琼脂糖光纤湿度传感器响应特性与温度的关系
Relationship between Temperature and the Response of an Optical Fiber Humidity Sensor Fabricated by Agarose
摘要: 本文用琼脂糖水凝胶制作了插入损耗为−0.08 dB、在30%~100% RH相对湿度变化范围的光强变化为15 dB的双包层单模光纤湿度传感器,在25℃~34℃的不同温度条件下,检测了该传感器输出光强随相对湿度的变化。根据饱和水汽压与温度的关系和实验结果,证实了被测气体相对湿度较小时,琼脂糖涂层的吸湿能力强,对温度变化敏感;随着相对湿度的升高,吸湿能力降低。在25℃~34℃的温度变化范围内,被测气体相对湿度分别为30%、90%和100% RH时,传感器对温度的灵敏度分别为0.3 dB/℃、0.1 dB/℃和0 dB/℃。实验结果还证实,琼脂糖在饱和吸收水份后的折射率近似等于康宁光纤包层的。本文研究结果说明,在应用光纤湿度传感器时,必须同时监测被测气体的温度,才能严谨地确定被测气体的相对湿度。 A doubly cladding single-mode fiber humidity sensor with insertion loss of −0.08 dB and optical power variation of 9.47 dB/% RH in the humidity range from 30% to 100% RH was fabricated by agarose. Its responses to humidity range at the different temperature from 25˚C to 34˚C were tested with a climatic chamber. Based on the Goff-Gratch formula and the experimental results, it has been confirmed that the agarose coating have a great absorbent capacity in a low relative humidity. The sensor had the sensitivity of 0.3 dB/˚C, 0.1 dB/˚C and 0 dB/˚C at the relative humidity of 30% RH, 90% RH and 100% RH, respectively, in the temperature range from 25˚C to 34˚C. It has also been confirmed that the refractive index of agarose gel was almost equal that of Corningoptical fiber cladding material. It was concluded that the temperature of measured gas must be simultaneously monitored in the application of optical fiber humidity sensor and accurate determination of the RH of the gas.

Abstract:
文章引用:许瀚朗, 邓焯泳, 张小康. 琼脂糖光纤湿度传感器响应特性与温度的关系[J]. 应用物理, 2013, 3(2): 27-30. http://dx.doi.org/10.12677/APP.2013.32006

参考文献

[1] X.-K. Zhang, L. Lan, Z. Kong, et al. Measurable refractive index range for a doubly cladding single mode fiber sensor and its application in temperature and humidity sensing. Proceedings of SPIE, 2010, 7853: 78530H-1~9.
[2] 张小康, 叶晓靖, 陈志东. 双包层单模光纤传感器及其在温度/湿度传感方面的应用[J]. 光学学报, 2011, 31(6): 0606 004-1~6.
[3] C. Bariáin, I. R. Matías, F. J. Arregui, et al. Opti-cal fiber humidity sensor based on a tapered fiber coated with agarose gel. Sensors and Actuators B, 2000, 69(1): 127-131.
[4] L. Zhang, F. X. Gu, J. Y. Lou, et al. Fast detection of humidity with a subwave-length diameter fiber taper coated with gelatin film. Optics Express, 2008, 16(17): 13349-13353.
[5] A. Gaston, I. Lozano, F. Perez, et al. Evanescent wave optical- fiber sensing (temperature, relative humidity, and pH sensors). IEEE Sensors Journal, 2003, 3(6): 806-811.
[6] 李雅娟, 党亚固, 费德君. HEC/PVDF作为光纤湿度传感器感湿材料性能研究[J]. 传感器与微系统, 2010, 29(5): 77.
[7] 金兴良, 荆淼, 赵英等. 温度对Naf ion-结晶紫光纤湿度传感器性能的影响[J]. 高等学校化学学报, 2005, 26(5): 844-845.
[8] J. Mathew, Y. Semenova and G. Farrell. Relative Humidity sensor based on an aga-rose-infiltrated photonic crystal fiber interferometer. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(5): 1553-1559.
[9] M. Hernaez, C. R. Zamarreño, C. Fernan-dez-Valdivielso, et al. Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region. Physica Status Solidi C, 2010, 7(11-12): 2767-2769.
[10] J. Z. Xu, Q. Wei, S. Z. Peng, et al. Error of saturation vapor pressure calculated by different formulas and its effect on calculation of reference evapotranspiration in high latitude cold region. Procedia Engineering, 2012, 28: 43-48.
[11] 张小康, 兰璐, 孔镇等. 光纤温/湿度传感器感应层及其制备方法与应用[P]. 中国: 201010120549.6, 2011-9-7.