EGFR变构抑制剂在小细胞肺癌治疗中的作用和未来发展
The Role and Future Development of EGFR Allosteric Inhibitors in the Treatment of Small Cell Lung Cancer
DOI: 10.12677/hjmce.2024.123021, PDF, HTML, XML, 下载: 8  浏览: 13 
作者: 贾硕磊, 周庆发*:中国药科大学理学院,江苏 南京
关键词: EGFR抑制剂变构抑制剂非小细胞肺癌EGFR Inhibitors Allosteric Inhibitors Non-Small Cell Lung Cancer
摘要: 表皮生长因子受体(EGFR)过表达和突变与非小细胞肺癌的发生密切相关。EGFR激活突变作为非小细胞肺癌的致癌因素,EGFR小分子抑制剂的开发也不断在进行。然而从2016年首次报道EGFRC797S突变成为第三代不可逆抑制剂的主要耐药机制以来,至今仍未有对抗EGFRC797S三级突变特效药获得审批。因此,开发第四代EGFR抑制剂具有重要意义。本文综述了EGFR继发性突变的过程以及EGFR变构抑制剂的最新药物化学进展。我们希望这些数据能启发读者新的想法,开发出对EGFRC797S突变有效的新型第四代EGFR变构抑制剂。
Abstract: Epidermal growth factor receptor (EGFR) overexpression and mutations are closely associated with the development of non-small cell lung cancer. EGFR-activating mutations function as oncogenic drivers in non-small cell lung cancer, driving ongoing efforts in the development of small-molecule inhibitors targeting EGFR. However, since the identification of the EGFRC797S mutation in 2016 as the primary resistance mechanism for third-generation irreversible inhibitors, no potent drug targeting the EGFRC797S tertiary mutation has been approved. Consequently, the development of fourth-generation EGFR inhibitors is of paramount importance. In this article, we provide a comprehensive overview of the process of acquired EGFR mutations and recent advancements in medicinal chemistry related to acquired-resistant fourth-generation EGFR small-molecule inhibitors, with a particular focus on allosteric and reversible inhibitors designed to counteract the EGFRC797S mutation. We aim for these insights to inspire readers with innovative approaches in developing novel fourth-generation EGFR small-molecule inhibitors that effectively combat the EGFRC797S mutation.
文章引用:贾硕磊, 周庆发. EGFR变构抑制剂在小细胞肺癌治疗中的作用和未来发展[J]. 药物化学, 2024, 12(3): 185-195. https://doi.org/10.12677/hjmce.2024.123021

1. 引言

肺癌是一种发病率和死亡率较高的恶性肿瘤[1]。根据其病理类型、细胞形态和组织学特征,肺癌可被划分为小细胞肺癌和非小细胞肺癌。非小细胞肺癌包括多个亚型,如腺癌、鳞癌和大细胞癌等[2]。表皮生长因子受体(EGFR)是一种酪氨酸激酶受体蛋白,广泛分布于哺乳动物的上皮细胞、成纤维细胞、神经胶质细胞、角质形成细胞等细胞表面,在细胞生长、增殖、分化等生理过程中起着重要作用[3]。当其与胞外的表皮生长因子(EGF)结合时会形成二聚结构从而激活下游的信号通路。然而EGFR的过度表达,异常扩增或者突变都可能引发人体多种癌症[4]。其中较为常见的就是由EGFR突变导致的非小细胞肺癌。随着对EGFR及其信号通路的深入研究,以其作为靶点而设计的靶向药物不断涌现,如今EGFR已成为抗癌的热门靶点[5]

EGFR激酶突变在四个外显子中最常见,包括外显子18至21 [6]。EGFR突变分为原发性突变和继发性突变,这些激活的突变聚集在EGFR酪氨酸激酶的ATP结合口袋周围[7]。原发性突变中80%的EGFR突变类型为外显子19的缺失和外显子21的L858R突变[8]-[10]。尽管靶向治疗在治疗初期对原发性突变患者具有较好的治疗效果,但是接受靶向药治疗后,几乎所有的患者都会出现获得性耐药,而获得性耐药出现的主要原因就是EGFR酪氨酸激酶的继发性突变[11]

第一代EGFR酪氨酸激酶抑制剂吉非替尼(Gefitinib, 1)和厄洛替尼(Erlotinib, 2)是针对携带EGFR19del和EGFRL858R突变的NCSCL患者的第一代可逆抑制剂,用于治疗接受过化疗的局部晚期或转移性非小细胞肺癌患者[12]。然而,在接受治疗后的数月,便在病人体内检测到了第20号外显子第790位残基的苏氨酸替换为甲硫氨酸(T790M)的突变,如图1。EGFRT790M是在首次检测到的继发性突变,因此这种突变也被称为“看门人突变”,其引发耐药的机制为空间位阻,由较大的甲硫氨酸残基干扰抑制剂结合,而且增加了ATP与EGFR活性位点的亲和力,使ATP与第一代药物之间的相互竞争,从而导致耐药性[13]-[15]。因此,在第一代药物的基础上,研究人员开发了二代药物阿法替尼(Afatinib, 3)和达克替尼(Dacomitinib, 4),以克服吉非替尼或厄洛替尼诱导的EGFRT790M突变[16]。大多数第二代EGFR-TKI含有特殊官能团,例如αβ不饱和酰胺,作为Michael加成的受体[17]。这些不饱和酰胺可与半胱氨酸残基(Cys797)的巯基共价结合,形成不可逆抑制,从而增加与EGFR酪氨酸激酶蛋白的亲和力,达到关闭癌细胞信号通路,抑制肿瘤生长的目的[18]。但是第二代抑制剂对EGFR缺乏选择性,他们不仅抑制突变型EGFR,对EGFR野生型(EGFRWT)同样具有很高的活性,在克服EGFRT790M突变引起的耐药性后,患者出现了严重的副作用,例如皮疹和腹泻[19]

Figure 1. Schematic representation of the binding interactions of the quinolinamine structure with EGFRWT and EGFRT790M

1. 喹啉胺结构与EGFRWT和EGFRT790M的结合相互作用示意图

为了解决突变引起的耐药性和药物的毒副作用,第三代EGFR抑制剂奥希替尼(Osimertinibm, 5)被开发出来[20]-[22]。第三代抑制剂的核心基团是氨基嘧啶,但与第二代抑制剂同样拥有不饱和酰胺与Cys797相互作用[23]-[25]。特别是奥希替尼于2015年获得美国食品药品监督管理局(FDA)批准,用于治疗携带EGFR激活突变(如L858R点突变或外显子19缺失以及EGFRT790M突变)的NSCLC患者,并在2018年被批准作为EGFR突变转移性NSCLC的一线治疗药物[26]。但随着进一步的临床应用,约40%接受奥希替尼治疗的患者发生三级Cys797至Ser797 (C797S)点突变[27] [28]。这种突变阻碍了不可逆抑制剂中的丙烯酰胺弹头通过巯基的Michael加成与EGFR突变体形成共价结合,如图2。是奥希替尼的主要耐药机制[29]。因此,迫切需要开发针对C797S突变的第四代EGFR抑制剂。

Figure 2. Schematic representation of the covalent interaction of the acrylamide warhead with Cys797 and Ser797

2. 丙烯酰胺弹头与Cys797和Ser797的共价相互作用示意图

ATP竞争性抑制剂的与激酶的不良结合是激酶的ATP结合位点突变所导致的[30]-[32]。目前主要通过发现更有选择性的激酶抑制剂(如与激酶上的变构位点结合)来解决这种不良结合。图3变构抑制剂是另一类抑制剂,其在ATP结合位点外的变构位点处结合并以变构方式阻断激酶活性[33]-[35]。这类抑制剂表现出优异的激酶选择性,因为它们靶向特定激酶的结合位点和调节机制。在这里,我们综述了最近报道的克服奥希替尼治疗引起的获得性耐药的变构抑制剂。并通过对比分析其结构解释其构效关系。

Figure 3. First, second and third generation epidermal growth factor receptor tyrosine kinase inhibitors

3. 第一、第二和第三代表皮生长因子受体酪氨酸激酶抑制剂

2. 变构抑制剂

EGFR变构抑制剂能够克服T790M突变赋予的EGFR酪氨酸激酶对ATP的增强亲和力[36]。Jia等人对纯化的EGFRL858R/T790M激酶进行了生化筛选,共筛选了约250万个化合物文库。在生化筛选中,使用了1 μM的ATP,并在1 mM的ATP和野生型EGFR条件下对活性化合物进行了反筛选。他们特别感兴趣的是,被筛选出来的化合物中,EGFR变构抑制剂化合物6因其对突变型EGFR的效力和选择性而引起了注意(对于L858R/T790M,在1 mM ATP下的半数最大抑制浓度(IC50) = 0.024 μM,对于野生型EGFR的IC50 > 50 μM)。经过基于药物代谢的优化,化合物6被改良成了化合物7 (EAI045),结构见图4。化合物7能够靶向选定的耐药EGFR突变体,但不影响野生型受体。晶体结构分析表明,化合物结合在变构口袋中,该变构口袋部分由激酶非活性构象中C-螺旋的向外位移产生。然而,单独使用化合物7时,由于其对EGFR二聚体不对称活性状态的两个亚基表现出不同的效力,无法有效地阻断EGFR驱动的细胞增殖。这两个亚基在活性状态下以不对称的方式相互作用。研究人员观察到,化合物7与西妥昔单抗(一种阻断EGFR二聚化的抗体治疗剂)具有显著的协同作用,使激酶对变构抑制剂化合物7产生均匀的敏感性。EAI045与西妥昔单抗联合治疗在由EGFRL858R/T790M和EGFRL858R/T790M/C797S驱动的肺癌小鼠模型中表现出了有效性。这些研究结果强调了有针对性地靶向变构位点以获得多效选择性抑制剂的重要性[37]

Figure 4. Schematic chemical structure of compounds 6~8

4. 化合物6~8的化学结构示意图

Lee等人认为化合物7中的2–氨基噻唑可能导致高铁血红蛋白血症毒性和反应性中间体形成,从而导致大量共价蛋白结合。为了进一步研究化合物7的构效关系,他们尝试用不可水解的喹唑啉-4-酮替换化合物7上不需要的氨基噻唑,以改善药物性质,最终合成了化合物8,结构见图4。化合物8的预测结合位姿与EAI 001的晶体结构几乎相同,位于ATP结合位点附近。化合物8保留了喹唑啉-4-酮N1与Asp855羧酸酯之间的关键氢键。然而,仅化合物8显示出一定水平的生物化学活性,并且其劣于母体化合物7 [38]

To等人合成了一种新型EGFR变构抑制剂JBJ-04-125-02 (化合物9),结构见图5,化合物9的主要基团噻唑酰胺、苯环和异吲哚啉酮与变构位点的结合模式与先前观察到的EAI 001的结合模式相似。化合物9作为单一药物可以在体外和体内抑制细胞增殖和EGFRL858R/T790M/C797S信号传导。然而,EGFR二聚体形成限制了治疗效果并导致耐药性。化合物5 (一种ATP竞争性共价EGFR抑制剂)独特且显著地增强了化合物9与突变型EGFR的结合。化合物5和化合物9的组合导致细胞凋亡增加,相较于单独的任一种药物,更有效地抑制细胞生长,并且在体外和体内的功效均有所增强。他们的发现表明,共价选择性ATP竞争性抑制剂和变构EGFR抑制剂的组合可能是EGFR突变型肺癌患者的有效治疗方法[39]

Figure 5. Schematic chemical structure of compounds 9~10

5. 化合物9~10的化学结构示意图

Clercq等人发现并优化了基于二苯并二氮杂卓酮支架的变构突变选择性EGFR抑制剂。他们合成的一系列化合物证实了不同的化学支架可以作为选择性EGFR变构抑制剂,同时保留了将抑制剂锚定到变构口袋的基本结构元素。这一发现使其他化合物可以作为变构EGFR抑制剂的支架。他们基于结构设计合成了针对EGFRL858R/T790M和EGFRL858R/T790M/C797S突变体的抑制剂化合物10,结构见图5,并通过激酶组分析评估了其对EGFRL858R/T790M/C797S的强抑制活性以及高选择性。与西妥昔单抗共同处理导致EGFR突变Ba/F3细胞的抗增殖活性[40]

在针对EGFR (表皮生长因子受体)的变构抑制剂研究中,多种化合物已被研究并优化,以应对EGFRL858R/T790M/C797S突变型驱动的非小细胞肺癌。Jia等人的研究发现,化合物6和化合物7 (EAI045)在选择性和效力方面表现出良好的潜力。然而,化合物7的单独使用可能存在治疗效果受限的问题,而化合物7则通过与西妥昔单抗联合使用来增强其抑制效果。此外,To等人合成了化合物9 (JBJ-04-125-02),其在体外和体内均显示出抑制细胞增殖和信号传导的能力,如表1。然而,化合物9可能受到EGFR二聚体形成的限制,导致治疗效果受限。化合物7和化合物10在对付耐药性方面表现出一定的优势。化合物7针对耐药EGFR突变体具有选择性,而化合物10对EGFRL858R/T790M/C797S突变体具有强抑制活性和高选择性。这些研究结果强调了联合治疗策略的重要性。化合物7与西妥昔单抗联合使用能够提高抑制效果,而化合物9与化合物5的组合使用也显示出增强效果,提示了共价选择性ATP竞争性抑制剂和变构EGFR抑制剂联合应用的潜力。综合来看,这些研究为EGFR变构抑制剂的优化和治疗策略的制定提供了重要的启示,但仍需进一步的研究和临床验证,以实现更有效的治疗方案。

Table 1. Different types of EGFR inhibitor associations and target proteins

1. 不同类型的EGFR抑制剂联用以及靶标蛋白

Compounds.

Drug association

Potency

IC50 (nM)

EAI 001

Cetuximab

EGFRL858R/T790M/C797S

15

EAI 045

Cetuximab

EGFRL858R/T790M/C797S

3

TREA-0236

\

EGFRL858R/T790M/C797S

5.3

JBJ-04-125-02

\

EGFRL858R/T790M

0.26

DDC4002

Osimertinib

EGFRL858R/T790M/C797S

10

3. 同时作用ATP结合位点和异构位点的EGFR抑制剂

Li等人基于EGFR变构位点的报告和分子对接、合成以及生物学测试的迭代过程,合成了一系列占据ATP结合位点和变构位点的有效和非共价可逆EGFR抑制剂。他们尝试将一种已知的EGFR抑制剂(vandetinib)修饰为同时占据EGFR激酶的ATP结合位点和变构位点的化合物,以增强抑制剂与EGFRL858R/T790M/C797S的结合亲和力,从而有效地与ATP竞争,克服耐药问题。其中最有前途的化合物11抑制EGFRL858R/T790M/C797S的酶活性,其IC50值为2.2 nM。Western blot结果显示化合物11在细胞水平上抑制EGFRL858R/T790M/C797S的磷酸化及其下游信号转导,化合物11结构见图6。细胞增殖实验证实,化合物11有效地和选择性地抑制EGFRL858R/T790M/C797S依赖性细胞的生长。该系列化合物有望成为L858R/T790M/C797S突变型第四代EGFR抑制剂的开发基础[41]

Wittlinger等人设计并合成了一种基于结构导向的多突变选择性的先导化合物12结构见图7,其结构包括一个吡啶基咪唑稠合的苄基异吲哚啉二酮支架,旨在同时与ATP结合位点和变构结合位点相互作用。化合物14在变构口袋中的相互作用类似于EAI 045,其中2-氟-5-羟基苯基和1,3-二氧代异吲哚啉-2-基与EAI 045的相应区域相互作用密切,该化合物对L858R/T790M/C797S突变型EGFR的酶活性表现出高度抑制(4.9 nM),但对野生型EGFR的活性显著较低(47 nM)。然而,令人遗憾的是,这四种化合物在细胞水平上并未展现出良好的抗肿瘤增殖活性。因此,可以将该类化合物考虑为一种先导化合物[42]

Figure 6. Schematic chemical structure of compounds 11

6. 化合物11的化学结构示意图

Figure 7. Schematic chemical structure of compounds 12~15

7. 化合物12~15的化学结构示意图

Dou等人以先导化合物凡德他尼为出发点,设计并合成了一系列同时占据EGFR的ATP结合位点和变构位点的4–苯胺基喹唑啉衍生物,结构见图8。化合物16在BaF3-EGFRL858R/T790M/C797S (IC50 = 0.75 μM)和BaF3-EGFR19del/T790M/C797S (IC50 = 0.09 μM)细胞中显示出良好的抗增殖活性。此外,化合物16对BaF3-EGFR19del/T790M/C797S细胞中EGFR的磷酸化及其下游信号通路具有明显的抑制作用,并呈剂量依赖性。在BaF3-EGFR19del/T790M/C797S异种移植瘤小鼠模型中,化合物16在10 mg/kg (TGI = 51.36%)和30 mg/kg (TGI = 67.95%)剂量下表现出强的抗肿瘤效力。然而,化合物16的生物利用度一般(F = 9.33%)。综合以上结果,可以推断化合物16有望成为新一代EGFR抑制剂,克服EGFR-C797S抗性突变的候选药物,并值得进一步开发[43]

Hu等人利用杂交方法合成了一系列新型氨基嘧啶衍生物,作为能够同时作用于EGFR的正构和变构位点的突变型抑制剂。其中,化合物17被确定为对EGFRL858R/T790M/C797S和EGFRDel19/T790M/C797S具有良好抑制活性的化合物,其在Ba/F3 EGFR L858R/T790M/C797S和Ba/F3 EGFRDe19/T790M/C797S细胞中的IC50值分别为0.42 μM和0.41 μM。值得注意的是,化合物17对突变型非小细胞肺癌细胞系NCI-H1975 EGFRL858R/T790M/C797S表现出优异的活性,其IC50值为0.82 μM。初步的抗癌机制研究显示,在0.8 μM的浓度下,化合物17能够促进NCI-H1975 EGFRL858R/T790M/C797S细胞的凋亡。然而,由于化合物17对野生型EGFR也表现出较强的抑制作用,因此有必要对其进行结构修饰,以进一步提高其选择性[44]

Figure 8. Schematic chemical structure of compounds 16~17

8. 化合物16~17的化学结构示意图

这些研究合成了一系列新型EGFR抑制剂,针对EGFR突变型的抗药性提供了新的方向。其中,一些化合物表现出良好的抑制活性和选择性,特别是对EGFRL858R/T790M/C797S等突变型EGFR具有显著的活性。然而,部分化合物在细胞水平上未表现出良好的抗肿瘤活性,需要进一步优化。这些化合物为以后的设计提供了新的思路:在原有的ATP竞争型抑制剂的基础上来进行结构修饰,使化合物可以同时跨越ATP结合位点和变构位点,进而达到克服C797S位点耐药突变。这些研究为开发第四代代EGFR抑制剂提供了重要的先导化合物。

4. 总结与展望

获得性耐药是使用靶向EGFR的药物治疗非小细胞肺癌时无法逃避的问题。根据现有的临床研究,C797S点突变被认为是第三代抑制剂耐药性的主要机制。Cys797转化为Ser797阻碍了不可逆抑制剂与EGFR突变酪氨酸激酶的ATP结合位点建立共价键的能力,从而影响了第三代EGFR靶向药物的疗效。本综述收集了截止目前为止,药物化学方面针对该问题的变构抑制剂研究探索。目前的研究策略主要有两种。首先是设计结合在变构位点的EGFR抑制剂,因为远离ATP结合位点而不与Cys797绑定而不受C797S点突变影响,研究证明这类抑制剂可以提高对EGFRWT选择性,但只有联合用药才有效果。还有一种研究策略是设计ATP结合位点和变构位点同时绑定的抑制剂,但这类抑制剂需要进一步优化提高细胞的生物利用度。本综述描述了迄今为止获得性EGFR突变的轨迹,并阐述了变构抑制剂在药物化学方面取得的进展。

NOTES

*通讯作者。

参考文献

[1] Herbst, R.S., Morgensztern, D. and Boshoff, C. (2018) The Biology and Management of Non-Small Cell Lung Cancer. Nature, 553, 446-454.
https://doi.org/10.1038/nature25183
[2] Thai, A.A., Solomon, B.J., Sequist, L.V., Gainor, J.F. and Heist, R.S. (2021) Lung Cancer. The Lancet, 398, 535-554.
https://doi.org/10.1016/S0140-6736(21)00312-3
[3] Nagano, T., Tachihara, M. and Nishimura, Y. (2018) Mechanism of Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors and a Potential Treatment Strategy. Cells, 7, Article 212.
https://doi.org/10.3390/cells7110212
[4] Shah, R. and Lester, J.F. (2020) Tyrosine Kinase Inhibitors for the Treatment of EGFR Mutation-Positive Non-Small-Cell Lung Cancer: A Clash of the Generations. Clinical Lung Cancer, 21, E216-E228.
https://doi.org/10.1016/j.cllc.2019.12.003
[5] Bhatia, P., Sharma, V., Alam, O., Manaithiya, A., et al. (2020) Novel Quinazoline-Based EGFR Kinase Inhibitors: A Review Focusing on SAR and Molecular Docking Studies (2015-2019). European Journal of Medicinal Chemistry, 204, Article 112640.
https://doi.org/10.1016/j.ejmech.2020.112640
[6] Li, D., Shimamura, T., et al. (2007) Bronchial and Peripheral Murine Lung Carcinomas Induced by T790M-L858R Mutant EGFR Respond to HKI-272 and Rapamycin Combination Therapy. Cancer Cell, 12, 81-93.
https://doi.org/10.1016/j.ccr.2007.06.005
[7] Lu, X., Yu, L., Zhang, Z., et al. (2018) Targeting EGFRL858R/T790M and EGFRL858R/T790M/C797S Resistance Mutations in NSCLC: Current Developments in Medicinal Chemistry. Medicinal Research Reviews, 38, 1550-1581.
https://doi.org/10.1002/med.21488
[8] Jackman, D.M., Yeap, B.Y., et al. (2006) Exon 19 Deletion Mutations of Epidermal Growth Factor Receptor Are Associated with Prolonged Survival in Non-Small-Cell Lung Cancer Patients Treated with Gefitinib or Erlotinib. Clinical Cancer Research, 12, 3908-3914.
https://doi.org/10.1158/1078-0432.CCR-06-0462
[9] Yasuda, H., Kobayashi, S. and Costa, D.B. (2012) EGFR Exon 20 Insertion Mutations in Non-Small-Cell Lung Cancer: Preclinical Data and Clinical Implications. The Lancet Oncology, 13, E23-E31.
https://doi.org/10.1016/S1470-2045(11)70129-2
[10] Ou, S.-H.I., Hong, J.-L., Christopoulos, P., Lin, H.M., Vincent, S., et al. (2023) Distribution and Detectability of EGFR Exon 20 Insertion Variants in NSCLC. Journal of Thoracic Oncology, 18, 744-754.
https://doi.org/10.1016/j.jtho.2023.01.086
[11] Shaikh, M., Shinde, Y., Pawara, R., Noolvi, M., Surana, S., Ahmad, I. and Patel, H. (2021) Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. Journal of Medicinal Chemistry, 65, 1008-1046.
https://doi.org/10.1021/acs.jmedchem.1c00876
[12] Yu, H.A. and Pao, W. (2013) Afatinib—New Therapy Option for EGFR-Mutant Lung Cancer. Nature Reviews Clinical Oncology, 10, 551-552.
https://doi.org/10.1038/nrclinonc.2013.154
[13] Zhou, W., Ercan, D., Chen, L., et al. (2009) Novel Mutant-Selective EGFR Kinase Inhibitors against EGFR T790M. Nature, 462, 1070-1074.
https://doi.org/10.1038/nature08622
[14] Thress, K.S., Paweletz, C.P., Felip, E., et al. (2015) Acquired EGFR C797S Mutation Mediates Resistance to AZD9291 in Non-Small-Cell Lung Cancer Harboring EGFR T790M. Nature Medicine, 21, 560-562.
https://doi.org/10.1038/nm.3854
[15] Chia, P.L., Do, H., Morey, A., Mitchell, P., Dobrovic, A. and John, T. (2016) Temporal Changes of EGFR Mutations and T790M Levels in Tumour and Plasma DNA Following AZD9291 Treatment. Lung Cancer, 98, 29-32.
https://doi.org/10.1016/j.lungcan.2016.05.003
[16] Chen, L., Fu, W., Zheng, L., Liu, Z. and Liang, G. (2017) Recent Progress of Small-Molecule Epidermal Growth Factor Receptor (EGFR) Inhibitors Against C797S Resistance in Non-Small-Cell Lung Cancer. Journal of Medicinal Chemistry, 61, 4290-4300.
https://doi.org/10.1021/acs.jmedchem.7b01310
[17] Xu, L., Xu, B., Wang, J., Gao, Y., He, X., Xie, T. and Ye, X.-Y. (2023) Recent Advances of Novel Fourth Generation EGFR Inhibitors in Overcoming C797S Mutation of Lung Cancer Therapy. European Journal of Medicinal Chemistry, 245, Article 114900.
https://doi.org/10.1016/j.ejmech.2022.114900
[18] Hidaka, N., Iwama, E., Kubo, N., et al. (2017) Most T790M Mutations Are Present on the Same EGFR Allele as Activating Mutations in Patients with Non-Small-Cell Lung Cancer. Lung Cancer, 108, 75-82.
https://doi.org/10.1016/j.lungcan.2017.02.019
[19] Kim, E.S. (2016) Olmutinib: First Global Approval. Drugs, 76, 1153-1157.
https://doi.org/10.1007/s40265-016-0606-z
[20] Popat, S. (2018) Osimertinib as First-Line Treatment in EGFR-Mutated Non-Small-Cell Lung Cancer. New England Journal of Medicine, 378, 192-193.
https://doi.org/10.1056/NEJMe1714580
[21] Soria, J.-C., Ohe, Y., et al. (2018) Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. New England Journal of Medicine, 378, 113-125.
https://doi.org/10.1056/NEJMoa1713137
[22] Hoffknecht, P., Tufman, A., Wehler, T., et al. (2015) Efficacy of the Irreversible ErbB Family Blocker Afatinib in Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor (TKI)-Pretreated Non-Small-Cell Lung Cancer Patients with Brain Metastases or Leptomeningeal Disease. Journal of Thoracic Oncology, 10, 156-163.
https://doi.org/10.1097/JTO.0000000000000380
[23] Patel, H., Pawara, R., Ansari, A. and Surana, S. (2017) Recent Updates on Third Generation EGFR Inhibitors and Emergence of Fourth Generation EGFR Inhibitors to Combat C797S Resistance. European Journal of Medicinal Chemistry, 142, 32-47.
https://doi.org/10.1016/j.ejmech.2017.05.027
[24] Ward, R.A., Anderton, M.J., et al. (2013) Structure and Reactivity-Based Development of Covalent Inhibitors of the Activating and Gatekeeper Mutant Forms of the Epidermal Growth Factor Receptor (EGFR). Journal of Medicinal Chemistry, 56, 7025-7048.
https://doi.org/10.1021/jm400822z
[25] Finlay, M.R.V., Anderton, M., Ashton, S., et al. (2014) Discovery of a Potent and Selective EGFR Inhibitor (AZD9291) of Both Sensitizing and T790M Resistance Mutations That Spares the Wild Type Form of the Receptor. Journal of Medicinal Chemistry, 57, 8249-8267.
https://doi.org/10.1021/jm500973a
[26] Zhao, H.-Y., Xi, X.-X., Xin, M. and Zhang, S.-Q. (2022) Overcoming C797S Mutation: The Challenges and Prospects of the Fourth-Generation EGFR-TKIs. Bioorganic Chemistry, 128, Article 106057.
https://doi.org/10.1016/j.bioorg.2022.106057
[27] Yang, Z., Yang, N., Ou, Q., Xiang, Y., et al. (2018) Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non-Small-Cell Lung Cancer Patients. Clinical Cancer Research, 24, 3097-3107.
https://doi.org/10.1158/1078-0432.CCR-17-2310
[28] Lu, C., Wei, X.-W., Wang, Z., et al. (2023) Allelic Context of EGFR C797X-Mutant Lung Cancer Defines Four Subtypes with Heterogeneous Genomic Landscape and Distinct Clinical Outcomes. Journal of Thoracic Oncology, 19, 601-612.
https://doi.org/10.1016/j.jtho.2023.11.016
[29] 曹雨婷, 郭中原, 刘晓谦, 杨红, 高慧敏, 王智民. 表皮生长因子受体酪氨酸激酶抑制剂研究进展[J]. 中国药学杂志, 2023, 58(22): 2016-2027.
[30] Niederst, M.J., Hu, H., Mulvey, H.E., Lockerman, E.L., Garcia, A.R., Piotrowska, Z., Sequist, L.V. and Engelman, J.A. (2015) The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clinical Cancer Research, 21, 3924-3933.
https://doi.org/10.1158/1078-0432.CCR-15-0560
[31] Blaquier, J.B., Ortiz-Cuaran, S., Ricciuti, B., Mezquita, L., Cardona, A.F. and Recondo, G. (2023) Tackling Osimertinib Resistance in EGFR-Mutant Non-Small-Cell Lung Cancer. Clinical Cancer Research, 29, 3579-3591.
https://doi.org/10.1158/1078-0432.CCR-22-1912
[32] Guan, M., Xu, J. and Shi, Q. (2023) Molecular Determinants of Clinical Outcomes for Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer in Chinese Patients: A Retrospective Study. Cancer Genetics, 270-271, 32-38.
https://doi.org/10.1016/j.cancergen.2022.11.005
[33] Wang, S., Song, Y. and Liu, D. (2017) EAI045: The Fourth-Generation EGFR Inhibitor Overcoming T790M and C797S Resistance. Cancer Letters, 385, 51-54.
https://doi.org/10.1016/j.canlet.2016.11.008
[34] Karnik, K.S., Sarkate, A.P., Tiwari, S.V., Azad, R. and Wakte, P.S. (2021) Free Energy Perturbation Guided Synthesis with Biological Evaluation of Substituted Quinoline Derivatives as Small Molecule L858R/T790M/C797S Mutant EGFR Inhibitors Targeting Resistance in Non-Small-Cell Lung Cancer (NSCLC). Bioorganic Chemistry, 115, Article 105226.
https://doi.org/10.1016/j.bioorg.2021.105226
[35] 邓燕莉, 王婕, 魏上斐, 翟鑫. 靶向变构位点的变构激酶抑制剂的研究进展[J]. 沈阳药科大学学报, 2023, 40(2): 248-257.
[36] Wu, X.Y., Guo, Q., Li, Q.L., Wan, S.H., et al. (2021) Molecular Mechanism Study of EGFR Allosteric Inhibitors Using Molecular Dynamics Simulations and Free Energy Calculations. Journal of Biomolecular Structure & Dynamics, 40, 5848-5857.
https://doi.org/10.1080/07391102.2021.1874530
[37] Jia, Y., Yun, C.-H., et al. (2016) Overcoming EGFR(T790M) and EGFR(C797S) Resistance with Mutant-Selective Allosteric Inhibitors. Nature, 534, 129-132.
https://doi.org/10.1038/nature17960
[38] Lee, S., Kim, J., Duggirala, K.B., Go, A., Shin, I., Cho, B.C., Choi, G., Chae, C.H. and Lee, K. (2018) Allosteric Inhibitor TREA‐0236 Containing Non‐Hydrolysable Quinazoline‐4‐One for EGFR T790M/C797S Mutants Inhibition. Bulletin of the Korean Chemical Society, 39, 895-898.
https://doi.org/10.1002/bkcs.11491
[39] To, C., Jang, J., Chen, T., Park, E., Mushajiang, M., de Clercq, D.J.H., Xu, M., Wang, S., et al. (2019) Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discovery, 9, 926-943.
https://doi.org/10.1158/2159-8290.CD-18-0903
[40] de Clercq, D.J.H., Heppner, D.E., To, C., et al. (2019) Discovery and Optimization of Dibenzodiazepinones as Allosteric Mutant-Selective EGFR Inhibitors. ACS Medicinal Chemistry Letters, 10, 1549-1553.
https://doi.org/10.1021/acsmedchemlett.9b00381
[41] Li, Q., Zhang, T., Li, S., et al. (2019) Discovery of Potent and Noncovalent Reversible EGFR Kinase Inhibitors of EGFRL858R/T790M/C797S. ACS Medicinal Chemistry Letters, 10, 869-873.
https://doi.org/10.1021/acsmedchemlett.8b00564
[42] Wittlinger, F., Heppner, D.E., To, C., et al. (2021) Design of a “Two-In-One” Mutant-Selective Epidermal Growth Factor Receptor Inhibitor That Spans the Orthosteric and Allosteric Sites. Journal of Medicinal Chemistry, 65, 1370-1383.
https://doi.org/10.1021/acs.jmedchem.1c00848
[43] Dou, D., Wang, J., Qiao, Y., et al. (2022) Discovery and Optimization of 4-Anilinoquinazoline Derivatives Spanning ATP Binding Site and Allosteric Site as Effective EGFR-C797S Inhibitors. European Journal of Medicinal Chemistry, 244, Article 114856.
https://doi.org/10.1016/j.ejmech.2022.114856
[44] Hu, L., Shi, S., Song, X., et al. (2024) Identification of Novel Aminopyrimidine Derivatives for the Treatment of Mutant NSCLC. European Journal of Medicinal Chemistry, 265, Article 116074.
https://doi.org/10.1016/j.ejmech.2023.116074