[1]
|
Wang, Y., Kong, W., Lv, N., Li, F., Chen, J., Jiao, S., et al. (2018) Incidence of Radiation Enteritis in Cervical Cancer Patients Treated with Definitive Radiotherapy versus Adjuvant Radiotherapy. Journal of Cancer Research and Therapeutics, 14, S120-S124. https://doi.org/10.4103/0973-1482.163762
|
[2]
|
Dahiya, D.S., Kichloo, A., Tuma, F., Albosta, M. and Wani, F. (2022) Radiation Proctitis and Management Strategies. Clinical Endoscopy, 55, 22-32. https://doi.org/10.5946/ce.2020.288
|
[3]
|
中国医师协会外科医师分会, 中华医学会外科学分会结直肠外科学组, 王磊, 等. 中国放射性直肠炎诊治专家共识(2018版) [J]. 中华胃肠外科杂志, 2018, 21(12): 1321-1336.
|
[4]
|
Lu, Q., Liang, Y., Tian, S., Jin, J., Zhao, Y. and Fan, H. (2023) Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. Toxics, 11, Article No. 1011. https://doi.org/10.3390/toxics11121011
|
[5]
|
Jang, H., Kim, S., Kim, H., Oh, S.H., Kwak, S.Y., Joo, H., et al. (2022) Metformin Protects the Intestinal Barrier by Activating Goblet Cell Maturation and Epithelial Proliferation in Radiation-Induced Enteropathy. International Journal of Molecular Sciences, 23, Article No. 5929. https://doi.org/10.3390/ijms23115929
|
[6]
|
王中秋, 王清鑫, 袁智勇. 放射性肠炎肠黏膜屏障损伤及其相关机制的研究进展[J]. 胃肠病学, 2018, 23(7): 440-443.
|
[7]
|
Venkatesulu, B.P., Mahadevan, L.S., Aliru, M.L., Yang, X., Bodd, M.H., Singh, P.K., et al. (2018) Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC: Basic to Translational Science, 3, 563-572. https://doi.org/10.1016/j.jacbts.2018.01.014
|
[8]
|
Wang, Z., Wang, Q., Wang, X., Zhu, L., Chen, J., Zhang, B., et al. (2019) Gut Microbial Dysbiosis Is Associated with Development and Progression of Radiation Enteritis during Pelvic Radiotherapy. Journal of Cellular and Molecular Medicine, 23, 3747-3756. https://doi.org/10.1111/jcmm.14289
|
[9]
|
Li, Y., Yan, H., Zhang, Y., Li, Q., Yu, L., Li, Q., et al. (2020) Alterations of the Gut Microbiome Composition and Lipid Metabolic Profile in Radiation Enteritis. Frontiers in Cellular and Infection Microbiology, 10, Article ID: 541178. https://doi.org/10.3389/fcimb.2020.541178
|
[10]
|
Wang, L., Wang, A., Fu, Q., Shi, Z., Chen, X., Wang, Y., et al. (2022) Ferroptosis Plays an Important Role in Promoting Ionizing Radiation-Induced Intestinal Injuries. Biochemical and Biophysical Research Communications, 595, 7-13. https://doi.org/10.1016/j.bbrc.2022.01.068
|
[11]
|
Liang, W., Li, B., Sun, Y., Jia, D., Hu, T., Huang, R., et al. (2025) Molecular Mechanisms of the Anchang Group Prescription in Treating Radiation Enteritis: Network Pharmacology Analysis and Experimental Evidence. Frontiers in Pharmacology, 16, Article ID: 1524925. https://doi.org/10.3389/fphar.2025.1524925
|
[12]
|
Gao, J., Li, Y., Chen, J., Feng, W., Bu, J., Lu, Z., et al. (2024) Emodin Ameliorates Acute Radiation Proctitis in Mice by Regulating AKT/MAPK/NF-κB/VEGF Pathways. International Immunopharmacology, 132, Article ID: 111945. https://doi.org/10.1016/j.intimp.2024.111945
|
[13]
|
Duan, X., Cai, H., Hu, T., Lin, L., Zeng, L., Wang, H., et al. (2023) Ginsenoside Rg3 Treats Acute Radiation Proctitis through the TLR4/MyD88/NF-κB Pathway and Regulation of Intestinal Flora. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 1028576. https://doi.org/10.3389/fcimb.2022.1028576
|
[14]
|
Jia, S., Dong, S., Liu, H., Yu, H., Chen, Z., Wang, S., et al. (2022) Dopamine-Derived Nanoparticles for the Protection of Irradiation-Induced Intestinal Injury by Maintaining Intestinal Homeostasis. Biomaterials Science, 10, 3309-3322. https://doi.org/10.1039/d1bm02026a
|
[15]
|
Miura, T., Kawano, M., Takahashi, K., Yuasa, N., Habu, M., Kimura, F., et al. (2022) High-Sulfated Hyaluronic Acid Ameliorates Radiation-Induced Intestinal Damage without Blood Anticoagulation. Advances in Radiation Oncology, 7, Article ID: 100900. https://doi.org/10.1016/j.adro.2022.100900
|
[16]
|
Sarowar, S., Cirillo, D., Játiva, P., Nilsen, M.H., Otragane, S.A., Heggdal, J., et al. (2022) The Styryl Benzoic Acid Derivative DC10 Potentiates Radiotherapy by Targeting the xCT-Glutathione Axis. Frontiers in Oncology, 12, Article ID: 786739. https://doi.org/10.3389/fonc.2022.786739
|
[17]
|
Pan, D., Du, Y.R., Li, R., et al. (2022) SET8 Inhibition Potentiates Radiotherapy by Suppressing DNA Damage Repair in Carcinomas. Biomedical and Environmental Sciences, 35, 194-205.
|
[18]
|
Ma, C., Zhao, J., Qian, K., Xu, Z., Xu, X. and Zhou, J. (2023) Analysis of Nutritional Risk, Skeletal Muscle Depletion, and Lipid Metabolism Phenotype in Acute Radiation Enteritis. World Journal of Gastrointestinal Surgery, 15, 2831-2843. https://doi.org/10.4240/wjgs.v15.i12.2831
|
[19]
|
Gao, Y. and Meng, L. (2023) Significant Correlation between Glucose Metabolism Status and Acute Radiation Enteritis Resulting from Concurrent Chemoradiotherapy in Rectal Cancer. American Journal of Translational Research, 15, 4228-4236.
|
[20]
|
de la Cruz Bonilla, M., Stemler, K.M., Jeter-Jones, S., Fujimoto, T.N., Molkentine, J., Asencio Torres, G.M., et al. (2019) Fasting Reduces Intestinal Radiotoxicity, Enabling Dose-Escalated Radiation Therapy for Pancreatic Cancer. International Journal of Radiation Oncology Biology Physics, 105, 537-547. https://doi.org/10.1016/j.ijrobp.2019.06.2533
|
[21]
|
Hellerman Itzhaki, M. and Singer, P. (2020) Advances in Medical Nutrition Therapy: Parenteral Nutrition. Nutrients, 12, Article No. 717. https://doi.org/10.3390/nu12030717
|
[22]
|
Li, W., Lin, Y., Luo, Y., Wang, Y., Lu, Y., Li, Y., et al. (2021) Vitamin D Receptor Protects against Radiation-Induced Intestinal Injury in Mice via Inhibition of Intestinal Crypt Stem/progenitor Cell Apoptosis. Nutrients, 13, Article No. 2910. https://doi.org/10.3390/nu13092910
|
[23]
|
Yang, Q., Qin, B., Hou, W., Qin, H. and Yin, F. (2023) Pathogenesis and Therapy of Radiation Enteritis with Gut Microbiota. Frontiers in Pharmacology, 14, Article ID: 1116558. https://doi.org/10.3389/fphar.2023.1116558
|
[24]
|
Demiral, S., Beyzadeoglu, M., Sager, O., Dincoglan, F., Uysal, B., Gamsiz, H., et al. (2015) Evaluation of Transforming Growth Factor-Β2 for Radiation-Induced Diarrhea after Pelvic Radiotherapy. Tumori Journal, 101, 474-477. https://doi.org/10.5301/tj.5000328
|
[25]
|
Moraitis, I., Guiu, J. and Rubert, J. (2023) Gut Microbiota Controlling Radiation-Induced Enteritis and Intestinal Regeneration. Trends in Endocrinology & Metabolism, 34, 489-501. https://doi.org/10.1016/j.tem.2023.05.006
|
[26]
|
Zhang, L., He, Y., Dong, L., Liu, C., Su, L., Guo, R., et al. (2023) Perturbation of Intestinal Stem Cell Homeostasis and Radiation Enteritis Recovery via Dietary Titanium Dioxide Nanoparticles. Cell Proliferation, 56, e13427. https://doi.org/10.1111/cpr.13427
|
[27]
|
Ming, H., Tan, J., Cao, S., Yu, C., Qi, Y., Wang, C., et al. (2025) NUFIP1 Integrates Amino Acid Sensing and DNA Damage Response to Maintain the Intestinal Homeostasis. Nature Metabolism, 7, 120-136. https://doi.org/10.1038/s42255-024-01179-5
|
[28]
|
Lu, Y., Wang, K. and Hu, L. (2025) Advancements in Delivery Systems for Dietary Polyphenols in Enhancing Radioprotection Effects: Challenges and Opportunities. NPJ Science of Food, 9, 51. https://doi.org/10.1038/s41538-025-00419-6
|
[29]
|
He, K.Y., Lei, X.Y., Wu, D.H., et al. (2023) Akkermansia muciniphila Protects the Intestine from Irradiation-Induced Injury by Secretion of Propionic Acid. Gut Microbes, 15, Article ID: 2293312. https://doi.org/10.1080/19490976.2023.2293312
|
[30]
|
Linn, Y.H., Thu, K.K. and Win, N.H.H. (2018) Effect of Probiotics for the Prevention of Acute Radiation-Induced Diarrhoea among Cervical Cancer Patients: A Randomized Double-Blind Placebo-Controlled Study. Probiotics and Antimicrobial Proteins, 11, 638-647. https://doi.org/10.1007/s12602-018-9408-9
|
[31]
|
Lee, S.U., Jang, B., Na, Y.R., Lee, S.H., Han, S., Chang, J.H., et al. (2023) Effect of Lactobacillus Rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis. Probiotics and Antimicrobial Proteins, 16, 636-648. https://doi.org/10.1007/s12602-023-10071-9
|
[32]
|
Sun, R., Du, S., Wang, M., Chen, Z., Yan, Q., Yuan, B., et al. (2024) Colonic Long-Term Retention and Colonization of Probiotics by Double-Layer Chitosan/tannic Acid Coating and Microsphere Embedding for Treatment of Ulcerative Colitis and Radiation Enteritis. International Journal of Biological Macromolecules, 280, Article ID: 135757. https://doi.org/10.1016/j.ijbiomac.2024.135757
|
[33]
|
Sun, R., Li, S., Chen, Z., Zheng, K., Li, W., Sun, X., et al. (2025) Oral Antioxidant-Engineered Probiotics for the Treatment of Radiation-Induced Colitis. ACS Applied Materials & Interfaces, 17, 10316-10327. https://doi.org/10.1021/acsami.4c17651
|
[34]
|
Du, S., Sun, R., Wang, M., Fang, Y., Wu, Y., Yuan, B., et al. (2025) Synergistic Effect of Inulin Hydrogels on Multi-Strain Probiotics for Prevention of Ionizing Radiation-Induced Injury. International Journal of Biological Macromolecules, 287, Article ID: 138497. https://doi.org/10.1016/j.ijbiomac.2024.138497
|
[35]
|
Cui, M., Xiao, H., Li, Y., Zhou, L., Zhao, S., Luo, D., et al. (2017) Faecal Microbiota Transplantation Protects against Radiation‐induced Toxicity. EMBO Molecular Medicine, 9, 448-461. https://doi.org/10.15252/emmm.201606932
|
[36]
|
Ding, Q., Xue, J., Li, N., Hu, Z. and Song, J. (2025) Fecal Microbiota Transplantation Alleviates Radiation Enteritis by Modulating Gut Microbiota and Metabolite Profiles. Biomolecules and Biomedicine, 25, 1992-2003. https://doi.org/10.17305/bb.2025.11835
|
[37]
|
Tu, Y., Luo, L., Zhou, Q., Ni, J. and Tang, Q. (2024) Fecal Microbiota Transplantation Repairs Radiation Enteritis through Modulating the Gut Microbiota-Mediated Tryptophan Metabolism. Radiation Research, 201, 572-585. https://doi.org/10.1667/rade-23-00189.1
|
[38]
|
田宏亮, 王乐, 马春联, 等. 肠菌移植治疗肠道菌群失调相关疾病15000例的长期疗效分析[J]. 中华胃肠外科杂志, 2025, 28(3): 296-303.
|
[39]
|
Wang, K., Yuan, B., Zhang, F., Li, Z., Jia, X., Hu, Y., et al. (2025) A Bioadhesive Antioxidase-Overexpressed Probiotic Prevents Radiation Enteritis by Scavenging the Excess Reactive Oxygen Species. Free Radical Biology and Medicine, 227, 485-498. https://doi.org/10.1016/j.freeradbiomed.2024.12.013
|
[40]
|
He, S., Yan, C., Wang, Z., Mao, Y., Liu, K., Sun, J., et al. (2025) Icariside II Relieves Radiation Enteritis by Regulating PINK/Parkin-Mediated Mitophagy. International Immunopharmacology, 146, Article ID: 113861. https://doi.org/10.1016/j.intimp.2024.113861
|
[41]
|
Lv, M., Ding, R., Ma, P., Feng, Y., Zeng, S., Zhang, Y., et al. (2024) Network Pharmacology Analysis on the Mechanism of Xihuangwan in Treating Rectal Cancer and Radiation Enteritis. Current Pharmaceutical Design, 30, 683-701. https://doi.org/10.2174/0113816128287232240213105913
|
[42]
|
Xu, W., Gao, L., Zou, W., Tang, X., Nian, W., Zheng, W., et al. (2025) Compound Kushen Injection Improves Radiation Enteritis via Cannabinoid Receptor 1 in Rats. BMC Complementary Medicine and Therapies, 25, Article No. 70. https://doi.org/10.1186/s12906-025-04820-2
|
[43]
|
Sun, G., Xu, W., Yao, H., Chen, J. and Chai, R. (2025) Protective Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cell Transplantation on Acute Radioactive Enteritis in Beagle Dogs. World Journal of Gastroenterology, 31, Article No. 97599. https://doi.org/10.3748/wjg.v31.i7.97599
|
[44]
|
He, J., Jiang, P., Ma, L., Liu, F., Fu, P., Du, X., et al. (2024) Intravenous Immunoglobulin Protects the Integrity of the Intestinal Epithelial Barrier and Inhibits Ferroptosis Induced by Radiation Exposure by Activating the mTOR Pathway. International Immunopharmacology, 131, Article ID: 111908. https://doi.org/10.1016/j.intimp.2024.111908
|
[45]
|
Geldof, N.I., van Hulst, R.A., Ridderikhof, M.L. and Teguh, D.N. (2022) Hyperbaric Oxygen Treatment for Late Radiation-Induced Tissue Toxicity in Treated Gynaecological Cancer Patients: A Systematic Review. Radiation Oncology, 17, Article No. 164. https://doi.org/10.1186/s13014-022-02067-6
|
[46]
|
Gaio-Lima, C., Castedo, J., Cruz, M., Candeias, M. and Camacho, Ó. (2022) The Role of Hyperbaric Oxygen Therapy in the Treatment of Radiation Lesions. Clinical and Translational Oncology, 24, 2466-2474. https://doi.org/10.1007/s12094-022-02892-x
|