高血压患者心脑损伤的交互作用和心脏磁共振应用研究
Study on the Interaction of Cardio-Brain Injury and the Application of Cardiac Magnetic Resonance Imaging in Patients with Hypertension
DOI: 10.12677/acm.2024.1482193, PDF, HTML, XML, 下载: 18  浏览: 25 
作者: 宁 婷, 赵新湘*:昆明医科大学第二附属医院放射科,云南 昆明
关键词: 高血压心脑损伤CMR检查相互作用心脏损伤脑血管损伤Hypertension Heart and Brain Injury CMR Examination Interaction Heart Injury Cerebrovascular Injury
摘要: 高血压是心血管疾病的重要危险因素,高血压会累及心脑等器官损伤,引起心脏和大脑功能障碍,心–脑轴的存在进一步加重心脑损伤。因此,探索心脑联合损伤具有明确的意义,心脏磁共振能够在早期无创评估心脏和血管的结构和功能,可进行早期干预,提高患者的预后。
Abstract: Hypertension is an important risk factor for cardiovascular disease, hypertension will involve heart and brain and other organ damage, resulting in heart and brain dysfunction, the existence of the heart-brain axis further aggravates the heart and brain injury. Therefore, it is of clear significance to explore the combined heart-brain injury. Cardiac magnetic resonance imaging can non-invasively evaluate the structure and function of heart and blood vessels in the early stage, and can carry out early intervention to improve the prognosis of patients.
文章引用:宁婷, 赵新湘. 高血压患者心脑损伤的交互作用和心脏磁共振应用研究[J]. 临床医学进展, 2024, 14(8): 142-147. https://doi.org/10.12677/acm.2024.1482193

1. 背景

心脑血管疾病是目前发病率和死亡率最高的疾病,据报道我国有3.3亿的人口患有心脑血管疾病,每年因此而死亡的人数占总死亡人数的51% [1],高血压是心脑血管疾病的重要危险因素。随着经济的发展与生活水平的提高,高血压的患病年龄逐渐趋于年轻化,儿童和青少年的高血压患病率呈上升的趋势。长期的高血压会造成心脑等不同程度的损伤。一项大规模的多中心随机对照研究发现,通过强化降压可使高血压患者发生相关的心脑血管事件风险下降33%,脑卒中下降34%,心力衰竭下降42%,心肌梗死下降23% [2]。而我国对高血压的知晓率、治疗率和控制率为41.0%、34.9%和11.0%,总体还处于较低的水平[3],在患者就医时往往已经出现了心脑损伤的症状,目前心脑同治正成为研究的热点,本文就高血压患者心脑损伤发生的机理及磁共振应用价值和研究进展做一综述。

2. 高血压患者心脑联合损伤的机理及其交互作用

高血压导致心脑损伤的机制主要为以下几点:1) 长期的血压升高会刺激血管中膜平滑肌,使其变性、弹性降低和舒缩能力减弱,同时血管内膜通过增厚来适应高血压下的血流压力,使得管腔缩窄,诱发动脉粥样硬化。当脑血管过于狭窄或者斑块脱落造成血栓堵塞时,就会发生脑梗死;累及冠状动脉,导致狭窄或堵塞时,就会出现心绞痛、心肌梗死,甚至猝死;2) 高血压会刺激平滑肌,使其变性,当血流通过时,变性部分会膨出,形成微动脉瘤,其薄弱部分容易破裂,导致脑出血;3) 高血压使动脉内压力增高,长期负荷使心肌出现肥厚,顺应性减低、甚至心肌纤维化,进一步可导致心脏扩大甚至心力衰竭。4) 高血压还可使小血管出现上述改变,使脑血流减少和大脑低灌注,造成脑小血管病以及心肌的冠脉微循环障碍[4]

心–脑轴双向交互作用进一步加重心脑损伤:继续深入研究发现,心脏和大脑之间存在着双向交互作用,交互机制主要为自主神经调节失衡、儿茶酚胺激增、免疫炎症反应和肠道生态失调[5]。以缺血性卒中(ischemic stroke,IS)为例,IS后心脏可出现心率失常、心肌损伤、心力衰竭、心肌梗死等心脏并发症,原因如下:大脑和心脏存在着自主神经网络,IS累及的区域不同则触发的神经通路不同,引起的心脏并发症损伤程度也不同,当额叶和扣带回的眶面受到刺激时,血压和心率随之改变;累及岛叶皮层时则会引发心功能障碍和心率失常,且右岛叶皮层比左岛叶皮层损伤引起的心脏受损更为严重[6]。下丘脑–垂体–肾上腺轴可在IS后激活,使儿茶酚胺大幅增加,1) 一方面激活G蛋白偶联受体,使Ca2+内流细胞内钙离子增多引起心肌纤维化和收缩带坏死,其次线粒体功能出现障碍,ATP合成减少导致心肌细胞死亡;2) 另一方面,儿茶酚胺激活β3脂肪细胞上的肾上腺受体引起脂肪酸在心肌细胞中堆积,导致能量代谢紊乱和心脏炎症[7]。在缺血后,血脑屏障受损,外周免疫细胞浸润,使之进一步被破坏,小胶质细胞和巨噬细胞释放促炎因子至外周循环中,局部炎症进展为全身炎症,导致继发性心脏损伤。IS也会引起肠血屏障的破坏使肠道微生物群失调,肠道病原体可刺激血小板和血栓的形成使炎症反应发生,介导胆碱和左旋肉碱转化为三甲胺-N-氧化物的生成,抑制血液中的胆固醇降解,使胆固醇沉积在动脉血管壁,导致心衰和重塑[8]

因此,长期的高血压一方面会造成心脑联合损伤,累及心脏时,心肌出现肥厚,顺应性减低、甚至心肌纤维化,进一步可导致心脏扩大甚至心力衰竭;累及大脑时,出现痴呆、中风等脑损伤症状。而且无症状脑血管病变与未来临床中风、认知功能障碍的风险增加相关;另一方面可通过心–脑轴进一步加重心脑损伤。

3. 心脏磁共振应用及研究进展

心脏磁共振(Cardiac MR, CMR)在心脏结构、功能和心肌组织特征成像都具有其它影像无可比拟的优势。可对心脏损伤早期的功能改变、心肌变性和心肌弥漫性纤维化进行早期识别,有助于高血压性心脏病、心房心肌病的早期预防及临床管理。此外,CT在大血管所致的缺血性卒中及脑出血的诊断中有一定价值,但对于高血压所致脑小血管病和腔隙性脑梗死的诊断则存在局限性。因此MRI是高血压心脑损伤非常重要的检查手段。

3.1. 心脏CMR评价与脑损伤

3.1.1. 左心室CMR评价与脑损伤

中风,特别是更常见的缺血性类型,已被证明与心脏病密切相关,心房颤动、晚期心力衰竭和左心房重构已被认为是脑栓塞的重要来源[9]。据报道,大于40%的高血压患者中出现左心室肥厚(LVH) [10],40%~85%的患者出现左室舒张功能障碍(LVDD) [11],LVDD是高血压人群心血管疾病预后的独立预测因子,尤其能预测射血分数保留心衰。传统以超声左心室射血分数(LVEF)来评价心脏功能,但对细微病理改变敏感性很低。研究表明当心肌明显损伤时,左心室射血分数仍然可能≥50%,对早期心功能损伤不敏感[12]。随着MRI技术的发展,CMR已成为评估心腔结构与功能的金标准。CMR特征追踪(CMR-feature tracking, CMR-FT)技术是基于常规电影序列的一种图像后处理技术,通过心肌应变参数定量评估整体或局部心肌的运动特征,从而反映心脏的收缩与舒张功能。

有研究证实了患有高血压的人群中整体纵向应变(global longitudinal strain, GLS)与亚临床脑疾病相关,与沉默性脑梗死和脑白质高信号显著相关,表明左室GLS可能是脑血管疾病的早期指标[13]。此外,即使在调整了房颤发生率后,左室GLS异常的存在也显著增加了卒中的风险,且在更有可能的心源性栓塞病因的卒中亚型中观察到[14]。通常阵发性房颤无症状,在卒中发展前仍难以诊断,但GLS可以在左室形态改变或持续房颤明显之前发现卒中风险增加。Darda Chung等[15]在急性缺血性卒中患者中发现,右岛叶和岛周区域以及左顶叶皮层与GLS受损有关,局部纵向应变受损的分布格局与左心室纵向地形有关,与冠状动脉区域无关,相关脑病变的位置随着受损局部纵向应变的解剖分布而变化。左室GLS异常与中风相关的机制尚不清楚,探究其原因可能是GLS主要是测量纵向定向心肌纤维的收缩,主要受心内膜下层和心外膜下层心肌影响,而左室心内膜下特别容易受到低灌注和血流动力学超负荷的影响,使左室缺血敏感度升高。受损的左室GLS还是多血管的危险因素,与颈动脉内膜厚度增加显著相关,且颈动脉内膜厚度是动脉粥样硬化的既定标志和脑血管事件的预测因子,从而导致脑血管动脉粥样硬化[16];并且GLS受损与老年人脑血流量减少之间存在关联[17],这可能是白质病变的机制之一。另一种可能性是,左室GLS的降低可能是高血压暴露的一个时间综合指标,亚临床脑血流减少可能是左室GLS相关卒中风险的另一种潜在机制。

LVH是高血压患者心脏早期超负荷的代偿性反应,它和几何形状异常,已被证明是中风风险的有力指标,即使没有明显的栓塞潜力,因为它们是影响大脑和心脏的危险因素和病理生理机制作用的表现。有研究者在新发的脑卒中患者中发现左心室向心性肥厚的患者发生脑卒中的概率最高,离心性肥厚和心源性脑栓塞有关[18]。同时,LVH还与痴呆的发生有关,Faye [19]等发现暴露于高血压的时间越长,LVH与发生痴呆的风险就越高。当代偿机制不能满足心肌功能和代谢需求时,LVH进展为心力衰竭(HF)。一项心脑研究发现,HF患者脑皮质微梗死(CMI)发生率更高,且与高血压和心脏泵功能障碍的严重程度有关[20]。心力衰竭(HF)会影响脑血流动力学[21],引起脑血流量受损和灌注不足,导致脑皮质微梗死(CMI)。除此之外,还出现了内侧颞叶萎缩,并且与语言和视觉障碍有关[22]。此外研究发现,脑血流量在血管认知障碍和心力衰竭的患者中都大幅降低[23],且在HF患者中,在许多区域发现脑血流量和脑组织损伤减少,例如额血管床,顶叶,枕叶,海马体,丘脑和小脑区域等[24]

3.1.2. 左心房CMR评价与脑损伤

左心室舒张功能障碍使左心室充盈压增高,肺静脉回流血液由左心房进入左心室受限,左心房通过代偿性增加主动收缩能力而维持左心输出量在正常范围,左心房压力增加,壁应力升高,导致左心房重构。左心房压力负荷的增加和血液的瘀滞,导致心内膜的损伤和乱流[25],形成血栓,这是中风发生的病理基础。研究发现高血压患者左房增大与腔隙性脑梗死显著相关[26],中风的风险也随之增加,表现出性别差异[27]。左心房容积指数增加,从而带来栓子来源不明的脑卒中(Embolic strokes of undetermined source, ESUS),数据显示,约45%的ESUS与心房心肌病相关[28]。血栓栓塞性卒中最常见的原因为房颤,使卒中的发生率增加2倍以上,并经研究证明了房颤与无症状脑血管病变的发生率增加相关,在房颤患者中,左心房的重构程度越大,缺血性脑血管事件的发生率越高[29],但近来的研究表明,这与是否发生房颤无关而与左房本身功能改变有关[30]。心房纤维化是左房重构的标志,心肌纤维化可通过钆延迟强化(late Gadolinium Enhancement, LGE)和T1 mapping及细胞外容积分数(ECV)来评价。LGE对局灶性纤维化敏感,但对心肌弥漫性纤维化价值有限。高血压心脏病患者不合并心肌梗死时,所致的心肌弥漫性变性和纤维化以T1 mapping和ECV评价为优。研究发现在中风患者中,左房纤维化的范围更广,在ESUS、大血管及小血管疾病的卒中人群中,左房纤维化的程度相似[31]。此外,主动脉压力过可引起左心房纤维化,左心房纤维化的面积还与脑白质高信号高度相关[32]

3.1.3. 微循环CMR评价与脑损伤

长期的血压升高会使微血管血流不畅进而使血管内皮细胞功能障碍导致微循环结构和功能改变,是引起心脏等靶器官损害和死亡风险增高的主要原因。心肌血流的灌注状况和冠脉微循环可通过CMR心肌首过灌注成像评价,CMR心肌首过灌注是指利用对比剂首次通过心肌血管床导致的弛豫增强效应形成的信号变化,能对早期心肌灌注异常作定性和定量分析。有研究发现心功能下降严重影响深部脑白质,降压治疗还会进一步减少脑血流灌注,加重脑白质损伤[33]。这可能是冠状动脉血流储备降低影响心脏代谢与心肌耗氧量,引起心肌缺血,造成线粒体膜破坏,Bax、Bcl-2启动凋亡流程使三磷酸腺苷合成障碍引起[34]

总之,高血压患者可通过多种机制造成心脑器官的联合损伤,心–脑轴双向交互作用进一步加重心脑损伤。MRI是高血压心脑损伤非常重要的检查手段。CMR有助于心脏结构、功能、心肌损伤早期的评价,目前多个CMR研究也显示心脏损伤与脑损伤的相关性,对于临床心脑同治有积极的临床意义。

NOTES

*通讯作者。

参考文献

[1] 马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2021》概要[J]. 中国介入心脏病学杂志, 2022, 30(7): 481-496.
[2] He, J., Ouyang, N., Guo, X., Sun, G., Li, Z., Mu, J., et al. (2023) Effectiveness of a Non-Physician Community Health-Care Provider-Led Intensive Blood Pressure Intervention versus Usual Care on Cardiovascular Disease (CRHCP): An Open-Label, Blinded-Endpoint, Cluster-Randomised Trial. The Lancet, 401, 928-938.
https://doi.org/10.1016/s0140-6736(22)02603-4
[3] Zhang, M., Wu, J., Zhang, X., et al. (2021) Prevalence and Control of Hypertension in Adults in China, 2018. Chinese Journal of Epidemiology, 42, 1780-1789.
[4] Del Buono, M.G., Montone, R.A., Camilli, M., Carbone, S., Narula, J., Lavie, C.J., et al. (2021) Coronary Microvascular Dysfunction across the Spectrum of Cardiovascular Diseases. Journal of the American College of Cardiology, 78, 1352-1371.
https://doi.org/10.1016/j.jacc.2021.07.042
[5] Chen, Z., Venkat, P., Seyfried, D., Chopp, M., Yan, T. and Chen, J. (2017) Brain-Heart Interaction: Cardiac Complications after Stroke. Circulation Research, 121, 451-468.
https://doi.org/10.1161/circresaha.117.311170
[6] Battaglini, D., Robba, C., Lopes da Silva, A., dos Santos Samary, C., Leme Silva, P., Dal Pizzol, F., et al. (2020) Brain-Heart Interaction after Acute Ischemic Stroke. Critical Care, 24, Article No. 163.
https://doi.org/10.1186/s13054-020-02885-8
[7] Lin, H., Li, F., Zhang, J., You, Z., Xu, S., Liang, W., et al. (2021) Cerebral-Cardiac Syndrome and Diabetes: Cardiac Damage after Ischemic Stroke in Diabetic State. Frontiers in Immunology, 12, Article ID: 737170.
https://doi.org/10.3389/fimmu.2021.737170
[8] Yang, S., Li, X., Yang, F., Zhao, R., Pan, X., Liang, J., et al. (2019) Gut Microbiota-Dependent Marker TMAO in Promoting Cardiovascular Disease: Inflammation Mechanism, Clinical Prognostic, and Potential as a Therapeutic Target. Frontiers in Pharmacology, 10, Article No. 1360.
https://doi.org/10.3389/fphar.2019.01360
[9] Lip, G.Y.H. and Lane, D.A. (2015) Stroke Prevention in Atrial Fibrillation: A Systematic Review. JAMA, 313, 1950-1962.
https://doi.org/10.1001/jama.2015.4369
[10] Cuspidi, C., Sala, C., Negri, F., Mancia, G. and Morganti, A. (2011) Prevalence of Left-Ventricular Hypertrophy in Hypertension: An Updated Review of Echocardiographic Studies. Journal of Human Hypertension, 26, 343-349.
https://doi.org/10.1038/jhh.2011.104
[11] Rusconi, C., Sabatini, T., Faggiano, P., Ghizzoni, G., Oneglia, C., Simoncelli, U., et al. (2001) Prevalence of Isolated Left Ventricular Diastolic Dysfunction in Hypertension as Assessed by Combined Transmitral and Pulmonary Vein Flow Doppler Study. The American Journal of Cardiology, 87, 357-360.
https://doi.org/10.1016/s0002-9149(00)01378-3
[12] Amzulescu, M.S., De Craene, M., Langet, H., Pasquet, A., Vancraeynest, D., Pouleur, A.C., et al. (2019) Myocardial Strain Imaging: Review of General Principles, Validation, and Sources of Discrepancies. European Heart JournalCardiovascular Imaging, 20, 605-619.
https://doi.org/10.1093/ehjci/jez041
[13] Yoshida, Y., Jin, Z., Russo, C., Homma, S., Nakanishi, K., Ito, K., et al. (2022) Subclinical Left Ventricular Systolic Dysfunction and Incident Stroke in the Elderly: Long-Term Findings from Cardiovascular Abnormalities and Brain Lesions. European Heart JournalCardiovascular Imaging, 24, 522-531.
https://doi.org/10.1093/ehjci/jeac145
[14] Chung, D., Hong, S., Lee, J., Chung, J., Bang, O.Y., Kim, G., et al. (2023) Topographical Association between Left Ventricular Strain and Brain Lesions in Patients with Acute Ischemic Stroke and Normal Cardiac Function. Journal of the American Heart Association, 12, e29604.
https://doi.org/10.1161/jaha.123.029604
[15] Park, J.J., Park, J., Park, J. and Cho, G. (2018) Global Longitudinal Strain to Predict Mortality in Patients with Acute Heart Failure. Journal of the American College of Cardiology, 71, 1947-1957.
https://doi.org/10.1016/j.jacc.2018.02.064
[16] Nakanishi, K., Daimon, M., Yoshida, Y., Ishiwata, J., Sawada, N., Hirokawa, M., et al. (2020) Carotid Intima-Media Thickness and Subclinical Left Heart Dysfunction in the General Population. Atherosclerosis, 305, 42-49.
https://doi.org/10.1016/j.atherosclerosis.2020.05.019
[17] Vukomanovic, V., Tadic, M., Suzic-Lazic, J., Kocijancic, V. and Celic, V. (2016) The Relationship between Heart Rate Variability and Left Ventricular Layer-Specific Deformation in Uncomplicated Diabetic Patients. The International Journal of Cardiovascular Imaging, 33, 481-490.
https://doi.org/10.1007/s10554-016-1023-9
[18] Abdul-Rahim, A.H., Perez, A., Fulton, R.L., Jhund, P.S., Latini, R., Tognoni, G., et al. (2015) Risk of Stroke in Chronic Heart Failure Patients without Atrial Fibrillation: Analysis of the Controlled Rosuvastatin in Multinational Trial Heart Failure (CORONA) and the Gruppo Italiano per lo Studio della Sopravvivenza nell’Insufficienza Cardiaca-Heart Failure (GISSI-HF) Trials. Circulation, 131, 1486-1494.
https://doi.org/10.1161/circulationaha.114.013760
[19] Norby, F.L., Chen, L.Y., Soliman, E.Z., Gottesman, R.F., Mosley, T.H. and Alonso, A. (2018) Association of Left Ventricular Hypertrophy with Cognitive Decline and Dementia Risk over 20 Years: The Atherosclerosis Risk in Communities-Neurocognitive Study (ARIC-NCS). American Heart Journal, 204, 58-67.
https://doi.org/10.1016/j.ahj.2018.07.007
[20] Ferro, D., van den Brink, H., Amier, R., van Buchem, M., de Bresser, J., Bron, E., et al. (2020) Cerebral Cortical Microinfarcts: A Novel MRI Marker of Vascular Brain Injury in Patients with Heart Failure. International Journal of Cardiology, 310, 96-102.
https://doi.org/10.1016/j.ijcard.2020.04.032
[21] Ferro, D.A., Mutsaerts, H.J., Hilal, S., Kuijf, H.J., Petersen, E.T., Petr, J., et al. (2019) Cortical Microinfarcts in Memory Clinic Patients Are Associated with Reduced Cerebral Perfusion. Journal of Cerebral Blood Flow & Metabolism, 40, 1869-1878.
https://doi.org/10.1177/0271678x19877403
[22] Frey, A., Sell, R., Homola, G.A., Malsch, C., Kraft, P., Gunreben, I., et al. (2018) Cognitive Deficits and Related Brain Lesions in Patients with Chronic Heart Failure. JACC: Heart Failure, 6, 583-592.
https://doi.org/10.1016/j.jchf.2018.03.010
[23] Leeuwis, A.E., Hooghiemstra, A.M., Bron, E.E., Kuipers, S., Oudeman, E.A., Kalay, T., et al. (2020) Cerebral Blood Flow and Cognitive Functioning in Patients with Disorders along the Heart-Brain Axis: Cerebral Blood Flow and the Heart-Brain Axis. Alzheimers & Dementia: Translational Research & Clinical Interventions, 6, e12034.
https://doi.org/10.1002/trc2.12034
[24] Woo, M.A., Ogren, J.A., Abouzeid, C.M., Macey, P.M., Sairafian, K.G., Saharan, P.S., et al. (2015) Regional Hippocampal Damage in Heart Failure. European Journal of Heart Failure, 17, 494-500.
https://doi.org/10.1002/ejhf.241
[25] Avolio, A.P., Kuznetsova, T., Heyndrickx, G.R., Kerkhof, P.L.M. and Li, J.K. (2018) Arterial Flow, Pulse Pressure and Pulse Wave Velocity in Men and Women at Various Ages. In: Kerkhof, P.L.M. and Miller, V.M., Eds., Sex-Specific Analysis of Cardiovascular Function, Springer International Publishing, 153-168.
https://doi.org/10.1007/978-3-319-77932-4_10
[26] Sun, T., Xie, T., Zhang, A., Fan, L., Xu, Z., Chen, X., et al. (2020) Relation between Left Atrial Structure and Lacunar Infarction in Patients with Hypertension. Aging, 12, 17295-17304.
https://doi.org/10.18632/aging.103697
[27] Benjamin, E.J., D’Agostino, R.B., Belanger, A.J., Wolf, P.A. and Levy, D. (1995) Left Atrial Size and the Risk of Stroke and Death. The Framingham Heart Study. Circulation, 92, 835-841.
https://doi.org/10.1161/01.cir.92.4.835
[28] Li, M., Ning, Y., Tse, G., Saguner, A.M., Wei, M., Day, J.D., et al. (2022) Atrial Cardiomyopathy: From Cell to Bedside. ESC Heart Failure, 9, 3768-3784.
https://doi.org/10.1002/ehf2.14089
[29] Inoue, Y.Y., Alissa, A., Khurram, I.M., Fukumoto, K., Habibi, M., Venkatesh, B.A., et al. (2015) Quantitative Tissue‐tracking Cardiac Magnetic Resonance (CMR) of Left Atrial Deformation and the Risk of Stroke in Patients with Atrial Fibrillation. Journal of the American Heart Association, 4, e001844.
https://doi.org/10.1161/jaha.115.001844
[30] Habibi, M., Zareian, M., Ambale Venkatesh, B., Samiei, S., Imai, M., Wu, C., et al. (2019) Left Atrial Mechanical Function and Incident Ischemic Cerebrovascular Events Independent of AF: Insights from the MESA Study. JACC: Cardiovascular Imaging, 12, 2417-2427.
https://doi.org/10.1016/j.jcmg.2019.02.021
[31] Larsen, B.S., Bertelsen, L., Christensen, H., Hadad, R., Aplin, M., Høst, N., et al. (2023) Left Atrial Late Gadolinium Enhancement in Patients with Ischaemic Stroke. European Heart JournalCardiovascular Imaging, 24, 625-634.
https://doi.org/10.1093/ehjci/jead008
[32] Wykretowicz, M., Katulska, K., Zwanzig, M., Krauze, T., Piskorski, J., Guzik, P., et al. (2019) Association of Left Atrial Fibrosis with Aortic Excess Pressure and White Matter Lesions. Scandinavian Cardiovascular Journal, 53, 317-322.
https://doi.org/10.1080/14017431.2019.1645352
[33] Li, Y., Xie, P., Lv, F., Mu, J., Li, Q., Yang, Q., et al. (2008) Brain Magnetic Resonance Imaging Abnormalities in Neuromyelitis Optica. Acta Neurologica Scandinavica, 118, 218-225.
https://doi.org/10.1111/j.1600-0404.2008.01012.x
[34] 王璐璐, 李前辉, 吴子建, 等. 急性心肌缺血模型大鼠脑损伤及海马组织Bcl-2、Bax的表达[J]. 甘肃中医药大学学报, 2019, 36(2): 1-7.