参数激励下自由液面强非线性特征研究
Characterization of Strong Nonlinear Phenomena of Free Surface Due to Parametric Excitation
DOI: 10.12677/IJM.2013.21003, PDF, 下载: 3,342  浏览: 12,175  国家自然科学基金支持
作者: 徐群峰, 岳宝增, 史晓强:北京理工大学宇航学院力学系,北京
关键词: 液滴飞溅VOF非线性现象表面张力参数激励Droplet-Ejecting; VOF Method; Nonlinear Phenomenon; Surface Tension; Parametric Excitation
摘要:

本文以航天推进装置超低温推进剂在真实工况为背景,对最为关键的微小液滴飞溅现象展开研究,利用ADINA-F的VOF方法研究了该类问题,并证明了其对于模拟液体强非线性现象具有较高的可靠性。推导了以表面张力为主导恢复力的自由液面的临界激励频率,揭示了该类液面在低频和高频参数激励下的强非线性特征与激励频率和幅值的关系,并阐述了液体黏性对于强非线性现象的抑制效应。

The study of the most important droplet-ejecting was given based on the phenomena of sub-cooled fuel of spacecraft propelling machinery during powered flight using VOF method of ADINA-F, which is verified to be taking high reliability to simulate the phenomenon of liquid strong nonlinear sloshing. The critical excitant frequency of free surface is deduced, whose dominant restoring energy from ejection is surface tension. Then the relationship between strong nonlinear features and frequency, forcing amplitude are revealed of this surface under low frequency and high frequency respectively. The inhibitory effect of nonlinear phenomenon caused by liquid viscous was also expounded.

Abstract:

文章引用:徐群峰, 岳宝增, 史晓强. 参数激励下自由液面强非线性特征研究[J]. 力学研究, 2013, 2(1): 13-19. http://dx.doi.org/10.12677/IJM.2013.21003

参考文献

[1] H. Y. Yu, J. W. Kwon. Chamber extraction on a chip by nanoliter drop-let ejection. The Royal Society of Chemistry Lab Chip, 2005, 5: 344-349.
[2] A. James. Vibration-induced drop atomization and the numerical simulation of low-frequency single-droplet ejection. Journal of Fluid Mechanics, 2003, 476: 29-62.
[3] 吴子牛. 液滴高速碰撞固壁引起的皇冠型飞溅现象理论研究[A]. 全国流体力学青年研讨会, 2001.
[4] 马理强等. 液滴冲击液膜问题的光滑粒子动力学模拟[J]. 物理学报, 2012, 61(24): Article ID: 244701.
[5] F. T. Dodge. The new “dynamic behavior of liquids in moving containers”, 2000. snap.lbl.gov
[6] C. D. Stow, M. G. Hadfield. An experimental inves-tigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proceedings of the Royal Society of London, 1981, 373(1755): 419-441.
[7] 刘闯等. 液体飞溅及冲击壁面问题的分析[J]. 清华大学学报(自然科学版), 2005, 45(5): 22-37.
[8] D. M. Liu. A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics, 2008, 227(8): 3921-3939.
[9] K. Modaressi-Tehrani. Three-dimensional analysis of transient slosh within a partly-filled tank equipped with baffles. Vehicle System Dynamics, 2007, 45(6): 525-548.
[10] Goodridge, et al. Vis-cous effects in droplet-ejecting capillary waves. Physical Review E, 1997, 56(1): 472-475.
[11] H. Q. Yang, J. M. Rojahn, J. W. Peugeot and D. J. Dorney. CFD analysis of propellant tank sloshing under ver-tical oscillatory thrust and horizontal oscillatory side load. Orlando: Feed System Design and Analysis, 10-13 November, 2008: Paper LPS-06.
[12] O. M. Faltinsen. A numerical non-linear method of sloshing in tanks with 2D flow. Journal of Ship Research, 1974, 18(4): 224- 241.