镍和钒在塔河原油中存在状态的分析
Study on Existence of Nickel and Vanadium in Tahe Crude Oil
DOI: 10.12677/HJCET.2013.32010, PDF, HTML, 下载: 3,019  浏览: 10,201 
作者: 王一博:阿尔伯塔大学,埃德蒙顿,加拿大;李龙*, 杨勇, 曹发海:华东理工大学大型工业反应器工程教育部工程研究中心,上海;任满年:中国石化洛阳分公司,洛阳
关键词: 塔河原油四组分法沥青质Nickel; Vanadium; Tahe Crude Oil; SARA; Asphaltenes
摘要: 塔河原油是典型的重质原油,密度大,粘度高,重金属Ni和V的含量多。本文采用四组分分析法、沥青质分离法、溶剂萃取法以及柱色谱分离法等研究了塔河原油中Ni和V的存在状态。实验结果表明,塔河原油中94.28%(wt.)的Ni和92.14%(wt.)的V都集中于沥青质和胶质中,而塔河原油中只有11.35%(wt.)的Ni和27.65%(wt.)的V是以金属卟啉的形态存在的,其余则是以复杂结构的非卟啉形态存在的,通过紫外–可见光光谱和质谱发现塔河原油中V卟啉主要以ETIO-VO存在,其次是DPEP-VO和Rhodo-VO。另外,塔河原油沥青质中40.91%(wt.)的Ni和43.85%(wt.)的V集中于芳香性更大的A1组分中,其余的Ni和V则集中于A2组分中,并推断A2组分包裹A1组分形成沥青质胶状物,而胶质、芳香烃和饱和烃依次包裹沥青质胶核形成了凝胶-溶胶形态的塔河原油,使得位于沥青质胶核的Ni和V难以被脱除。
Abstract: Tahe crude oil is catalogued into heavy crude oil with high density and viscosity, which contains much Ni and V. The present work studied the existence of Ni and V in Tahe crude oil by SARA, separation of asphaltene, extrac-tion and column chromatography. Experimental results indicate that, in Tahe crude oil, 94.28% of nickel and 92.14% of vanadium are concentrated in the asphaltene and resins, but 11.35% of nickel and 27.65% of vanadium exist as metal-loporphyrins, the rest exist as non-porphyrins. Meanwhile, most of vanadyl porphyrin are of the etioporphyrin (ETIO) type, with remaining fractions attributed to deoxophylloerythroetioporphyrin (DPEP) and benzo types. In addition, in the asphaltene, 40.91% of nickel and 43.85% of vanadium are concentrated in A1 that contains molecules having con-densed aromatic and naphthenic rings. It is proposed that A1 and A2 molecules form the asphaltene colloids in crude oil, where A1 is the colloidal core. Resins and aromatics as well as saturates entrapped asphaltenes in turn and formed gel-sol crude oil, which makes Ni and V difficult to remove in asphaltenes.
文章引用:王一博, 李龙, 杨勇, 任满年, 曹发海. 镍和钒在塔河原油中存在状态的分析[J]. 化学工程与技术, 2013, 3(2): 57-64. http://dx.doi.org/10.12677/HJCET.2013.32010

参考文献

[1] M. F. Ali, S. Abbas. A review of methods for the demetallization of residual fuel oils. Fuel Processing Technology, 2006, 87(7): 573-584.
[2] B. Wu, J. Zhu, J. Wang, et al. Technique for high-viscosity crude oil demetallization in the Liaohe oil field. Energy & Fuels, 2006, 20(4): 1346.
[3] 徐海, 于道永, 王宗贤等. 石油卟啉化学的研究进展[J]. 化学研究与应用, 2001, 13(4): 347-352.
[4] M. F. Ali, H. Perzanowski, A. Bukhari, et al. Nickel and vanadyl porphyrins in Saudi Arabian crude oils. Energy & Fuels, 1993, 7(2): 179-184.
[5] 高媛嫒, 沈本贤, 刘纪昌. 委内瑞拉原油中钒卟啉的分离和鉴定[J]. 石油学报(石油加工), 2011, 27(1): 102-105.
[6] 徐海, 阙国和, 王继乾等. 辽河减压渣油中非卟啉镍的XAFS研究[J]. 化学学报, 2003, 63(3): 450-453.
[7] D. Lesueur. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 2009, 145(1-2): 42- 82.
[8] J. Castillo, A. Fernández, M. A. Ranaudo, et al. New techniques and methods for the study of aggregation, adsorption, and solubility of asphaltenes. Impact of these properties on colloidal structure and flocculation. Petroleum Science and Technology, 2001, 19(1-2): 75-106.
[9] S. Acevedo, J. M. Cordero, H. Carrier, et al. Trapping of paraffin and Other Compounds by asphaltenes detected by laser desorption ionization time of flight mass spectrometry (LDI TOF MS). Energy & Fuels, 2009, 23(2): 842-848.
[10] S. C. Acevedo, K. Guzman and O. Ocanto. Determina-tion of the number average molecular mass of asphaltenes (Mn) using their soluble A2 fraction and the Vapor Pressure Osmometry (VPO) technique. Energy & Fuels, 2010, 24(3): 1809-1812.
[11] 田松柏. 原油评价标准试验方法[M]. 北京: 中国石化出版社, 2010.
[12] L. B. Gutierrez, M. A. Ranaudo, B. Méndez, et al. Fractionation of asphal-tene by complex formation with p-nitrophenol. A me- thod for struc-tural studies and stability of asphaltene colloids. Energy & Fuels, 2001, 15(3): 624-628.
[13] M. G. R. Vale, M. M. Silva, I. C. F. Damin, et al. Determination of volatile and non-volatile nickel and vanadium com-pounds in crude oil using electrothermal atomic absorption spectrome-try after oil fractionation into saturates, aromatics, resins and asphalte-nes. Talanta, 2008, 74(5): 1385-1391.
[14] 梁文杰. 重质油化学[M]. 东营: 石油大学出版社, 2000,
[15] J. P. Pfeiffer, P. M. V. Doormaal. The rheological properties of asphaltic bitumens. Journal of the Institu-tion of Petroleum Technologists, 1936, 22(152): 414-440.
[16] A. Hen-nico, J. P. Peries and J. Laurent. Maximum conversion of heavy hy-drocarbons. Erdöl Erdgas Kohle, 1992, 45(1): 19-27.
[17] R. H. Filby. Origin and nature of trace element species in crude oils, bitumens and kerogens: Implications for correlation and other geochemical studies. Geological Society, London, Special Publications, 1994, 78: 209-219.
[18] G. P. Dechaine, M. R. Gray. Chemistry and association of vanadium compounds in heavy oil and bitumen, and implications for their selective removal. Energy & Fuels, 2010, 24(5): 2795-2808.