早发型和晚发型精神分裂症的比较研究进展
Progress in Comparison Research of Early-Onset and Late-Onset Schizophrenia
摘要: 精神分裂症(Schizophrenia, SZ)是最具破坏性的精神疾病之一。从临床实践和研究角度出发,将精神分裂症分为早发型和晚发型两大类别,前者在18岁之前发病,后者在40至60岁之间出现精神分裂症症状。通过系统的文献复习,本文较全面地比较了此两类精神分裂症,包括它们的临床特征、治疗原则和预后,重点比较了它们在发病机制方面的异同。我们期望该文帮助读者深入理解精神分裂症在不同人群的表现和病程,为精神科医生针对性地制定治疗方案提供参考。
Abstract: Schizophrenia (SZ) is one of the most devastating mental disorders. From the perspective of clinical practice and research, schizophrenia is categorized into the early-onset and late-onset phenotypes. The former has its first onset before the age of 18, while the latter presents the first-episode between the ages of 40 and 60. This article, following a systematic literature review, compared the two phenotypes of schizophrenia in multiple aspects, including clinical characteristics, treatment principles, prognosis, and pathogenesis in more details. It is expected to help readers deeply understand the clinical manifestations and trajectory of the two phenotypes of schizophrenia, and provide better reference for clinical psychiatrists to formulate targeted treatment plans.
文章引用:田宇, 许海云. 早发型和晚发型精神分裂症的比较研究进展[J]. 国际神经精神科学杂志, 2024, 13(3): 37-45. https://doi.org/10.12677/ijpn.2024.133005

1. 引言

精神分裂症(Schizophrenia, SZ)是最具破坏性的精神疾病之一,因为它通常在患者生命的早期就开始发作,其持续存在或反复发作的临床症状不仅损害患者的生理和心理健康,也给患者家人和社会造成破坏性影响。据估计,每100人中就 1人在其一生中的某个时刻受到精神分裂症的影响[1]。精神分裂症的临床表现复杂多样,通常被归纳为三个症状维度,即阳性症状群(幻觉、幻想、言语和思维紊乱等)、阴性症状群(言语贫乏、动机缺乏、和情感冷漠等)、以及认知障碍(记忆障碍、执行功能损害等) [2]

精神分裂症具有高度遗传性,同卵双胞胎的一致性约为45%。除遗传因素外,环境有害因素在人生的不同阶段(产前、围产期、青春期和成年期)均可增加患该病的风险。虽然仍不清楚精神分裂症的发病机制,现在普遍认为,该病是遗传和环境因素的共同作用所致,即遗传因素影响患者脑发育并形成原始病变或所谓的第一击,在此基础上环境有害因素可以加重遗传因素的作用因而导致第二击,诱发精神病症状的发作[3]

精神分裂症的第一个相对特异性的治疗方法始于约70年前发现的氯丙嗪(Chlorpromazine)。目前在临床上使用的抗精神病药物都是多巴胺(Dopamine, DA)受体阻断剂,因为他们都能够不同程度地与多巴胺受体结合,因而减轻多巴胺能神经过度兴奋导致的一系列临床症状,这表明对多巴胺系统的调节是现有的抗精神病药物治疗的基础[4]

精神分裂症通常在20岁至35岁之间首次发病[5],少数病人在其人生的早年或晚年阶段首次发病。从临床实践和研究角度出发,通常将精神分裂症患者分为早发型(Early onset schizophrenia, EOS)和晚发型(Late onset schizophrenia, LOS)两大类别。早发型精神分裂症指的是在18岁之前发病的患者[6]。这一类患者的身心发展尚未成熟,精神病症状对其学业、职业和社交功能产生重大影响。晚发型精神分裂症指的是在40至60岁之间出现精神分裂症症状的患者[7]。这一类患者的身心发展已经完成并已经具有较丰富的生活经验和社会经历,精神病症状严重影响他们的社会功能和人际关系。

全面比较早发型和晚发型精神分裂症,能够使我们更好地理解精神分裂症在不同人群的表现和病程,更有针对性地制定治疗方案,促进患者职业和社会功能恢复,提高其生活质量。

2. 早发型和晚发型精神分裂症的临床特征比较

EOS患者通常在儿童和青少年时期就开始出现精神分裂症的症状。这些症状包括幻觉、妄想、思维紊乱、情感障碍等。与成年早期的精神分裂症相比,EOS患者可能表现出更为突出的情感和行为问题,如焦虑、情绪不稳定和攻击性行为等。他们可能呈现社交退缩、学业和家庭问题,严重影响其日常生活和社会功能。EOS患者可能还伴随着情绪不稳定、注意力缺陷等症状。EOS患者的认知功能损害可能中断他们的学业,甚至导致其社交功能丧失[8]。之前的研究指出,儿童和青少年发病的精神分裂症患者多呈现严重的临床表现、病前异常的发生率更高、社会心理功能差、以及脑形态和功能检测异常。所以,早发型病例的长期精神病理学结局更差[9]

相较于EOS,LOS更容易伴随情感症状,如焦虑和抑郁。其病程可能以渐进的方式逐渐展现,患者可能在相当长的时间内逐渐适应和隐藏症状。患者的社会和职业功能可能受到较大影响。此外,LOS患者可能表现出较为明显的认知功能损害,涉及注意力、记忆和执行功能[10]。理解这些临床特征对于制定针对性的治疗计划以及提供全面的康复支持至关重要。之前有研究指出,晚发型病例中女性的比例明显较高,且晚发型女性患者的症状和病程相对较差,这可能是与雌二醇水平降低有关[11]。总体而言,因为晚发型患者发病之前已经具有成熟的生活和社会功能,疾病对这些功能的影响相对较小,其康复成功率也较高[12]

3. 早发型和晚发型精神分裂症的治疗原则和预后比较

EOS患者常见疾病反复发作,病程延长,也有未及时治疗者,因而有不良的长期预后、凸显了早期识别和干预的紧迫性[13]。EOS的治疗原则主要包括药物治疗、心理治疗和社会康复支持。药物治疗通常采用抗精神病药物,如抗多巴胺药物,以减轻幻觉、妄想和其他阳性症状。药物治疗需在医生的监督下进行,以确保疗效最大化且副作用最小化。心理治疗包括认知行为疗法和支持性心理治疗等。认知行为疗法是一种循证式心理治疗方式,通过改变思维信念和行为的方法来改变不良认知,达到消除不良情绪和行为的目的[14]。支持性团体心理治疗是一种以患者为中心的治疗方式,旨在通过为患者提供一个相互支持、理解和信任的环境,帮助患者减轻心理压力,改善社会功能,提高生活质量[15]。这些治疗方法可以帮助患者理解和应对他们的症状,提高生活质量,并改善社交功能。一项针对EOS患者进行的随机主动对照试验的结果表明,治疗5周后,干预组(心理治疗 + 抗精神病药)和主动对照组(健康教育 + 抗精神病药)均表现出精神病症状明显改善;然而,干预组的改善效果更好[16]。社会康复支持也是EOS治疗的重要组成部分,通过提供职业训练、社交技能培训和生活自理技能培养等方面的支持,帮助患者更好地适应和应对疾病的影响,从而提高生活质量并促进社会融入。因为EOS通常影响到患者的学业,特殊教育和家庭支持也不可忽视。之前的一篇荟萃分析得出结论,与非典型抗精神病药相比,典型药物对儿童和青少年的精神分裂症更有效,体重增加较少[17]

EOS的预后受多方面因素影响。EOS的症状在青少年时期开始出现,在成年后可能经历更严重的病程[13],因此早期治疗和长期的康复支持尤为重要。未经治疗或治疗不当可能导致症状加重和社会功能下降,对患者的日常生活和生活质量产生长期不利影响。一些研究表明,EOS患者可能在成年后逐渐适应症状,部分症状可能会减轻或缓解,但仍然存在持续的社会和职业功能损害[18]。因此,早期诊断、及时治疗以及持续的康复支持对于改善EOS患者的预后至关重要。通过个体化的治疗计划和全面的支持体系,有望促进患者的社会融入,提高其生活质量,最大限度地减少长期的功能障碍。

药物治疗在LOS中也是主要的治疗手段,通常采用抗精神病药物,以减轻症状,提高患者的生活质量。心理治疗、家庭支持和康复计划同样重要,有助于帮助患者适应和应对疾病的影响。由于LOS患者已经有较丰富的生活经验,治疗可能需要更个体化,关注患者的特殊需求。尽管存在持续的症状和社交障碍,大量老年人仍可能体验到主观幸福感。大多数精神分裂症患者居住在社区,但当需要收容时,许多人被安置在住宅或疗养院,那里的工作人员往往没有能力满足他们的复杂需求。显然需要实施精神卫生和一般卫生系统合作的新护理模式[19]

LOS的预后受多方面因素影响。早期诊断和及时治疗对于改善预后至关重要,且综合治疗需要个体化的方法,以长期稳定地改善患者的病情因而提高其生活质量。尽管一些研究表明晚发型患者可能表现出较为温和的症状和较好的预后[20] [21],全面的康复支持和个体化治疗计划仍然是确保患者功能恢复和社会融入的关键。之前的一项纳入106名精神分裂症患者,为期8周的队列研究表明,LOS比EOS和TOS (典型发病精神分裂症)更能改善阳性症状,因此,精神分裂症的个性化治疗应考虑发病年龄[22]。一项纳入8名门诊患者和13名住院患者的研究表明,近三分之二的 VLOSLP (极晚发型精神分裂症样精神病)患者在服用老年剂量的各种非典型抗精神病药物后获得了积极的治疗反应[21]

4. 早发型和晚发型精神分裂症的发病机制比较

EOS和LOS在发病机制上存在一系列差异,反映了这两个亚型的独特特征。以下从几个方面对这两种类型的精神分裂症进行比较,帮助我们理解它们为什么有上文归纳的发病率、临床表现、疗效、和预后等方面的不同。

4.1. 神经发育

EOS通常涉及神经发育的异常。研究表明胎儿期和婴儿期的神经发育问题可能对EOS的发病产生关键影响。最新的神经影像学研究揭示了EOS患者在大脑发育早期存在突触形成和神经元连接方面的异常。EOS存在许多神经发育方面的缺陷,涉及如下神经生物学机制:(1) 在青春期,大脑关联皮层和边缘叶的发育仍未完成,它们易受环境有害因素的影响因而出现功能障碍[23];(2) 青春期性激素水平迅速升高,雌激素的升高有利于某些脑区,如海马内的突触发生[24],但雄激素的快速升高可能促进突触的消除[25];(3) 在青春期期间观察到灵长类动物前额叶皮层多巴胺输入的变化,以及青春期突触修剪的异常[26] [27]。在人类,脑组织的髓鞘化开始时间相对较晚,且持续至生命的第二个和第三个十年,这也是精神分裂症特别容易发病的时期。EOS患者的病前行为异常,以及在精神病症状表现之前存在的认知功能障碍,提示新皮质–皮质下相互作用的动态失衡在病因学中的重要性[28]。脑影像学研究发现,与健康对照组相比,EOS双侧颞中回灰质体积减少,多个脑区皮质厚度变薄。这些发现表明,大脑结构形态异常,尤其是颞叶和额叶的异常,可能是EOS的重要病理生理特征[29]

LOS主要涉及神经退行性变和认知功能损害。LOS患者可能更容易受到老年期的退行性变化和病理过程的影响,这与EOS强调神经发育问题的角度形成对比[30] [31]。之前的一项研究结果表明,发病 ≥ 50岁的精神分裂症患者存在认知缺陷(主要是执行功能)以及血管和神经系统易受损的特点,随着时间的推移,LOS患者比EOS患者出现更多的认知能力下降和痴呆症[32]。与正常衰老相比,LOS患者的认知缺陷更为明显[33]。脑萎缩是老年首发精神病患者常见的症状,并且与认知能力下降相关,所以老年人应接受脑萎缩和认知筛查[34]。之前的研究得出结论,LOS应被视为阿尔茨海默氏痴呆的前驱期,因为在5年随访中,47.4%的LOS发展为痴呆[35]。研究发现,LOS患者的海马–杏仁核体积相对于EOS患者较小[36],表明海马和杏仁核在LOS患者中可能受到更强烈的影响。这两个脑区与情感、记忆和认知等多方面的功能密切相关,为了解LOS的神经生物学机制提供了重要线索。

4.2. 神经炎症和免疫失调

异常免疫反应可能在精神分裂症的发病中发挥重要作用。目前的研究表明,在胎儿期暴露于炎症调节剂会导致胎儿大脑发育中断,使神经发育障碍(如精神分裂症)的风险增加。许多临床研究已经报道了精神分裂症患者的外周免疫反应增加。有重要证据表明,精神分裂症患者的认知功能受损和阴性症状可能与炎症反应增加有关[37]

EOS病例中发现免疫系统的过度激活可能与疾病的发展有关。据报道,精神分裂症患者的血液中白细胞介素6 (IL-6)水平较高,中性粒细胞计数升高。儿童期和/或青春期的压力源是精神分裂症的主要社会环境危险因素,可能导致免疫失调[38]。一些研究发现,EOS个体在免疫系统中存在着异常的炎症反应,包括细胞因子水平的异常增高以及免疫细胞的活化。这些炎症反应可能与大脑中的神经元和突触的异常活动相关联,进而影响神经传导和神经递质的平衡。之前的一项针对儿童和青少年精神病(平均年龄 ≤ 18岁)的免疫和氧化应激生物标志物的研究表明,患有精神病的青少年具有更高的中性粒细胞/淋巴细胞比值、肿瘤坏死因子、C反应蛋白、白介素-6和总白细胞计数[39]。一份中国人样本的研究得出结论,免疫反应中断可能会加剧神经发育过程中的异常扰动,并引发精神分裂症的早期发作[40]

在LOS中,免疫系统异常可能与认知功能下降相关[41]。LOS患者往往伴随着血液中免疫细胞的活跃度增加和炎症介质的增加,如白细胞、C-反应蛋白和细胞因子等。这些异常的免疫炎症反应可能导致神经元的损伤和脑区功能异常。这种炎症反应与认知功能受损的严重程度成正比,包括注意力、记忆和执行功能等方面。有研究指出,外周血CRP水平升高会使发生LOS的风险增加6~10倍[42]。血浆CRP水平升高与晚发型精神分裂症相关,因而是精神分裂症的一个致病危险因素[43]

4.3. 神经递质系统异常

神经递质系统在EOS和LOS也呈现出不同的变化。EOS通常涉及多巴胺系统的过度活跃,尤其是与阳性症状(如幻觉和妄想)有关的通路[44]。研究表明,精神分裂症患者背侧纹状体内DA摄取、合成或释放的突触前异常增加[45]。多巴胺受体的阻断仍然是当前抗精神病作用的必要条件[46]。此外,谷氨酸系统的异常也在EOS的发病中起着重要作用。谷氨酸是中枢神经系统中的一种主要兴奋性神经递质,与学习、记忆和认知功能密切相关。研究表明,谷氨酸递质系统的异常可能导致神经元之间的异常连接和突触传递异常,从而影响认知功能和情绪调节,进而引发EOS的症状[47] [48]。因此,多巴胺和谷氨酸系统的异常活动相互作用,是EOS的重要发病机制。

虽然多巴胺假说在LOS中仍然具有重要作用,但与EOS相比,LOS可能涉及谷氨酸系统的更为显著的异常。谷氨酸能系统功能低下,特别是NMDAR功能低下,直接与精神分裂症的病因有关[49]。小清蛋白中间神经元的NMDAR功能紊乱可能是患者认知障碍的原因[50]。持续的NMDAR功能减退不仅会导致大脑回路中的神经化学变化,还会导致神经可塑性变化。实际上,NMDAR拮抗剂已经用于动物实验中,模拟精神分裂症患者的临床表型并探索其发病机制,因为这些药物在健康志愿者中短暂诱导的一些认知和行为症状与精神分裂症中所见的缺陷相似[51]

4.4. 遗传和环境因素

遗传和环境因素在EOS发生和发展中发挥重要作用,尤其是早期的基因变异和暴露于不利环境的情况[52] [53]。有大量证据表明遗传因素对精神分裂症有影响,而且这一点在早发病例中比晚发病例中显得更为明显[54]。遗传学研究表明,精神分裂症家族史增加了家族患此病的风险,基因组扫描揭示了多个与精神分裂症发病相关的基因变异,这些基因涉及神经发育、神经传导、突触功能等方面[55]。另一方面,环境因素也对EOS的发病起重要作用。早期的生活事件,如胎儿期和婴儿期的母体健康、早期的生活压力、药物滥用、儿童时期的虐待等、家庭氛围、社会环境,都可能对大脑发育和功能产生影响,增加患病风险[56] [57]。之前有研究指出,围产期并发症,特别是较短的妊娠期,与EOS的执行功能障碍增加相关[58]。PAK2、ARHGAP11B和PRODH基因与EOS存在关联[59]。与对照组相比,早发型精神病患者队列中 GRIN2A VEPHMI变异负担有所增加。GRIN2A变异与一系列神经精神疾病相关,包括成人发病的精神病谱系障碍和儿童发病的精神分裂症[60]

LOS患者具有相对较低的遗传风险,遗传因素对其发病贡献较小[61]。LOS受到更多中年和老年期环境因素的影响,如生活事件、社会压力、心理创伤等。这些环境因素可能在成年后期对疾病的发生和发展产生重要作用。相比之下,EOS更强调神经发育阶段遗传和环境因素的影响,如胎儿期和婴儿期的神经发育异常,以及早期生活事件等。产前阶段母亲吸烟、饮酒和环境污染会影响胎儿发育[62];围产期的出生窒息和感染会导致神经系统问题[63];青春期的不良饮食习惯和环境毒素暴露会影响发育[64];成年期的工作环境暴露和生活方式因素则会增加慢性病的风险[65]

5. 展望

虽然我们对EOS和LOS已经有比较全面的了解,但是仍有很多未知领域。展望未来,以下几个方面需要深入研究。

首先,我们需要更深入地理解早期神经发育对EOS的影响。新的技术和方法的引入,如脑成像、遗传学和分子生物学的进展,将使我们能够更全面地了解在胎儿和婴儿期大脑发育阶段发生的变化,从而更好地理解EOS的病因。

其次,对于LOS,研究将更加关注与老年期相关的因素,如脑衰老、认知功能下降和免疫系统变化。随着人口老龄化,LOS的发病机制将成为一个重要而复杂的研究领域,涉及多个系统的相互作用。

再次,跨学科研究的加强将是未来研究的趋势之一。将神经科学、免疫学、心理学和遗传学等多个学科的知识融合,有助于全面理解EOS和LOS的发病机制。这种综合性的研究方法有望为未来的治疗方法提供更具针对性和个体化的干预手段。

最后,随着精准医学和个体化治疗的不断发展,我们可以期待更加精确的诊断方法和更有效的治疗策略的出现。利用先进的技术手段,我们可能根据患者的个体差异制定更为精准的治疗计划,从而提高治疗效果。

NOTES

*通讯作者。

参考文献

[1] Surmeli, T., Ertem, A., Eralp, E. and Kos, I.H. (2012) Schizophrenia and the Efficacy of Qeeg-Guided Neurofeedback Treatment. Clinical EEG and Neuroscience, 43, 133-144.
https://doi.org/10.1177/1550059411429531
[2] Adams, M.R., Clarkson, T.B., Kaplan, J.R. and Koritnik, D.R. (1989) Experimental Evidence in Monkeys for Beneficial Effects of Estrogen on Coronary Artery Atherosclerosis. Transplantation Proceedings, 21, 3662-3664.
[3] Stilo, S.A. and Murray, R.M. (2019) Non-Genetic Factors in Schizophrenia. Current Psychiatry Reports, 21, Article No. 100.
https://doi.org/10.1007/s11920-019-1091-3
[4] Maric, N.P., Jovicic, M.J., Mihaljevic, M. and Miljevic, C. (2016) Improving Current Treatments for Schizophrenia. Drug Development Research, 77, 357-367.
https://doi.org/10.1002/ddr.21337
[5] Calabrese, J., Al Khalili, Y. and Shaheen, K. (2024) Psychosis (Nursing). Treasure Island.
[6] Borrelli, D.F., Ottoni, R., Provettini, A., Morabito, C., Dell’Uva, L., Marchesi, C., et al. (2022) A Clinical Investigation of Psychotic Vulnerability in Early-Onset Obsessive-Compulsive Disorder through Cognitive-Perceptive Basic Symptoms. European Archives of Psychiatry and Clinical Neuroscience, 274, 195-205.
https://doi.org/10.1007/s00406-022-01543-0
[7] Devanand, D.P., Jeste, D.V., Stroup, T.S. and Goldberg, T.E. (2023) Overview of Late-Onset Psychoses. International Psychogeriatrics, 36, 28-42.
https://doi.org/10.1017/s1041610223000157
[8] Maloney, A.E., Yakutis, L.J. and Frazier, J.A. (2012) Empirical Evidence for Psychopharmacologic Treatment in Early-Onset Psychosis and Schizophrenia. Child and Adolescent Psychiatric Clinics of North America, 21, 885-909.
https://doi.org/10.1016/j.chc.2012.07.011
[9] Vyas, N.S., Patel, N.H. and Puri, B.K. (2011) Neurobiology and Phenotypic Expression in Early Onset Schizophrenia. Early Intervention in Psychiatry, 5, 3-14.
https://doi.org/10.1111/j.1751-7893.2010.00253.x
[10] Korner, A., Lopez, A.G., Lauritzen, L., Andersen, P.K. and Kessing, L.V. (2008) Delusional Disorder in Old Age and the Risk of Developing Dementia—A Nationwide Register-Based Study. Aging & Mental Health, 12, 625-629.
https://doi.org/10.1080/13607860802343118
[11] Riecher-Rössler, A., Löffler, W. and Munk-Jørgensen, P. (1997) What Do We Really Know about Late-Onset Schizophrenia? European Archives of Psychiatry and Clinical Neuroscience, 247, 195-208.
https://doi.org/10.1007/bf02900216
[12] Yasuda, M. and Kato, S. (2009) [Clinical Psychopathological Research on Late-Onset Schizophrenia—Mainly Patients with Schizophrenia from a Hospital Psychiatric Ward]. Psychiatria et Neurologia Japonica, 111, 250-271.
[13] Lundberg, M., Andersson, P., Lundberg, J. and Desai Boström, A.E. (2024) Challenges and Opportunities in the Diagnosis and Treatment of Early-Onset Psychosis: A Case Series from the Youth Affective Disorders Clinic in Stockholm, Sweden. Schizophrenia, 10, Article No. 5.
https://doi.org/10.1038/s41537-023-00427-z
[14] Mahmood, Z., Van Patten, R., Keller, A.V., Lykins, H.C., Perivoliotis, D., Granholm, E., et al. (2021) Reducing Negative Symptoms in Schizophrenia: Feasibility and Acceptability of a Combined Cognitive-Behavioral Social Skills Training and Compensatory Cognitive Training Intervention. Psychiatry Research, 295, Article ID: 113620.
https://doi.org/10.1016/j.psychres.2020.113620
[15] 赵晋娴, 单立花, 孙宁华. 支持性团体心理治疗精神分裂症患者的效果研究[J]. 心理月刊, 2024(19): 110-113.
https://doi.org/10.19738/j.cnki.psy.2024.07.033
[16] Liu, S., Zhong, H., Qian, Y., Cai, H., Jia, Y. and Zhu, J. (2023) Neural Mechanism Underlying the Beneficial Effect of Theory of Mind Psychotherapy on Early-Onset Schizophrenia: A Randomized Controlled Trial. Journal of Psychiatry and Neuroscience, 48, E421-E430.
https://doi.org/10.1503/jpn.230049
[17] Armenteros, J.L. and Davies, M. (2006) Antipsychotics in Early Onset Schizophrenia: Systematic Review and Meta-Analysis. European Child & Adolescent Psychiatry, 15, 141-148.
https://doi.org/10.1007/s00787-005-0515-2
[18] Ivanova, E., Maslinkova, D., Polnareva, N. and Milanova, V. (2023) Case Series: Cariprazine in Early-Onset Schizophrenia. Frontiers in Psychiatry, 14, Article 1155518.
https://doi.org/10.3389/fpsyt.2023.1155518
[19] Meesters, P.D. (2023) New Horizons in Schizophrenia in Older People. Age and Ageing, 52, afad161.
https://doi.org/10.1093/ageing/afad161
[20] Tao, X., Xue, Y., Niu, R., Lu, W., Yao, H., He, C., et al. (2023) Comparisons of Clinical Outcomes between Newly Diagnosed Early-and Late-Onset T2DM: A Real-World Study from the Shanghai Hospital Link Database. Endocrine Connections, 13, e230474.
https://doi.org/10.1530/ec-23-0474
[21] Scott, J., Greenwald, B.S., Kramer, E. and Shuwall, M. (2010) Atypical (second Generation) Antipsychotic Treatment Response in Very Late-Onset Schizophrenia-Like Psychosis. International Psychogeriatrics, 23, 742-748.
https://doi.org/10.1017/s1041610210002188
[22] Yin, Y., Li, S., Tong, J., Huang, J., Tian, B., Chen, S., et al. (2023) Short-Term Antipsychotic Treatment Response in Early-Onset, Typical-Onset, and Late-Onset First Episode Schizophrenia. Schizophrenia Research, 257, 58-63.
https://doi.org/10.1016/j.schres.2023.05.015
[23] Keshavan, M.S. and Hogarty, G.E. (1999) Brain Maturational Processes and Delayed Onset in Schizophrenia. Development and Psychopathology, 11, 525-543.
https://doi.org/10.1017/s0954579499002199
[24] Desmond, N.L. and Levy, W.B. (1997) Ovarian Steroidal Control of Connectivity in the Female Hippocampus: An Overview of Recent Experimental Findings and Speculations on Its Functional Consequences. Hippocampus, 7, 239-245.
https://doi.org/10.1002/(sici)1098-1063(1997)7:2<239::aid-hipo10>3.0.co;2-1
[25] Jordan, C.L., Watamura, S. and Arnold, A.P. (1995) Androgenic, Not Estrogenic, Steroids Alter Neuromuscular Synapse Elimination in the Rat Levator Ani. Developmental Brain Research, 84, 225-232.
https://doi.org/10.1016/0165-3806(94)00175-y
[26] Remschmidt, H. (2002) Early-onset Schizophrenia as a Progressive-Deteriorating Developmental Disorder: Evidence from Child Psychiatry. Journal of Neural Transmission, 109, 101-117.
https://doi.org/10.1007/s702-002-8240-3
[27] Feinberg, I. (1982) Schizophrenia: Caused by a Fault in Programmed Synaptic Elimination during Adolescence? Journal of Psychiatric Research, 17, 319-334.
https://doi.org/10.1016/0022-3956(82)90038-3
[28] Eggers, C. (1999) Some Remarks on Etiological Aspects of Early-Onset Schizophrenia. European Child & Adolescent Psychiatry, 8, S1-S4.
https://doi.org/10.1007/pl00010683
[29] Cai, J., Wei, W., Zhao, L., Li, M., Li, X., Liang, S., et al. (2022) Abnormal Brain Structure Morphology in Early-Onset Schizophrenia. Frontiers in Psychiatry, 13, Article 925204.
https://doi.org/10.3389/fpsyt.2022.925204
[30] Rasmussen, H.B., Timm, S., Wang, A.G., Søeby, K., Lublin, H., Fenger, M., et al. (2006) Association between the CCR5 32-Bp Deletion Allele and Late Onset of Schizophrenia. American Journal of Psychiatry, 163, 507-511.
https://doi.org/10.1176/appi.ajp.163.3.507
[31] Dubertret, C. and Gorwood, P. (2001) The French Concept of “Psychose Hallucinatoire Chronique”—A Preliminary Form of Schizophrenia? The Role of Late-Life Psychosis in the Anticipation Hypothesis of Schizophrenia. Dialogues in Clinical Neuroscience, 3, 296-303.
https://doi.org/10.31887/dcns.2001.3.4/cdubertret
[32] Girard, C., Simard, M., Noiseux, R., Laplante, L., Dugas, M., Rousseau, F., et al. (2011) Late-Onset-Psychosis: Cognition. International Psychogeriatrics, 23, 1301-1316.
https://doi.org/10.1017/s1041610211000238
[33] Abdullina, E.G., Savina, M.A., Rupchev, G.E., Sheshenin, V.S. and Pochueva, V.V. (2022) Cognitive Functions in Late-Onset Psychosis. S.S. Korsakov Journal of Neurology and Psychiatry, 122, 63-70.
https://doi.org/10.17116/jnevro202212206163
[34] Louhija, U., Martola, J., Juva, K. and Appelberg, B.G. (2021) Brain Atrophy in First-Episode Psychosis of the Elderly Is Associated with Cognitive Decline. The Primary Care Companion for CNS Disorders, 23, 20m02865.
https://doi.org/10.4088/pcc.20m02865
[35] Brodaty, H., Sachdev, P., Koschera, A., Monk, D. and Cullen, B. (2003) Long-term Outcome of Late-Onset Schizophrenia: 5-Year Follow-Up Study. British Journal of Psychiatry, 183, 213-219.
https://doi.org/10.1192/bjp.183.3.213
[36] Sachdev, P., Brodaty, H., Cheang, D. and Cathcart, S. (2000) Hippocampus and Amygdala Volumes in Elderly Schizophrenic Patients as Assessed by Magnetic Resonance Imaging. Psychiatry and Clinical Neurosciences, 54, 105-112.
https://doi.org/10.1046/j.1440-1819.2000.00644.x
[37] GERCEK, H.G., CITIR, B.G. and BUKULME, A. (2023) Neutrophil-to-lymphocyte and Platelet-To-Lymphocyte Ratios as Inflammation Markers for Early-Onset Schizophrenia. Bratislava Medical Journal, 124, 503-507.
https://doi.org/10.4149/bll_2023_077
[38] Corsi-Zuelli, F., Schneider, A.H., Santos-Silva, T., Loureiro, C.M., Shuhama, R., Menezes, P.R., et al. (2022) Increased Blood Neutrophil Extracellular Traps (NETs) Associated with Early Life Stress: Translational Findings in Recent-Onset Schizophrenia and Rodent Model. Translational Psychiatry, 12, Article No. 526.
https://doi.org/10.1038/s41398-022-02291-4
[39] Taylor, J.H., Bermudez-Gomez, J., Zhou, M., Gómez, O., Ganz-Leary, C., Palacios-Ordonez, C., et al. (2024) Immune and Oxidative Stress Biomarkers in Pediatric Psychosis and Psychosis-Risk: Meta-Analyses and Systematic Review. Brain, Behavior, and Immunity, 117, 1-11.
https://doi.org/10.1016/j.bbi.2023.12.019
[40] Zhong, Y., Tubbs, J.D., Leung, P.B.M., et al. (2023) Early-Onset Schizophrenia Is Associated with Immune-Related Rare Variants in a Chinese Sample. medRxiv.
https://doi.org/10.1101/2023.11.21.23298115
[41] Usenko, T., Bezrukova, A., Basharova, K., Baydakova, G., Shagimardanova, E., Blatt, N., et al. (2023) Altered Sphingolipid Hydrolase Activities and α-Synuclein Level in Late-Onset Schizophrenia. Metabolites, 14, Article 30.
https://doi.org/10.3390/metabo14010030
[42] Wium-Andersen, M.K., Ørsted, D.D. and Nordestgaard, B.G. (2013) Elevated C-Reactive Protein Associated with Late-And Very-Late-Onset Schizophrenia in the General Population: A Prospective Study. Schizophrenia Bulletin, 40, 1117-1127.
https://doi.org/10.1093/schbul/sbt120
[43] Inoshita, M., Numata, S., Tajima, A., Kinoshita, M., Umehara, H., Nakataki, M., et al. (2016) A Significant Causal Association between C-Reactive Protein Levels and Schizophrenia. Scientific Reports, 6, Article No. 26105.
https://doi.org/10.1038/srep26105
[44] Wong, S.M.Y., Suen, Y.N., Wong, C.W.C., Chan, S.K.W., Hui, C.L.M., Chang, W.C., et al. (2022) Striatal Dopamine Synthesis Capacity and Its Association with Negative Symptoms upon Resolution of Positive Symptoms in First-Episode Schizophrenia and Delusional Disorder. Psychopharmacology, 239, 2133-2141.
https://doi.org/10.1007/s00213-022-06088-7
[45] McCutcheon, R., Beck, K., Jauhar, S. and Howes, O.D. (2017) Defining the Locus of Dopaminergic Dysfunction in Schizophrenia: A Meta-Analysis and Test of the Mesolimbic Hypothesis. Schizophrenia Bulletin, 44, 1301-1311.
https://doi.org/10.1093/schbul/sbx180
[46] Girgis, R.R., Zoghbi, A.W., Javitt, D.C. and Lieberman, J.A. (2019) The Past and Future of Novel, Non-Dopamine-2 Receptor Therapeutics for Schizophrenia: A Critical and Comprehensive Review. Journal of Psychiatric Research, 108, 57-83.
https://doi.org/10.1016/j.jpsychires.2018.07.006
[47] Schwartz, T.L., Sachdeva, S. and Stahl, S.M. (2012) Genetic Data Supporting the NMDA Glutamate Receptor Hypothesis for Schizophrenia. Current Pharmaceutical Design, 18, 1580-1592.
https://doi.org/10.2174/138161212799958594
[48] Nuncio-Mora, L., Lanzagorta, N., Nicolini, H., Sarmiento, E., Ortiz, G., Sosa, F., et al. (2023) The Role of the Microbiome in First Episode of Psychosis. Biomedicines, 11, Article 1770.
https://doi.org/10.3390/biomedicines11061770
[49] Abram, S.V., Roach, B.J., Fryer, S.L., Calhoun, V.D., Preda, A., van Erp, T.G.M., et al. (2022) Validation of Ketamine as a Pharmacological Model of Thalamic Dysconnectivity across the Illness Course of Schizophrenia. Molecular Psychiatry, 27, 2448-2456.
https://doi.org/10.1038/s41380-022-01502-0
[50] Wang, X., Pinto-Duarte, A., Sejnowski, T.J. and Behrens, M.M. (2013) How Nox2-Containing NADPH Oxidase Affects Cortical Circuits in the NMDA Receptor Antagonist Model of Schizophrenia. Antioxidants & Redox Signaling, 18, 1444-1462.
https://doi.org/10.1089/ars.2012.4907
[51] Gunduz-Bruce, H. (2009) The Acute Effects of NMDA Antagonism: From the Rodent to the Human Brain. Brain Research Reviews, 60, 279-286.
https://doi.org/10.1016/j.brainresrev.2008.07.006
[52] Yao, G., Luo, J., Zou, T., Li, J., Hu, S., Yang, L., et al. (2024) Transcriptional Patterns of the Cortical Morphometric Inverse Divergence in First-Episode, Treatment-Naïve Early-Onset Schizophrenia. NeuroImage, 285, Article ID: 120493.
https://doi.org/10.1016/j.neuroimage.2023.120493
[53] Alp, A., Özçelik Eroğlu, E., Yıldız, M.İ., Ceylan, A.C., Demir, B. and Özer, S. (2023) C.4168G > a (p.Ala 1390Thr) Variation in KMT2D Gene Detected in an Ultra-Treatment-Resistant Schizophrenia Patient: A Case Report and Literature Review. Archives of Neuropsychiatry, 60, 380-384.
https://doi.org/10.29399/npa.28417
[54] O’Connell, P., Woodruff, P.W.R., Wright, I., Jones, P. and Murray, R.M. (1997) Developmental Insanity or Dementia Praecox: Was the Wrong Concept Adopted? Schizophrenia Research, 23, 97-106.
https://doi.org/10.1016/s0920-9964(96)00110-7
[55] Vyas, N.S., Ahn, K., Stahl, D.R., Caviston, P., Simic, M., Netherwood, S., et al. (2014) Association of KIBRA Rs17070145 Polymorphism with Episodic Memory in the Early Stages of a Human Neurodevelopmental Disorder. Psychiatry Research, 220, 37-43.
https://doi.org/10.1016/j.psychres.2014.07.024
[56] Fernandez, A., Drozd, M.M., Thümmler, S., Dor, E., Capovilla, M., Askenazy, F., et al. (2019) Childhood-Onset Schizophrenia: A Systematic Overview of Its Genetic Heterogeneity from Classical Studies to the Genomic Era. Frontiers in Genetics, 10, Article 1137.
https://doi.org/10.3389/fgene.2019.01137
[57] Riglin, L., Hammerton, G., Heron, J., Collishaw, S., Arseneault, L., Thapar, A.K., et al. (2019) Developmental Contributions of Schizophrenia Risk Alleles and Childhood Peer Victimization to Early-Onset Mental Health Trajectories. American Journal of Psychiatry, 176, 36-43.
https://doi.org/10.1176/appi.ajp.2018.18010075
[58] Teigset, C.M., Mohn, C. and Rund, B.R. (2020) Perinatal Complications and Executive Dysfunction in Early-Onset Schizophrenia. BMC Psychiatry, 20, Article No. 103.
https://doi.org/10.1186/s12888-020-02517-z
[59] Gregoric Kumperscak, H., Krgovic, D., Drobnic Radobuljac, M., Senica, N., Zagorac, A. and Kokalj Vokac, N. (2021) Cnvs and Chromosomal Aneuploidy in Patients with Early-Onset Schizophrenia and Bipolar Disorder: Genotype-Phenotype Associations. Frontiers in Psychiatry, 11, Article 606372.
https://doi.org/10.3389/fpsyt.2020.606372
[60] Hojlo, M.A., Ghebrelul, M., Genetti, C.A., Smith, R., Rockowitz, S., Deaso, E., et al. (2023) Children with Early-Onset Psychosis Have Increased Burden of Rare GRIN2A Variants. Genes, 14, Article 779.
https://doi.org/10.3390/genes14040779
[61] Kennedy, J.L., Farrer, L.A., Andreasen, N.C., Mayeux, R. and St George-Hyslop, P. (2003) The Genetics of Adult-Onset Neuropsychiatric Disease: Complexities and Conundra? Science, 302, 822-826.
https://doi.org/10.1126/science.1092132
[62] Stieb, D.M., Chen, L., Eshoul, M. and Judek, S. (2012) Ambient Air Pollution, Birth Weight and Preterm Birth: A Systematic Review and Meta-Analysis. Environmental Research, 117, 100-111.
https://doi.org/10.1016/j.envres.2012.05.007
[63] Adams-Chapman, I. and Stoll, B.J. (2006) Neonatal Infection and Long-Term Neurodevelopmental Outcome in the Preterm Infant. Current Opinion in Infectious Diseases, 19, 290-297.
https://doi.org/10.1097/01.qco.0000224825.57976.87
[64] Dietz, W.H. (1998) Health Consequences of Obesity in Youth: Childhood Predictors of Adult Disease. Pediatrics, 101, 518-525.
https://doi.org/10.1542/peds.101.s2.518
[65] Steenland, K., Burnett, C., Lalich, N., Ward, E. and Hurrell, J. (2003) Dying for Work: The Magnitude of US Mortality from Selected Causes of Death Associated with Occupation. American Journal of Industrial Medicine, 43, 461-482.
https://doi.org/10.1002/ajim.10216