Cav3通道阻滞剂可减轻膝骨性关节炎的软骨退变
Cav3 Channel Blockers Can Reduce Cartilage Degeneration in Knee Osteoarthritis
DOI: 10.12677/acm.2024.1482188, PDF, HTML, XML, 下载: 18  浏览: 23 
作者: 唐一杰:青岛大学附属医院运动医学科,山东 青岛;于腾波*:青岛市市立医院骨关节外科,山东 青岛
关键词: 膝骨性关节炎Cav3通道软骨退变Knee Osteoarthritis Cav3 Channel Cartilage Degeneration
摘要: 目的:本研究旨在观察T型钙离子通道(Cav3)阻滞剂对骨关节炎大鼠模型中软骨退变的治疗效果,并对其缓解退变的机制进行初步探讨。方法:对大鼠进行前交叉韧带横断(ACLT)诱导关节退变,造模后第3天开始予以Cav3阻滞剂TTA-Q6膝关节注射治疗,一周两次,每次100 μM,ACLT对照组以及假手术组予以生理盐水注射治疗,造模后30天和60天检查相应膝关节软骨病理学改变,使用免疫荧光染色测定软骨中二型胶原蛋白(Collagen II)和十型胶原蛋白(Collagen X)的表达。结果:ACLT大鼠软骨退变进行性加重,予以TTA-Q6治疗后,ACLT + TTA-Q6组软骨退变情况得到缓解,并且治疗后,软骨细胞十型胶原蛋白合成降低,二型胶原蛋白合成增高。结论:Cav3通道阻滞剂可以缓解软骨退变,这一作用可能是通过减轻软骨细胞肥大实现的。
Abstract: Objective: The aim of this study was to observe the therapeutic effect of T-type calcium channel (Cav3) blocker on cartilage degeneration in rat model of osteoarthritis, and to explore the mechanism of alleviating the degeneration. Methods:Anterior cruciate ligament transection (ACLT) induced joint degeneration was performed on rats, Cav3 blocker TTA-Q6 was injected into knee joint twice a week, 100 μm each time, ACLT control group and sham operation group were injected with normal saline, and the corresponding pathological changes of knee joint cartilage were examined 30 and 60 days after modeling. The expression of Collagen II and Collagen X in cartilage was determined by immunofluorescence staining. Results: The cartilage degeneration of ACLT rats was progressively aggravated. After treatment with TTA-Q6, the cartilage degeneration of ACLT + TTA-Q6 group was alleviated, and after treatment, Type 10 collagen synthesis of chondrocytes was decreased and type 2 collagen synthesis was increased. Conclusion: Cav3 channel blockers can alleviate cartilage degeneration, which may be achieved by alleviating chondrocyte differentiation.
文章引用:唐一杰, 于腾波. Cav3通道阻滞剂可减轻膝骨性关节炎的软骨退变[J]. 临床医学进展, 2024, 14(8): 110-116. https://doi.org/10.12677/acm.2024.1482188

1. 引言

骨关节炎(OA)是一种常见的退行性疾病,是导致残疾的主要原因,以慢性疼痛和关节软骨损伤、滑膜炎、软骨下骨重塑和骨赘形成等全关节疾病为特征。由于人口老龄化和全球范围内肥胖的流行,骨关节炎的患病率正稳步上升,据估计,全球有3.03亿成年人受到影响,在中国,大约有6120万人患有骨关节炎,目前尚无治疗药物可用[1]。国际骨性关节炎治疗指南推荐的药物仅能缓解症状,长期使用这些药物往往伴随着显著的副作用,例如对乙酰氨基酚引起的胃肠道症状和阿片类药物的药物成瘾[2] [3],急需开发一种针对OA病理生理机制的治疗药物。

经过多年的深入研究,骨关节炎的病理生理机制已取得一定进展,软骨细胞作为软骨组织内唯一的细胞类型,表达和分泌大量的细胞外基质(ECM)维持软骨正常功能。当骨关节炎发生后,软骨细胞合成和分解代谢的平衡被破坏,加速了软骨的破坏[4]。II型胶原是关节软骨中最主要的胶原蛋白,由其形成的胶原纤维网架结构,直接对关节软骨组织起到支撑作用[5]。而在OA的发生发展过程中,软骨细胞外基质降解增加,II型胶原的mRNA表达减少,目前通过调节胶原蛋白的表达来治疗或缓解OA的研究主要集中在增加II型胶原的表达和抑制其降解方面,研究发现丁酸钠、奈比洛尔、西洛他唑、马钱子苷等可以通过抑制II型胶原的降解,减缓OA进展[6]-[9];氨基葡萄糖、富含血小板的血浆、血小板溶解产物(PL)、体外间充质干细胞衍生的细胞外囊泡等与软骨修复的生长有关系,可以促进软骨细胞中II型胶原的表达,从而保护OA中被破坏的软骨细胞,延缓OA的进展[10]-[12]。II型胶原基质的暴露与降解将引起局部生物力学环境的改变进而间接影响软骨细胞功能,促进软骨细胞向肥大软骨细胞方向转变,肥大软骨细胞分泌的X型胶原通过形成网格状结构与II型胶原纤维发生联系,对关节软骨的众多特性产生影响,进而影响关节软骨的正常生理功能[13]。因此,预防软骨细胞肥大对缓解软骨组织退变具有重要的意义。

近年来,钙离子通道在OA中的作用受到广泛关注,离子信号是软骨细胞对各种机械刺激模式反应的最早的细胞事件之一[14]。根据离子通道的门控机制,离子通道可分为电压门控、配体门控和机械门控[15]。钙是一种普遍存在的第二信使,在机械转导中激活多条细胞内信号通路具有重要作用。最新的研究证实,患者服用辣椒素受体TRPV1 (一种机械门控钙离子通道)拮抗剂mavatrep 4小时后爬楼梯疼痛显著降低,并且功能活动和关节僵硬得到了明显缓解[16],在大鼠中,瞬时受体电位通道香草素5 (TRPV5)介导钙离子内流诱导软骨细胞凋亡[17]。这些都充分证明了钙离子阻滞剂在治疗OA中的潜力。但目前为止,尚未见探讨T型钙离子通道(Cav3)对骨关节炎软骨的相关研究,本研究通过建立ACLT骨关节炎大鼠模型,研究Cav3阻滞剂对软骨退变的影响,并对其机制进行初步讨论。

2. 方法

2.1. 实验动物

选取清洁健康雄性Sprague Dawley (SD)大鼠30只体质量(180 ± 20) g,由青岛大学实验动物中心提供。大鼠分笼饲养,饲养环境温度保持在(23 ± 1)℃,白天(12 h)~黑夜(12 h)循环照明,大鼠自由摄食、饮水。实验前对大鼠进行适应性饲养7天,本研究经青岛大学动物保护和使用委员会批准,所有手术均在异氟烷气体麻醉下进行,并尽一切努力最大限度地减少实验动物的疼痛、痛苦和死亡。

2.2. ACLT模型的建立和治疗

为了构建OA模型,大鼠经异氟烷麻醉后右后肢备皮消毒,OA组大鼠膝关节内侧做一个纵向约3 cm的切口,沿髌骨韧带向上轻开一个小口,剪开肌肉,屈膝,将髌骨外翻。暴露交叉韧带后,切断前交叉韧带,然后进行抽屉实验,确认前交叉韧带是否完全断离,逐层缝合伤口。假手术组(Sham组)做相同的皮肤切口,打开关节囊但不切断前交叉韧带。手术后腹腔注射4万单位青霉素持续3天以预防术后感染。术后3天,将OA大鼠随机分配为两组:OA组和治疗组。治疗组与假手术组、OA组分别于关节腔注射TTA-Q6 100 μM或相应量的生理盐水,每周2次,TTA-Q6试剂购买于MedChemExpress公司。手术后4周和8周,解剖膝关节进行进一步研究。

2.3. 番红O固绿染色

收集分离完毕的大鼠右后肢膝关节,4%多聚甲醛固定48小时,用EDTA脱钙液脱钙1个月,依次进行脱水透明,浸蜡包埋,之后将包埋好的蜡块固定于切片机上,切成5微米的薄片。再依次进行二甲苯脱蜡、由高浓度到低浓度酒精,最后入蒸馏水水合、入新鲜配置的weigert染液染色5 min,水洗,酸性分化液分化15秒,在固绿染色液内浸染5 min,快速用弱酸溶液洗涤10~15秒,入番红染色液浸染5 min。按95%乙醇2~3秒、无水乙醇2~3秒,无水乙醇1分钟脱水。100%二甲苯(各2 min)透明处理,光学树脂封固。

2.4. 免疫组织荧光染色

采用标准方案进行免疫染色。切片在枸橼酸钠中煮沸10 min回收抗原,用3%过氧化氢孵育10 min,抑制内源性过氧化物酶活性。在室温下用3%山羊血清孵育30 min,用以下一种一抗在4℃下孵育过夜:胶原X Antibody,胶原II Antibody,1:50比例的IgG对照,再用荧光染料偶联的二抗,避光室温孵育1 h,DAPI染核后封片,荧光显微镜下观察。

2.5. 统计

采用GraphPad Prism 8.0软件(GraphPad software, CA, USA)进行数据分析。采用两因素重复测量方差分析(RMANOVA)评价疼痛阈值,免疫组织化学染色采用单因素方差分析组间差异。以P < 0.05为差异有统计学意义。

3. 结果

3.1. Cav3对ACLT大鼠软骨退变的影响

为了解Cav3通道阻滞剂对OA大鼠骨关节炎的影响,对大鼠膝关节病理变化情况进行研究,结果见图1。我们分别在4周和8周时收集了OA大鼠的膝关节,发现假手术组大鼠膝关节未见明显病理改变,表面软骨完整,平滑,未见明显组织增生。而OA组随着时间的推移,软骨组织发生进行性退变,关节软骨表面逐渐被侵蚀,显示出裂缝和裂隙,伴随着基质的丢失和软骨细胞的肥大,经阻滞剂治疗后软骨退变有了明显缓解,我们采用了国际骨关节炎研究协会(OARSI)评分进行了量化,同样证明了上述结果。

Figure 1. The cartilage degeneration of each group was observed with the staining of saffranine O solid green (×100) and OARSI score

1. 番红O固绿染色(×100)观察各组软骨退变情况和OARSI评分

3.2. Cav3膝关节注射治疗降低软骨细胞十型胶原蛋白的合成并促进二型胶原蛋白的合成

与Sham组相比,ACLT组的大鼠膝关节中II型胶原表达量在第60天显著下调(P < 0.0001),而X型胶原表达明显增高,说明软骨退变严重并伴有软骨分化,而治疗后胶原II表达升高,胶原X表达降低,代表软骨退变有所缓解。详见图2图3

Figure 2. Immunofluorescence (×100) was used to examine the expression of collagen X in knee joint of rats in each group

2. 免疫荧光(×100)检查各组大鼠膝关节中胶原X的表达情况

Figure 3. Immunofluorescence (×100) was used to examine the expression of collagen II in knee joint of rats in each group

3. 免疫荧光(×100)检查各组大鼠膝关节中胶原II的表达情况

4. 讨论

软骨细胞对机械刺激的感觉对软骨的动态平衡和骨关节炎的发展至关重要。软骨细胞机械转导通路中最早的反应涉及钙内流和线粒体功能障碍(裂变和嵴结构的消失)等变化[18] [19],这些变化发生在几秒钟到几分钟内。对这些事件的深入了解可以阐明早期干预预防骨性关节炎的新的治疗靶点。本研究中,我们建立了大鼠膝骨关节炎模型,通过注射Cav3钙离子通道阻滞剂阻止软骨细胞钙离子内流,观察其对软骨退变的治疗情况,并且我们还检查了软骨组织中II型胶原和X型胶原的表达情况,初步探究了钙离子通道阻滞剂治疗软骨退变的机制。

电压门控钙离子通道(Cav),是跨膜离子通道蛋白家族的一员,其通道的开闭受到膜电位变化的控制,其活动对于将细胞表面的电信号与细胞内的生理事件耦合是至关重要的。通过电生理学,已经证实了L型和N型电压门控钙离子通道在软骨细胞上表达并调节肢体发育过程中的软骨生成[20],但其在OA中的作用和机制尚未得到充分的解释。在本研究中,我们选择了T型电压门控钙离子通道作为研究对象,其生理功能为介导Ca2+内流,响应胞膜去极化,以其快激活、快失活、慢去活的特性区别于其他类型通道。值得注意的是,在OA过程中,另一些钙离子通道可能通过不同方式发挥作用。TRPV5,一种机械门控钙离子通道,其开放导致的Ca2+内流可通过钙调蛋白/钙/钙调蛋白依赖激酶Ⅱ通路激活软骨细胞自噬,缓解骨关节炎[21]。在小鼠中,TRPV4的缺失导致严重的类骨关节炎表现,但在年龄相关的小鼠模型中,软骨中TRPV4的缺失阻止了骨关节炎的发生[22]。这提示我们,由于响应的生理信号不同,不同钙离子通道,尽管可能在电生理上相似,也可能产生不同的效应。需要更多的研究区别这些钙离子通道所响应的信号,以及这些钙离子通道是否存在关联。

本研究证实了Cav3钙离子通道阻滞剂能有效缓解骨关节炎中的软骨退变,有利于二型胶原的合成,维持细胞外基质正常的结构和功能,同时,缓解了软骨细胞的肥大,对维持正常的软骨细胞功能有重要的意义。

5. 结论

综上所述,在本研究中,我们发现了Cav3钙离子通道阻滞剂能缓解骨关节炎中的软骨退变,注射钙离子通道阻滞剂可提高软骨中二型胶原的表达并通过预防软骨肥大,降低十型胶原的表达。

致 谢

感谢所有参与研究的人员提供的宝贵数据,感谢于腾波教授的严格指导。

NOTES

*通讯作者。

参考文献

[1] Safiri, S., Kolahi, A., Smith, E., Hill, C., Bettampadi, D., Mansournia, M.A., et al. (2020) Global, Regional and National Burden of Osteoarthritis 1990-2017: A Systematic Analysis of the Global Burden of Disease Study 2017. Annals of the Rheumatic Diseases, 79, 819-828.
https://doi.org/10.1136/annrheumdis-2019-216515
[2] O’Neil, C.K., Hanlon, J.T. and Marcum, Z.A. (2012) Adverse Effects of Analgesics Commonly Used by Older Adults with Osteoarthritis: Focus on Non-Opioid and Opioid Analgesics. The American Journal of Geriatric Pharmacotherapy, 10, 331-342.
https://doi.org/10.1016/j.amjopharm.2012.09.004
[3] Kikuchi, S., Togo, K., Ebata, N., Fujii, K., Yonemoto, N., Abraham, L., et al. (2021) A Retrospective Database Study of Gastrointestinal Events and Medical Costs Associated with Nonsteroidal Anti-Inflammatory Drugs in Japanese Patients of Working Age with Osteoarthritis and Chronic Low Back Pain. Pain Medicine, 22, 1029-1038.
https://doi.org/10.1093/pm/pnaa421
[4] Fujii, Y., Liu, L., Yagasaki, L., Inotsume, M., Chiba, T. and Asahara, H. (2022) Cartilage Homeostasis and Osteoarthritis. International Journal of Molecular Sciences, 23, Article 6316.
https://doi.org/10.3390/ijms23116316
[5] Lane, A.R., Harkey, M.S., Davis, H.C., Luc-Harkey, B.A., Stanley, L., Hackney, A.C., et al. (2019) Body Mass Index and Type 2 Collagen Turnover in Individuals after Anterior Cruciate Ligament Reconstruction. Journal of Athletic Training, 54, 270-275.
https://doi.org/10.4085/1062-6050-525-17
[6] Hu, J., Zhou, J., Wu, J., Chen, Q., Du, W., Fu, F., et al. (2020) Loganin Ameliorates Cartilage Degeneration and Osteoarthritis Development in an Osteoarthritis Mouse Model through Inhibition of NF-κB Activity and Pyroptosis in Chondrocytes. Journal of Ethnopharmacology, 247, Article 112261.
https://doi.org/10.1016/j.jep.2019.112261
[7] Wang, W., Kang, W., Tang, Q., Yao, G., Chen, Y., Cheng, B., et al. (2014) Cilostazol Prevents the Degradation of Collagen Type II in Human Chondrocytes. Biochemical and Biophysical Research Communications, 451, 352-355.
https://doi.org/10.1016/j.bbrc.2014.07.058
[8] Li, Z., Liu, B., Zhao, D., Wang, B., Liu, Y., Zhang, Y., et al. (2017) Protective Effects of Nebivolol against Interleukin-1β (IL-1β)-Induced Type II Collagen Destruction Mediated by Matrix Metalloproteinase-13 (MMP-13). Cell Stress and Chaperones, 22, 767-774.
https://doi.org/10.1007/s12192-017-0805-x
[9] Bo, W., Zhou, J. and Wang, K. (2018) Sodium Butyrate Abolishes the Degradation of Type II Collagen in Human Chondrocytes. Biomedicine & Pharmacotherapy, 102, 1099-1104.
https://doi.org/10.1016/j.biopha.2018.03.062
[10] Vonk, L.A., van Dooremalen, S.F.J., Liv, N., Klumperman, J., Coffer, P.J., Saris, D.B.F., et al. (2018) Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Promote Human Cartilage Regeneration in vitro. Theranostics, 8, 906-920.
https://doi.org/10.7150/thno.20746
[11] Jeyakumar, V., Niculescu-Morzsa, E., Bauer, C., Lacza, Z. and Nehrer, S. (2017) Platelet-Rich Plasma Supports Proliferation and Redifferentiation of Chondrocytes during in vitro Expansion. Frontiers in Bioengineering and Biotechnology, 5, Article 75.
https://doi.org/10.3389/fbioe.2017.00075
[12] Igarashi, M., Sakamoto, K. and Nagaoka, I. (2016) Effect of Glucosamine on Expression of Type II Collagen, Matrix Metalloproteinase and Sirtuin Genes in a Human Chondrocyte Cell Line. International Journal of Molecular Medicine, 39, 472-478.
https://doi.org/10.3892/ijmm.2016.2842
[13] Brew, C.J., Clegg, P.D., Boot-Handford, R.P., Andrew, J.G. and Hardingham, T. (2008) Gene Expression in Human Chondrocytes in Late Osteoarthritis Is Changed in Both Fibrillated and Intact Cartilage without Evidence of Generalised Chondrocyte Hypertrophy. Annals of the Rheumatic Diseases, 69, 234-240.
https://doi.org/10.1136/ard.2008.097139
[14] Delco, M.L. and Bonassar, L.J. (2021) Targeting Calcium-Related Mechanotransduction in Early OA. Nature Reviews Rheumatology, 17, 445-446.
https://doi.org/10.1038/s41584-021-00649-4
[15] Hodgkinson, T., Kelly, D.C., Curtin, C.M. and O’Brien, F.J. (2021) Mechanosignalling in Cartilage: An Emerging Target for the Treatment of Osteoarthritis. Nature Reviews Rheumatology, 18, 67-84.
https://doi.org/10.1038/s41584-021-00724-w
[16] Karlsten, R. (2017) Finally a Promising Analgesic Signal in a Long-Awaited New Class of Drugs: TRPV1 Antagonist Mavatrep in Patients with Osteoarthritis (OA). Scandinavian Journal of Pain, 17, 154-155.
https://doi.org/10.1016/j.sjpain.2017.08.015
[17] Eid, N. and Ito, Y. (2021) Oxoglaucine Alleviates Osteoarthritis by Activation of Autophagy via Blockade of Ca2+ Influx and TRPV5/Calmodulin/CAMK‐II Pathway. British Journal of Pharmacology, 179, 1282-1283.
https://doi.org/10.1111/bph.15706
[18] Bartell, L.R., Fortier, L.A., Bonassar, L.J., Szeto, H.H., Cohen, I. and Delco, M.L. (2019) Mitoprotective Therapy Prevents Rapid, Strain‐Dependent Mitochondrial Dysfunction after Articular Cartilage Injury. Journal of Orthopaedic Research, 38, 1257-1267.
https://doi.org/10.1002/jor.24567
[19] Lee, W., Nims, R.J., Savadipour, A., Zhang, Q., Leddy, H.A., Liu, F., et al. (2021) Inflammatory Signaling Sensitizes Piezo1 Mechanotransduction in Articular Chondrocytes as a Pathogenic Feed-Forward Mechanism in Osteoarthritis. Proceedings of the National Academy of Sciences, 118, e2001611118.
https://doi.org/10.1073/pnas.2001611118
[20] Atsuta, Y., Tomizawa, R.R., Levin, M. and Tabin, C.J. (2019) L-Type Voltage-Gated Ca2+Channel Cav1.2 Regulates Chondrogenesis during Limb Development. Proceedings of the National Academy of Sciences, 116, 21592-21601.
https://doi.org/10.1073/pnas.1908981116
[21] Zhong, G., Long, H., Chen, F. and Yu, Y. (2021) Oxoglaucine Mediates Ca2+ Influx and Activates Autophagy to Alleviate Osteoarthritis through the TRPV5/Calmodulin/CAMK‐II Pathway. British Journal of Pharmacology, 178, 2931-2947.
https://doi.org/10.1111/bph.15466
[22] O’Conor, C.J., Ramalingam, S., Zelenski, N.A., Benefield, H.C., Rigo, I., Little, D., et al. (2016) Cartilage-Specific Knockout of the Mechanosensory Ion Channel TRPV4 Decreases Age-Related Osteoarthritis. Scientific Reports, 6, Article No. 29053.
https://doi.org/10.1038/srep29053