., et al. (2019) Gut Microbial Dysbiosis Is Associated with Development and Progression of Radiation Enteritis during Pelvic Radiotherapy. Journal of Cellular and Molecular Medicine, 23, 3747-3756.
https://doi.org/10.1111/jcmm.14289
[9] Li, Y., Yan, H., Zhang, Y., Li, Q., Yu, L., Li, Q., et al. (2020) Alterations of the Gut Microbiome Composition and Lipid Metabolic Profile in Radiation Enteritis. Frontiers in Cellular and Infection Microbiology, 10, Article ID: 541178.
https://doi.org/10.3389/fcimb.2020.541178
[10] Wang, L., Wang, A., Fu, Q., Shi, Z., Chen, X., Wang, Y., et al. (2022) Ferroptosis Plays an Important Role in Promoting Ionizing Radiation-Induced Intestinal Injuries. Biochemical and Biophysical Research Communications, 595, 7-13.
https://doi.org/10.1016/j.bbrc.2022.01.068
[11] Liang, W., Li, B., Sun, Y., Jia, D., Hu, T., Huang, R., et al. (2025) Molecular Mechanisms of the Anchang Group Prescription in Treating Radiation Enteritis: Network Pharmacology Analysis and Experimental Evidence. Frontiers in Pharmacology, 16, Article ID: 1524925.
https://doi.org/10.3389/fphar.2025.1524925
[12] Gao, J., Li, Y., Chen, J., Feng, W., Bu, J., Lu, Z., et al. (2024) Emodin Ameliorates Acute Radiation Proctitis in Mice by Regulating AKT/MAPK/NF-κB/VEGF Pathways. International Immunopharmacology, 132, Article ID: 111945.
https://doi.org/10.1016/j.intimp.2024.111945
[13] Duan, X., Cai, H., Hu, T., Lin, L., Zeng, L., Wang, H., et al. (2023) Ginsenoside Rg3 Treats Acute Radiation Proctitis through the TLR4/MyD88/NF-κB Pathway and Regulation of Intestinal Flora. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 1028576.
https://doi.org/10.3389/fcimb.2022.1028576
[14] Jia, S., Dong, S., Liu, H., Yu, H., Chen, Z., Wang, S., et al. (2022) Dopamine-Derived Nanoparticles for the Protection of Irradiation-Induced Intestinal Injury by Maintaining Intestinal Homeostasis. Biomaterials Science, 10, 3309-3322.
https://doi.org/10.1039/d1bm02026a
[15] Miura, T., Kawano, M., Takahashi, K., Yuasa, N., Habu, M., Kimura, F., et al. (2022) High-Sulfated Hyaluronic Acid Ameliorates Radiation-Induced Intestinal Damage without Blood Anticoagulation. Advances in Radiation Oncology, 7, Article ID: 100900.
https://doi.org/10.1016/j.adro.2022.100900
[16] Sarowar, S., Cirillo, D., Játiva, P., Nilsen, M.H., Otragane, S.A., Heggdal, J., et al. (2022) The Styryl Benzoic Acid Derivative DC10 Potentiates Radiotherapy by Targeting the xCT-Glutathione Axis. Frontiers in Oncology, 12, Article ID: 786739.
https://doi.org/10.3389/fonc.2022.786739
[17] Pan, D., Du, Y.R., Li, R., et al. (2022) SET8 Inhibition Potentiates Radiotherapy by Suppressing DNA Damage Repair in Carcinomas. Biomedical and Environmental Sciences, 35, 194-205.
[18] Ma, C., Zhao, J., Qian, K., Xu, Z., Xu, X. and Zhou, J. (2023) Analysis of Nutritional Risk, Skeletal Muscle Depletion, and Lipid Metabolism Phenotype in Acute Radiation Enteritis. World Journal of Gastrointestinal Surgery, 15, 2831-2843.
https://doi.org/10.4240/wjgs.v15.i12.2831
[19] Gao, Y. and Meng, L. (2023) Significant Correlation between Glucose Metabolism Status and Acute Radiation Enteritis Resulting from Concurrent Chemoradiotherapy in Rectal Cancer. American Journal of Translational Research, 15, 4228-4236.
[20] de la Cruz Bonilla, M., Stemler, K.M., Jeter-Jones, S., Fujimoto, T.N., Molkentine, J., Asencio Torres, G.M., et al. (2019) Fasting Reduces Intestinal Radiotoxicity, Enabling Dose-Escalated Radiation Therapy for Pancreatic Cancer. International Journal of Radiation Oncology Biology Physics, 105, 537-547.
https://doi.org/10.1016/j.ijrobp.2019.06.2533
[21] Hellerman Itzhaki, M. and Singer, P. (2020) Advances in Medical Nutrition Therapy: Parenteral Nutrition. Nutrients, 12, Article No. 717.
https://doi.org/10.3390/nu12030717
[22] Li, W., Lin, Y., Luo, Y., Wang, Y., Lu, Y., Li, Y., et al. (2021) Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/progenitor Cell Apoptosis. Nutrients, 13, Article No. 2910.
https://doi.org/10.3390/nu13092910
[23] Yang, Q., Qin, B., Hou, W., Qin, H. and Yin, F. (2023) Pathogenesis and Therapy of Radiation Enteritis with Gut Microbiota. Frontiers in Pharmacology, 14, Article ID: 1116558.
https://doi.org/10.3389/fphar.2023.1116558
[24] Demiral, S., Beyzadeoglu, M., Sager, O., Dincoglan, F., Uysal, B., Gamsiz, H., et al. (2015) Evaluation of Transforming Growth Factor-Β2 for Radiation-Induced Diarrhea after Pelvic Radiotherapy. Tumori Journal, 101, 474-477.
https://doi.org/10.5301/tj.5000328
[25] Moraitis, I., Guiu, J. and Rubert, J. (2023) Gut Microbiota Controlling Radiation-Induced Enteritis and Intestinal Regeneration. Trends in Endocrinology & Metabolism, 34, 489-501.
https://doi.org/10.1016/j.tem.2023.05.006
[26] Zhang, L., He, Y., Dong, L., Liu, C., Su, L., Guo, R., et al. (2023) Perturbation of Intestinal Stem Cell Homeostasis and Radiation Enteritis Recovery via Dietary Titanium Dioxide Nanoparticles. Cell Proliferation, 56, e13427.
https://doi.org/10.1111/cpr.13427
[27] Ming, H., Tan, J., Cao, S., Yu, C., Qi, Y., Wang, C., et al. (2025) NUFIP1 Integrates Amino Acid Sensing and DNA Damage Response to Maintain the Intestinal Homeostasis. Nature Metabolism, 7, 120-136.
https://doi.org/10.1038/s42255-024-01179-5
[28] Lu, Y., Wang, K. and Hu, L. (2025) Advancements in Delivery Systems for Dietary Polyphenols in Enhancing Radioprotection Effects: Challenges and Opportunities. NPJ Science of Food, 9, 51.
https://doi.org/10.1038/s41538-025-00419-6
[29] He, K.Y., Lei, X.Y., Wu, D.H., et al. (2023) Akkermansia muciniphila Protects the Intestine from Irradiation-Induced Injury by Secretion of Propionic Acid. Gut Microbes, 15, Article ID: 2293312.
https://doi.org/10.1080/19490976.2023.2293312
[30] Linn, Y.H., Thu, K.K. and Win, N.H.H. (2018) Effect of Probiotics for the Prevention of Acute Radiation-Induced Diarrhoea among Cervical Cancer Patients: A Randomized Double-Blind Placebo-Controlled Study. Probiotics and Antimicrobial Proteins, 11, 638-647.
https://doi.org/10.1007/s12602-018-9408-9
[31] Lee, S.U., Jang, B., Na, Y.R., Lee, S.H., Han, S., Chang, J.H., et al. (2023) Effect of Lactobacillus Rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis. Probiotics and Antimicrobial Proteins, 16, 636-648.
https://doi.org/10.1007/s12602-023-10071-9
[32] Sun, R., Du, S., Wang, M., Chen, Z., Yan, Q., Yuan, B., et al. (2024) Colonic Long-Term Retention and Colonization of Probiotics by Double-Layer Chitosan/tannic Acid Coating and Microsphere Embedding for Treatment of Ulcerative Colitis and Radiation Enteritis. International Journal of Biological Macromolecules, 280, Article ID: 135757.
https://doi.org/10.1016/j.ijbiomac.2024.135757
[33] Sun, R., Li, S., Chen, Z., Zheng, K., Li, W., Sun, X., et al. (2025) Oral Antioxidant-Engineered Probiotics for the Treatment of Radiation-Induced Colitis. ACS Applied Materials & Interfaces, 17, 10316-10327.
https://doi.org/10.1021/acsami.4c17651
[34] Du, S., Sun, R., Wang, M., Fang, Y., Wu, Y., Yuan, B., et al. (2025) Synergistic Effect of Inulin Hydrogels on Multi-Strain Probiotics for Prevention of Ionizing Radiation-Induced Injury. International Journal of Biological Macromolecules, 287, Article ID: 138497.
https://doi.org/10.1016/j.ijbiomac.2024.138497
[35] Cui, M., Xiao, H., Li, Y., Zhou, L., Zhao, S., Luo, D., et al. (2017) Faecal Microbiota Transplantation Protects against Radiation‐induced Toxicity. EMBO Molecular Medicine, 9, 448-461.
https://doi.org/10.15252/emmm.201606932
[36] Ding, Q., Xue, J., Li, N., Hu, Z. and Song, J. (2025) Fecal Microbiota Transplantation Alleviates Radiation Enteritis by Modulating Gut Microbiota and Metabolite Profiles. Biomolecules and Biomedicine, 25, 1992-2003.
https://doi.org/10.17305/bb.2025.11835
[37] Tu, Y., Luo, L., Zhou, Q., Ni, J. and Tang, Q. (2024) Fecal Microbiota Transplantation Repairs Radiation Enteritis through Modulating the Gut Microbiota-Mediated Tryptophan Metabolism. Radiation Research, 201, 572-585.
https://doi.org/10.1667/rade-23-00189.1
[38] 田宏亮, 王乐, 马春联, 等. 肠菌移植治疗肠道菌群失调相关疾病15000例的长期疗效分析[J]. 中华胃肠外科杂志, 2025, 28(3): 296-303.
[39] Wang, K., Yuan, B., Zhang, F., Li, Z., Jia, X., Hu, Y., et al. (2025) A Bioadhesive Antioxidase-Overexpressed Probiotic Prevents Radiation Enteritis by Scavenging the Excess Reactive Oxygen Species. Free Radical Biology and Medicine, 227, 485-498.
https://doi.org/10.1016/j.freeradbiomed.2024.12.013
[40] He, S., Yan, C., Wang, Z., Mao, Y., Liu, K., Sun, J., et al. (2025) Icariside II Relieves Radiation Enteritis by Regulating PINK/Parkin-Mediated Mitophagy. International Immunopharmacology, 146, Article ID: 113861.
https://doi.org/10.1016/j.intimp.2024.113861
[41] Lv, M., Ding, R., Ma, P., Feng, Y., Zeng, S., Zhang, Y., et al. (2024) Network Pharmacology Analysis on the Mechanism of Xihuangwan in Treating Rectal Cancer and Radiation Enteritis. Current Pharmaceutical Design, 30, 683-701.
https://doi.org/10.2174/0113816128287232240213105913
[42] Xu, W., Gao, L., Zou, W., Tang, X., Nian, W., Zheng, W., et al. (2025) Compound Kushen Injection Improves Radiation Enteritis via Cannabinoid Receptor 1 in Rats. BMC Complementary Medicine and Therapies, 25, Article No. 70.
https://doi.org/10.1186/s12906-025-04820-2
[43] Sun, G., Xu, W., Yao, H., Chen, J. and Chai, R. (2025) Protective Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cell Transplantation on Acute Radioactive Enteritis in Beagle Dogs. World Journal of Gastroenterology, 31, Article No. 97599.
https://doi.org/10.3748/wjg.v31.i7.97599
[44] He, J., Jiang, P., Ma, L., Liu, F., Fu, P., Du, X., et al. (2024) Intravenous Immunoglobulin Protects the Integrity of the Intestinal Epithelial Barrier and Inhibits Ferroptosis Induced by Radiation Exposure by Activating the mTOR Pathway. International Immunopharmacology, 131, Article ID: 111908.
https://doi.org/10.1016/j.intimp.2024.111908
[45] Geldof, N.I., van Hulst, R.A., Ridderikhof, M.L. and Teguh, D.N. (2022) Hyperbaric Oxygen Treatment for Late Radiation-Induced Tissue Toxicity in Treated Gynaecological Cancer Patients: A Systematic Review. Radiation Oncology, 17, Article No. 164.
https://doi.org/10.1186/s13014-022-02067-6
[46] Gaio-Lima, C., Castedo, J., Cruz, M., Candeias, M. and Camacho, Ó. (2022) The Role of Hyperbaric Oxygen Therapy in the Treatment of Radiation Lesions. Clinical and Translational Oncology, 24, 2466-2474.
https://doi.org/10.1007/s12094-022-02892-x