神经干细胞移植在神经系统疾病中的研究进展
Research Progress of Neural Stem Cell Transplantation in Neurodegenerative Diseases
DOI: 10.12677/acm.2024.1482194, PDF, HTML, XML, 下载: 18  浏览: 31 
作者: 吴平平:西安医学院研究生处,陕西 西安;刘卫平*:西安医学院第一附属医院神经外科,陕西 西安
关键词: 神经干细胞神经干细胞移植神经退行性疾病治疗作用Neural Stem Cells Neural Stem Cell Transplantation Neurodegenerative Diseases Therapeutic Effect
摘要: 传统治疗方法虽然能延缓该类疾病的进展,但局限性较为明显。神经退行性疾病通常是由于神经细胞的消亡导致的,神经干细胞具有较强的自我更新能力,可修复受损的神经,移植神经干细胞为神经退行性疾病的治疗提供新的策略。本文主要对神经干细胞移植在脑卒中、帕金森、阿尔兹海默症、渐冻人症、脊髓损伤等神经退行性疾病中的治疗作用的研究进展及热点问题展开叙述。
Abstract: Although traditional treatment can delay the progress of this disease, its limitations are obvious. Neurodegenerative diseases are usually caused by the death of nerve cells. Neural stem cells have strong self-renewal ability and can repair damaged nerves. Transplanting neural stem cells provides a new strategy for the treatment of neurodegenerative diseases. This article mainly describes the research progress and hot topics on the therapeutic effects of neural stem cell transplantation in neurodegenerative diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, progressive freezing, and spinal cord injury.
文章引用:吴平平, 刘卫平. 神经干细胞移植在神经系统疾病中的研究进展[J]. 临床医学进展, 2024, 14(8): 148-154. https://doi.org/10.12677/acm.2024.1482194

1. 引言

在治疗退行性疾病中,最大的问题是大脑和脊髓的神经元是不可再生的,疾病对于神经元的损害是不可逆的。通常退行性疾病主要是由于神经细胞的消亡。而干细胞是指具有自我更新及不断增殖分裂的细胞,并能在一定条件下分化成多种功能细胞和组织,在神经再生中起到重要的作用[1]。在中枢神经系统(central nervous system, CNS)中发生急慢性损伤时,内源性神经干细胞(neural stem cells, NSCs)变得活跃并参与损伤修复,但由于受损的CNS内的NSCs较为分散且数量较少,从而导致CNS内在修复能力不足[2]。随着生命科学领域各项研究的发展,对CNS损伤修复已经具备可能性。其中NSC移植治疗退行性疾病是近来热门话题。有研究指出NCS移植可用于治疗大小鼠模型中脑卒中、帕金森、阿尔兹海默症、渐冻人症、脊髓损伤等中枢退行性疾病[3]。目前研究大多数依赖于啮齿动物模型,但是人与啮齿动物的CNS及NSC有很大不同,所以将小鼠模型实验运用到临床仍有一定的风险。最新进展的基因编辑和细胞工程技术为修饰NSC以表达选定的候选分子开辟了可能性,进一步增强其治疗效果。本综述总结了有关方面的现有知识,为可以安全有效地应用于临床环境的干细胞疗法的提供思路。

2. 神经干细胞移植

神经干细胞是系统中最原始未分化的细胞,可以产生中枢神经系统和周围神经系统中特异性的细胞,如:神经元、星胶质细胞、少突胶质细胞[4]。NSCs具有自我更新、多分化潜能,可促进神经形成、血管新生、突触重构及细胞替代等。NSCs移植治疗神经退行性病变通过细胞替代及旁分泌作用具有保护神经、分泌生长因子及替代受损的神经细胞等[5]。随着干细胞研究的不断深入,以神经干细胞为代表的细胞疗法在神经系统疾病治疗中展现出巨大的潜力。但神经干细胞移植仍然存在问题:神经干细胞来源不足、最佳移植剂量、移植方式及时间窗不明、致瘤性等。NSCs移植需要的数量巨大,因此探究神经干细胞的来源也是移植神经干细胞的首要问题[6]。目前获取神经干细胞的方法主要有以下四类,包括多能干细胞诱导分化、从原代组织中获取、体细胞转分化及间充质干细胞。

2.1. 多能干细胞诱导分化

多能干细胞可分化产生神经干细胞,包括胚胎干细胞(embryonic stem cells, ESCs)及诱导多能干细胞(induced pluripotent stem cells, iPSCs) [7]。Bain [8]等设计的ESCs诱导分化成NSCs是经典且常用的实验诱导方法:胚胎干细胞在全反式维甲酸(all-trans-retinoicacid, ATRA)或生长因子的悬浮培养下,可以形成胚状体进而得到神经干细胞,ATRA还可改善ESCs分化为NSCs的微环境,进而更有利于分化。但这种方法分化效率低,且ATRA具有致畸作用,不利于移植治疗安全性及伦理性等问题[9]。有实验证实iPSCs在无血清和缺乏营养的培养基单层培养经过神经“玫瑰花结”阶段直接可分化为神经干细胞[10]。iPSCs分化的神经元与人类的神经元有着很多相似的地方,因此成为获取神经干细胞的理想方法[11]

2.2. 从原代组织中获取

原代组织指成人或者胚胎的脑和脊髓组织。成人中枢神经系统中的海马齿状回的颗粒下层、侧脑室的室管膜下区中存在大量的神经干细胞[12],而在新生儿及胎儿的脑中也可发现较多的NSCs [13]。在活体成人中枢神经系统提取NSCs的手术难度非常大,且手术风险高,故不采取。而在流产胎儿的胎脑中提取NSCs存在伦理问题,故神经干细胞来源也受到限制。在临床实验中可从胚胎小鼠的颅骨中通过脑显微切割技术分离出NSCs [14],在提供三维环境的胚状体(embryoid body, EB)的培养基中培养,该培养基有利于NSC的培养及分化[15],进而获取更多的神经干细胞。

2.3. 体细胞转分化

转分化也称谱系重编程,有研究表明[16],谱系特异性转录因子(transcripyion factor, TF)的强制表达可重新编程各类体细胞类型发育的潜力。将TF与培养基补充剂(如能稳定生成NSC的小分子和生长因子)相结合,可实现将体细胞直接转化为神经细胞[16]。此外,通过向细胞培养基中添加如脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)、血小板源性生长因子(platelet-derived growth factor, PDGF)、表皮生长因子(epidermal growth factor, EGF)、成纤维细胞生长因子2 (fibroblast growth factor 2, FGF-2)和ATRA等,能够将骨髓来源的人类间充质干细胞(Mesenchymal stem cell, MSC)重编程为神经干细胞[17]

2.4. 间充质干细胞

间充质干细胞可来源于骨髓、脐血、外周血中以及脂肪组织、肌肉、胎儿器官、大脑和牙齿等,其来源取材较为广泛,同时自体体组织取材可避免伦理、免疫等问题[17]。Satake等[18]实验证实通过转导包含绿色荧光蛋白的AVONA病毒基因而标记的间充质干细胞移植入蛛网膜下腔,间充质干细胞能分化为成熟神经元及神经胶质细胞。但是间质干细胞定向分化为神经干细胞需要的分化条件高,且分化成NSCs的比例低,故该方法在临床应用仍受到了限制,目前较多应用于动物实验阶段。

3. 神经干细胞移植在神经系统疾病的治疗作用

3.1. 缺血性脑卒中

全球范围内,脑卒中是第二大死亡原因及第三大致残原因[19],严重影响到人们的健康及生活质量。传统的缺血性脑卒中治疗方法包括静脉溶栓和机械取栓,该治疗方法只适合少数急性期患者的治疗,具有时间窗狭窄及较多的禁忌症等限制[20]。神经干细胞具有自我更新、多分化潜能,可促进神经形成、血管新生、突触重构及细胞替代,在脑卒中治疗中展现了具大潜能。临床上NSCs移植治疗卒中的方式包括颅内立体定向、血管及脑脊液途径[21]。内源性神经是通过促进可塑性和突触重组、调节免疫反应和减少二次损伤等方式修复受损部位,而通过细胞替换修复的神经干细胞数量较少[22],移植入体内的NSCs可分化为神经元、星胶质细胞、少突胶质细胞等具有成熟的电生理特性的细胞,能与宿主神经元形成有效的突触连接[23] [24],从而可替代受损神经元和其他脑细胞。移植的NSCs可通过旁分泌功能产生神经营养因子、细胞因子、微囊泡等。这些物质可发挥神经保护、促血管生成、免疫调节、抗炎、抗氧化、应激等[21]作用帮助修复受损部位。NSCs移植治疗脑卒中通过细胞替代及旁分泌功能两种机制相联合发挥作用[23]

3.2. 帕金森综合症

帕金森综合症是中老年人好发的神经系统退行性疾病,病理改变为黑质多巴胺能神经元的选择性丢失,导致纹状体多巴胺能神经元功能的丧失,其常见的临床表现有静止性震颤、运动迟缓、肌张力增强和姿势步态异常等。帕金森的发病机制非常复杂,目前尚不明确,所以现在暂无有效的阻止帕金森发生及发展的方法,目前仍以改善症状及延缓进展为主[25] [26]。神经干细胞具有较强的增殖及分化能力,致瘤性低,是治疗帕金森理想细胞[27] [28]。有研究表明[25] [29] [30],神经干细胞的移植效果与细胞因子构成的炎症微环境密切相关,细胞移植后可与宿主发生特定的反应,可以上调或者下调细胞因子,进而影响细胞的存活、分化及迁移。根据实验研究可知[31]:帕金森发生后大鼠脑内肿瘤坏死因子α及白细胞介素1β水平升高;神经干细胞移植后,抗炎因子白细胞介素4的升高可抑制肿瘤坏死因子α及白细胞介素1β水平的升高,减轻炎症水平。同时结合少量的干扰素γ影响脑内细胞和免疫微环境,进而影响细胞的移植状态,改善大鼠的行为学症状。综上,神经干细胞移植治疗帕金森的作用为促进白细胞介素4抑制炎性因子的升高,减轻炎症反应。干扰素γ可使神经干细胞处于更舒适的免疫微环境,利于细胞增殖、分化、迁移。

3.3. 脊髓损伤

脊髓损伤(SCI)是一种由于外伤、肿瘤、炎症、缺血缺氧等引起的脊髓受损毁灭性的疾病,受损的脊髓平面以下功能的丧失,可导致大量的永久性发病,脊髓损伤是一种令人震惊的神经疾病,每年影响25万至50万人,估计全球有200万至300万人患有脊髓损伤相关残疾[32],目前尚没有效的治疗方法,严重影响患者的生活治疗,给其家庭带来了巨大的负担。NSCs移植治疗脊髓损伤:1) NCSs移植后不仅可填充损伤灶,还可以分化神经元及胶质细胞替代受损细胞。NSCs移植后分化大量中间运动及感觉等神经元发出轴突进入正常脊髓组织,与下游神经元建立轴突关系[33]。2) NSCs可促进受体脊髓的下行运动神经轴突和上行性感觉神经轴突再生与移植内分化的神经元建立功能性轴突联系,从而重建脊髓神经信号传导通路的连续性[34]。3) NSCS还可向非神经细胞分化,分化少突胶质细胞参与髓鞘的生成,维持神经传导的稳定性。分化为星形胶质细胞填充囊腔,维持损伤部分的连续性。研究发现[35],分化出来的星形胶质细胞在受体脊髓内迁移长达9个节段,与内源性星形胶质细胞形成缝隙连接并表达谷氨酰胺转运体蛋白,参与突触功能的调节。

3.4. 阿尔茨海默病

最新数据显示,到2050年,欧洲阿尔兹海默症(Alzheimer disease, AD)患病率将翻一番,全球范围内将增加三倍[36]。AD是一种大脑皮层、脑内Meynert核及海马区的胆碱能神经元的结构和功能的逐渐丢失[37]导致脑功能下降的神经退行性疾病。最特征的病理改变为广泛神经元丢失、炎症反应、β-淀粉样蛋白(amyloid β-protein, A)和过度磷酸化tau神经原纤维缠结[38]。其主要的临床表现为认知(学习、语言、感知、定向、技能)障碍、行为和精神异常、人格改变等症状。目前主要依靠药物治疗、康复治疗及基因治疗等,但只能改善症状,并不能延缓疾病的进展[39]。NSCs在移植到大脑后具有很高的迁移能力,因此它们可以成为传递神经营养因子或增强基因表达的有效途径[40],从而可以改变疾病的病程,是一种很有前途的治疗AD的方法。NSCs治疗AD的机制可能包括:1) NSCs可分化为胆碱能神经元,与宿主整合,修复神经通路,直接替换损伤和丢失的神经细胞。2) NSCs可高水平生产神经营养因子促进细胞的存活,增加突触可塑性[41]。3) NSCs移植可下调白细胞介素(IL)-1β、IL-6、肿瘤坏死因子(TNF)-α、诱导型一氧化氮合酶(iNOS)等促炎因子的表达,从而发挥抗炎症反应达到保护神经元的作用。4) NSC可经过遗传修饰产生新的基因,经过移植后具有高迁移力,用于传递神经生长因子(可防止神经元死亡,降低兴奋性毒性及淀粉样蛋白毒性)从而改善胆碱能神经玩功能的丢失[42]。5) NSCs移植可改善脑内微环境,有利于内源性的NSCs的存活及激活。

3.5. 肌萎缩侧索硬化

肌萎缩侧索硬化(amyotrophic lateral sclerosis, ALS)又称“渐冻症”,是一种慢性、进行性、选择性损害运动神经元的神经运动性疾病,其表现为进行性加重的骨骼肌无力、肌萎缩,多因呼吸肌麻痹而死亡,80%的患者于2~5年死亡[43] [44]。由于ALS的病因及发病机制尚不明确,该病无有效的治疗方法,给患者及其家属带来了沉重的负担。NSCs可分化为运动神经元、产生神经营养因子及其抗炎作用,给ALS的治疗带来了新的光明。NSCs治疗ALS的机制:1) 神经干细胞可分化为运动神经元,替换功能丧失的运动神经元。2) NSCs自身及其分化的星胶质细胞可产生胶质衍生神经营养因子、胰岛素样生长因子、脑源性神经营养因子和血管内皮生长因子等可与细胞的TrkA、TrkB、TrkC、p75NTR等受体结合,影响信号通路,抑制ALS的神经元凋亡,促进轴突生长[45]。3) NSCs移植后的抗炎作用在治疗ALS中尚未报道,我们可进一步探NSCs移植后调节促炎因子及抗炎因子是否在ASL中起作用。

4. 总结与展望

如上所述,神经干细胞通过抗炎、血管新生、突触重构、细胞替代、神经营养因子、改善脑内微环境等机制在脑梗死、帕金森、阿尔兹海默症、渐冻症等神经系统疾病治疗中有着广阔的前景,但目前神经干细胞移植应用至临床还有很多局限性,如:1) NSC移植至哺乳动物的基础研究目前较为成熟,但是人体疾病与动物模型还有一定的差异,应用至临床还有一定的距离。2) NSC诱导分化的机制尚不明确,不能确保NSC移植后按照预想的情况定向分化,从而影响临床疗效。3) 在某类疾病中移植哪种干细胞更为合适,副作用少,还需大量的实验验证。4) 来源于人的NSC相对不足、最佳移植剂量、最佳移植方式、时间窗不明等都有待验证。5) 移植的NSC是否具有成瘤的高风险性及存在的伦理问题。若能解决这些问题,神经干细胞治疗治愈神经系统疾病将指日可待。

NOTES

*通讯作者。

参考文献

[1] Hayashi, Y., Lin, H., Lee, C. and Tsai, K. (2020) Effects of Neural Stem Cell Transplantation in Alzheimer’s Disease Models. Journal of Biomedical Science, 27, Article No. 29.
https://doi.org/10.1186/s12929-020-0622-x
[2] Gonzalez, R., H. Hamblin, M. and Lee, J. (2016) Neural Stem Cell Transplantation and CNS Diseases. CNS & Neurological Disorders-Drug Targets, 15, 881-886.
https://doi.org/10.2174/1871527315666160815164247
[3] De Gioia, R., Biella, F., Citterio, G., Rizzo, F., Abati, E., Nizzardo, M., et al. (2020) Neural Stem Cell Transplantation for Neurodegenerative Diseases. International Journal of Molecular Sciences, 21, Article 3103.
https://doi.org/10.3390/ijms21093103
[4] Gage, F.H. (2000) Mammalian Neural Stem Cells. Science, 287, 1433-1438.
https://doi.org/10.1126/science.287.5457.1433
[5] Baker, E.W., Kinder, H.A. and West, F.D. (2019) Neural Stem Cell Therapy for Stroke: A Multimechanistic Approach to Restoring Neurological Function. Brain and Behavior, 9, e01214.
https://doi.org/10.1002/brb3.1214
[6] Chiu, I., Hsu, Y., Chen, S. and Wang, D. (2013) Stem Cell-Based Therapy in Neural Repair. Biomedical Journal, 36, 98-105.
https://doi.org/10.4103/2319-4170.113226
[7] Liu, G., David, B.T., Trawczynski, M. and Fessler, R.G. (2019) Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports, 16, 3-32.
https://doi.org/10.1007/s12015-019-09935-x
[8] Bain, G., Kitchens, D., Yao, M., Huettner, J.E. and Gottlieb, D.I. (1995) Embryonic Stem Cells Express Neuronal Properties in vitro. Developmental Biology, 168, 342-357.
https://doi.org/10.1006/dbio.1995.1085
[9] Zhang, J., Yu, X., Ma, B., Yu, W., Zhang, A., Huang, G., et al. (2006) Neural Differentiation of Embryonic Stem Cells Induced by Conditioned Medium from Neural Stem Cell. NeuroReport, 17, 981-986.
https://doi.org/10.1097/01.wnr.0000227977.60271.ca
[10] Sathananthan, A.H. (2011) Neural Stem Cells in Neurospheres, Embryoid Bodies, and Central Nervous System of Human Embryos. Microscopy and Microanalysis, 17, 520-527.
https://doi.org/10.1017/s1431927611000584
[11] Rhee, Y., Ko, J., Chang, M., Yi, S., Kim, D., Kim, C., et al. (2011) Protein-Based Human iPS Cells Efficiently Generate Functional Dopamine Neurons and Can Treat a Rat Model of Parkinson Disease. Journal of Clinical Investigation, 121, 2326-2335.
https://doi.org/10.1172/jci45794
[12] Alvarez-Buylla, A., García-Verdugo, J.M. and Tramontin, A.D. (2001) A Unified Hypothesis on the Lineage of Neural Stem Cells. Nature Reviews Neuroscience, 2, 287-293.
https://doi.org/10.1038/35067582
[13] Terskikh, A.V., Bryant, P.J. and Schwartz, P.H. (2006) Mammalian Stem Cells. Pediatric Research, 59, 13R-20R.
https://doi.org/10.1203/01.pdr.0000205154.86517.2a
[14] Homayouni Moghadam, F., Sadeghi-Zadeh, M., Alizadeh-Shoorjestan, B., Dehghani-Varnamkhasti, R., Narimani, S., Darabi, L., et al. (2018) Isolation and Culture of Embryonic Mouse Neural Stem Cells. Journal of Visualized Experiments.
https://doi.org/10.3791/58874-v
[15] Deshpande, K., Saatian, B., Martirosian, V., Lin, M., Julian, A. and Neman, J. (2019) Isolation of Neural Stem Cells from Whole Brain Tissues of Adult Mice. Current Protocols in Stem Cell Biology, 49, e80.
https://doi.org/10.1002/cpsc.80
[16] Zhang, M., Lin, Y., Sun, Y.J., Zhu, S., Zheng, J., Liu, K., et al. (2016) Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation. Cell Stem Cell, 18, 653-667.
https://doi.org/10.1016/j.stem.2016.03.020
[17] Hermann, A., Liebau, S., Gastl, R., Fickert, S., Habisch, H., Fiedler, J., et al. (2006) Comparative Analysis of Neuroectodermal Differentiation Capacity of Human Bone Marrow Stromal Cells Using Various Conversion Protocols. Journal of Neuroscience Research, 83, 1502-1514.
https://doi.org/10.1002/jnr.20840
[18] Satake, K., Lou, J. and Lenke, L.G. (2004) Migration of Mesenchymal Stem Cells through Cerebrospinal Fluid into Injured Spinal Cord Tissue. Spine, 29, 1971-1979.
https://doi.org/10.1097/01.brs.0000138273.02820.0a
[19] Campbell, B.C.V. and Khatri, P. (2020) Stroke. The Lancet, 396, 129-142.
https://doi.org/10.1016/s0140-6736(20)31179-x
[20] Boese, A.C., Le, Q.E., Pham, D., Hamblin, M.H. and Lee, J. (2018) Neural Stem Cell Therapy for Subacute and Chronic Ischemic Stroke. Stem Cell Research & Therapy, 9, Article No. 154.
https://doi.org/10.1186/s13287-018-0913-2
[21] Huang, L. and Zhang, L. (2019) Neural Stem Cell Therapies and Hypoxic-Ischemic Brain Injury. Progress in Neurobiology, 173, 1-17.
https://doi.org/10.1016/j.pneurobio.2018.05.004
[22] Horie, N., Hiu, T. and Nagata, I. (2015) Stem Cell Transplantation Enhances Endogenous Brain Repair after Experimental Stroke. Neurologia Medico-Chirurgica, 55, 107-112.
https://doi.org/10.2176/nmc.ra.2014-0271
[23] Martino, G. and Pluchino, S. (2006) The Therapeutic Potential of Neural Stem Cells. Nature Reviews Neuroscience, 7, 395-406.
https://doi.org/10.1038/nrn1908
[24] Ceto, S., Sekiguchi, K.J., Takashima, Y., Nimmerjahn, A. and Tuszynski, M.H. (2020) Neural Stem Cell Grafts Form Extensive Synaptic Networks That Integrate with Host Circuits after Spinal Cord Injury. Cell Stem Cell, 27, 430-440.E5.
https://doi.org/10.1016/j.stem.2020.07.007
[25] Zuo, F., Bao, X., Sun, X., Wu, J., Bai, Q., Chen, G., et al. (2015) Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment. International Journal of Molecular Sciences, 16, 26473-26492.
https://doi.org/10.3390/ijms161125966
[26] Cerri, S., Greco, R., Levandis, G., Ghezzi, C., Mangione, A.S., Fuzzati-Armentero, M., et al. (2015) Intracarotid Infusion of Mesenchymal Stem Cells in an Animal Model of Parkinson’s Disease, Focusing on Cell Distribution and Neuroprotective and Behavioral Effects. Stem Cells Translational Medicine, 4, 1073-1085.
https://doi.org/10.5966/sctm.2015-0023
[27] Teixeira, F.G., Carvalho, M.M., Panchalingam, K.M., Rodrigues, A.J., Mendes-Pinheiro, B., Anjo, S., et al. (2016) Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal Behavior in a Rat Model of Parkinson’s Disease. Stem Cells Translational Medicine, 6, 634-646.
https://doi.org/10.5966/sctm.2016-0071
[28] Safari, M., Jafari, B., Zarbakhsh, S., Sameni, H., Vafaei, A.A., Mohammadi, N.K., et al. (2016) G-CSF for Mobilizing Transplanted Bone Marrow Stem Cells in Rat Model of Parkinson’s Disease. Iranian Journal of Basic Medical Sciences, 19, 1318-1324.
[29] Chen, N., Wei, F., Wang, L., Cui, S., Wan, Y. and Liu, S. (2016) Tumor Necrosis Factor Alpha Induces Neural Stem Cell Apoptosis through Activating P38 MAPK Pathway. Neurochemical Research, 41, 3052-3062.
https://doi.org/10.1007/s11064-016-2024-8
[30] Wang, Y., Zhou, K., Li, T., Xu, Y., Xie, C., Sun, Y., et al. (2017) Inhibition of Autophagy Prevents Irradiation-Induced Neural Stem and Progenitor Cell Death in the Juvenile Mouse Brain. Cell Death & Disease, 8, e2694.
https://doi.org/10.1038/cddis.2017.120
[31] 任安艳, 葛汝丽, 王洪财. 基因修饰的神经干细胞与帕金森病[J]. 国际神经病学神经外科学杂志, 2022, 49(1): 68-72.
[32] Quadri, S.A., Farooqui, M., Ikram, A., Zafar, A., Khan, M.A., Suriya, S.S., et al. (2018) Recent Update on Basic Mechanisms of Spinal Cord Injury. Neurosurgical Review, 43, 425-441.
https://doi.org/10.1007/s10143-018-1008-3
[33] Dulin, J.N., Adler, A.F., Kumamaru, H., Poplawski, G.H.D., Lee-Kubli, C., Strobl, H., et al. (2018) Injured Adult Motor and Sensory Axons Regenerate into Appropriate Organotypic Domains of Neural Progenitor Grafts. Nature Communications, 9, Article No. 84.
https://doi.org/10.1038/s41467-017-02613-x
[34] Koffler, J., Zhu, W., Qu, X., Platoshyn, O., Dulin, J.N., Brock, J., et al. (2019) Biomimetic 3D-Printed Scaffolds for Spinal Cord Injury Repair. Nature Medicine, 25, 263-269.
https://doi.org/10.1038/s41591-018-0296-z
[35] Lien, B.V., Tuszynski, M.H. and Lu, P. (2019) Astrocytes Migrate from Human Neural Stem Cell Grafts and Functionally Integrate into the Injured Rat Spinal Cord. Experimental Neurology, 314, 46-57.
https://doi.org/10.1016/j.expneurol.2019.01.006
[36] Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590.
https://doi.org/10.1016/s0140-6736(20)32205-4
[37] Auld, D.S., Kornecook, T.J., Bastianetto, S. and Quirion, R. (2002) Alzheimer’s Disease and the Basal Forebrain Cholinergic System: Relations to β-Amyloid Peptides, Cognition, and Treatment Strategies. Progress in Neurobiology, 68, 209-245.
https://doi.org/10.1016/s0301-0082(02)00079-5
[38] Scheltens, P., Blennow, K., Breteler, M.M.B., de Strooper, B., Frisoni, G.B., Salloway, S., et al. (2016) Alzheimer’s Disease. The Lancet, 388, 505-517.
https://doi.org/10.1016/s0140-6736(15)01124-1
[39] Tang, J. (2012) How Close Is the Stem Cell Cure to the Alzheimer’s Disease: Future and Beyond? Neural Regeneration Research, 7, 66-71.
[40] Mucke, L. (2009) Alzheimer’s Disease. Nature, 461, 895-897.
https://doi.org/10.1038/461895a
[41] Marsh, S.E. and Blurton-Jones, M. (2017) Neural Stem Cell Therapy for Neurodegenerative Disorders: The Role of Neurotrophic Support. Neurochemistry International, 106, 94-100.
https://doi.org/10.1016/j.neuint.2017.02.006
[42] Titova, N., Padmakumar, C., Lewis, S.J.G. and Chaudhuri, K.R. (2016) Parkinson’s: A Syndrome Rather than a Disease? Journal of Neural Transmission, 124, 907-914.
https://doi.org/10.1007/s00702-016-1667-6
[43] Grad, L.I., Rouleau, G.A., Ravits, J. and Cashman, N.R. (2016) Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harbor Perspectives in Medicine, 7, a024117.
https://doi.org/10.1101/cshperspect.a024117
[44] Xu, R. and Yuan, M. (2021) Considerations on the Concept, Definition, and Diagnosis of Amyotrophic Lateral Sclerosis. Neural Regeneration Research, 16, 1723-1729.
https://doi.org/10.4103/1673-5374.306065
[45] Pramanik, S., Sulistio, Y.A. and Heese, K. (2017) Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Molecular Neurobiology, 54, 7401-7459.
https://doi.org/10.1007/s12035-016-0214-7