RohA信号通路介导miR-133b调控脑缺血再灌注后血脑屏障通透性
miR-133b Regulates Blood-Brain Barrier Permeability after Cerebral Ischemia-Reperfusion Mediated by RohA Signaling Pathway
DOI: 10.12677/hjbm.2024.143047, PDF, HTML, XML, 下载: 3  浏览: 5  科研立项经费支持
作者: 于永鹏*, 董 霞:青岛大学附属青岛市海慈医院(青岛市中医医院)神经内科中心,山东 青岛
关键词: miR-133b脑缺血再灌注血脑屏障通透性糖氧剥夺miR-133b Cerebral Ischemia-Reperfusion Blood-Brain Barrier Permeability Glycooxygen Deprivation
摘要: 目的:探究miR-133b在脑缺血再灌注后血脑屏障通透性调控中的作用及其机制。方法:采用大脑中动脉闭塞再灌注(MCAO/R)小鼠模型,小鼠脑内注射miR-133b agomir进行miR-133b过表达,TTC染色检测miR-133b过表达对小鼠脑梗死体积的影响;实时定量PCR检测MCAOR小鼠缺血侧脑组织及外周血miR-133b表达水平;采用悬挂实验评估miR-133b过表达对MCAO/R模型小鼠神经功能改善的影响; Western blot及ELISA检测miR-133b过表达对MCAO/R模型小鼠脑内RohA、claudin-5、ZO-1表达水平的影响;采用伊文思蓝渗透法评估小鼠血脑屏障通透性。结果:在MCAO/R模型小鼠缺血侧脑皮层组织与血浆中的miR-133b表达水平均降低,miR-133b过表达可显著减少MCAO/R小鼠脑梗死的体积,改善小鼠神经功能损害;miR-133b过表达可使MCAO/R小鼠脑内缺血区RohA、claudin-5、ZO-1蛋白表达显著降低。结论:小鼠脑缺血再灌注后体内miR-133b表达水平下降,miR-133b过表达具有降低脑缺血再灌注后脑血屏障通透性,发挥抗脑缺血作用,其机制可能是通过RohA信号通路介导的。
Abstract: Objective: To investigate the role and mechanism of miR-133b in the regulation of blood-brain barrier permeability after cerebral ischemia-reperfusion. Methods: Mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established. miR-133b Agomir was injected into the brain, and the expression levels of miR-133b in the peripheral blood and infarcted brain tissue were detected by RT-PCR. The effect of miR-133b overexpression on cerebral infarction volume was detected by TTC staining, and the effect of miR-133b overexpression on neurological function was evaluated by suspension test in MCAO/R model mice. The effects of miR-133b on the expression of RohA, Claudin-5 and Zo-1 in the brain of MCAO mice were detected by Western blot and ELISA respectively, and the permeability of blood-brain barrier was evaluated by Evans Blue Penetration method. Results: the expression of miR-133b was significantly decreased in the plasma and ischemic cerebral cortex of MCAO/R model mice. While the overexpression of miR-133b could significantly reduce the cerebral infarction volume and ameliorate the neurological impairment in the MCAO/R mice. Overexpression of miR-133b significantly decreased the expression levels of RohA, Claudin-5 and Zo-1 in ischemic penumbra of mice. Conclusion: The expression of miR-133b is significantly decreased after cerebral ischemia-reperfusion in mice. Overexpression of miR-133b can decrease the permeability of cerebral blood barrier after cerebral ischemia-reperfusion, which plays an anti-cerebral ischemia role. The mechanism may be mediated by RohA signaling pathway.
文章引用:于永鹏, 董霞. RohA信号通路介导miR-133b调控脑缺血再灌注后血脑屏障通透性[J]. 生物医学, 2024, 14(3): 426-434. https://doi.org/10.12677/hjbm.2024.143047

1. 引言

血脑屏障破坏是缺血再灌注损伤、出血性转化和血管源性脑水肿的关键环节。因此,保护血脑屏障的完整性是缺血性卒中急性期治疗的重要目标,是突破溶栓再通时间窗乃至“灌注代谢窗”,提高救治效率的核心问题,直接影响患者的预后,临床做了大量相关治疗研究[1]-[3]。occludin、claudin-5及ZO-等紧密连接(tight junctions, TJs)是血脑屏障的重要结构基础,直接关系到血脑屏障的完整性[4]。探索缺血再灌注早期血脑屏障通透性的调控机制,开发有效的抗脑缺血损伤的手段,是当前迫切需要解决的科学问题。

微小RNA (miRNA)属于非编码RNA分子,由20~25个核苷酸组成[5]。MiR-133b 作为人体内活性的微小RNA之一,以往的关于miR-133b的研究主要集中在肿瘤领域[6]-[8]。《Cell》报道miRNAs在神经退行性疾病及缺血性卒中等神经系统疾病的进展中发挥重要作用[9]。c-Myc作为转录因子可调控多种miRNA的表达,包括miR-133b。RhoA是一种结合在胞膜内壁上的小GTP酶,属于Ras超家族系中Rho家族。RhoA能够激活下游的ROCK激酶,产生相应的生物学效应。抑制RhoA/ROCK信号通路能逆转claudin-5、occludin、ZO-1的表达下调,降低内皮素-1和炎性细胞因子的分泌,缩小脑梗死体积,保护血脑屏障的完整性[10]。Xin等[11]证实骨髓间充质基质细胞(MSCs)介导的miR-133b过表达能够下调MCAO/R模型鼠脑梗死周围RhoA的表达,促进神经功能恢复。miR-133b通过AngII-ERK1/2信号通路靶向血管紧张素原,诱导糖尿病大鼠模型视网膜血管内皮细胞增殖并抑制细胞凋亡[12]。迄今为止,miR-133b在血脑屏障通透性调控中的作用及其机制尚不清楚。鉴于此,本研究旨在探讨miR-133b在脑缺血再灌注后血脑屏障通透性调控中的作用,并初步探究其可能的作用机制。

2. 材料与方法

2.1. 实验动物

选用45只SPF级C57BL/6雄性小鼠(25~30 g),利用线栓法制备MCAO/R小鼠模型。小鼠饲养于温度(19~25)℃,湿度为(50~60)%的环境中,自由摄食和水,昼夜周期为12 h。本实验已通过伦理委员会审核。

2.2. 主要材料

BCA蛋白定量试剂盒、Lipofectamine 2000、Trizol、青链霉素混合液(100 U/ml)、RI-PA裂解液(Invitrogen公司);逆转录与实时定量PCR试剂;实时定量PCR引物及DAPI染液(上海生工)。miR-133bagomir及空白对照试剂、荧光酶检测试剂盒;兔抗小鼠RhoA抗体、大鼠抗小鼠claudin-5、ZO-1抗体(上海生工);HRP标记的山羊抗兔或抗大鼠IgG二抗等试剂。

2.3. 脑内转染miR-133b agomir和agomir NC

小鼠分为3组(n = 15):miR-133bagomir组(侧脑室注射miR-133b agomir);假手术组(sham) (侧脑室注射生理盐水);agomir NC组(对照组) (侧脑室注射agomir NC)。4%水合氯醛经腹麻醉(0.1 ml/10g)小鼠后,参考小鼠脑解剖图谱,注射位点:前囟后0.5 mm,中线右侧1.0 mm。采用微量注射器自颅骨表面垂直进针2.0~3.0 mm,将miR-133b agomir或agomir NC或等量生理盐水注入小鼠侧脑室。注射完毕后拔出微量注射器,青霉素处理后缝合切口。

2.4. 脑缺血再灌注小鼠模型(MCAO/R)

小鼠用1.5%异氟醚吸入麻醉后,仰卧固定在加热垫上,使之保持37℃,并监测小鼠血压、心率等数据。颈部做正中切口,经过一系列分离操作,将线栓插入颈外动脉,将线栓扭转插至颈内动脉颅内段,阻断大脑中动脉(MCA)血流,采用激光多普勒血流仪监测小鼠血MCA流变化,血流下降至基线值25%以下,认为成功阻断小鼠MCA血流。将线栓与颈外动脉共同结扎以固定线栓并将切口缝合。90 min后,用10%水合氯醛腹腔注射麻醉小鼠,再次暴露切口,将线栓退出,激光多普勒仪监测血流上升至基线值50%以上视为灌注成功,术后给予保暖维持小鼠体温。持续灌注24 h后再进行后续实验。假手术组小鼠进行类似手术,只穿线不结扎。一部分小鼠分离取脑切片进行免疫组化;另一部分用于提取RNA和蛋白。

2.5. 神经功能缺损程度评估

参照既往评估方法,小鼠再灌注24 h后,采用悬挂实验测试握力评估神经功能缺损。具体过程:将小鼠前爪横挂在线上(50 cm × 0.15 cm),3分(两爪均能挂住);2分(一爪能挂住);1分(两爪均不能挂住)。每只小鼠测评3次,取平均值。记录悬挂时间并评分如下:0~4 s (0分)、5~9 s (1分)、10~14 s (2分)、15~19 s (3分)、20~24 s (4分)、25~29 s (5分)、≥30 s (6分)。将各项评分相加,得分越低者,提示神经功能缺损越严重。

2.6. TCC法检测脑梗死体积

小鼠再灌注后,吸入异氟醚深度麻醉下快速断头取脑,做冠状切片后放入2%TTC溶液中,37℃孵育20 min,然后固定于4%多聚甲醛中。次日扫描拍照,采用图像分析软件对图像进行分析,计算脑体积。

脑体积 V= i ( C i N i ) 2( i C i ) ×100 ,其中Ci为健侧半球面积,Ni为梗死侧半球的非梗死面积。

2.7. 评估血脑屏障通透性

利用伊文思兰渗透法评估血脑屏障通透性。MCAO处理后再灌注21 h时,将4%伊文思兰溶液(20 mg/kg)经小鼠股静脉注入。按照常规的实验方法断头取脑。将两侧脑组织分离,分别称重并匀浆,超速离心后取上清液,用酶标仪检测出波长并用公式A620 nm − [(A500 nm + A740 nm)/2)]/mg湿重作为每个样本的定量值。

2.8. 实时荧光定量PCR

采用Trizol法提取小鼠脑组织总RNA,分光光度计检测RNA浓度。按照RT-PCR常规步骤进行。以U6为待测miRNA的内参。实验重复3次。RT-PCR引物序列见表1

2.9. 免疫组织化学法

按上述方法将小鼠麻醉后,快速将小鼠胸膛剪开并采血,利用4%的多聚甲醛持续灌注直到小鼠周身僵直为止,将取出的小鼠大脑置于4%多聚甲醛中固定6~8 h,30%的蔗糖脱水、包埋、连续冠状切片(厚度15~25 μm)。然后PBS漂洗、封闭1 h,加入稀释的一抗claudin-5 (1:500)、ZO-1 (1:500)、RhoA (1:300)于4℃孵育过夜,PBS漂洗、细胞核复染30 s后,采用PBS清洗,然后用显微镜观察拍照。

Table 1. Primer sequences required for RT-PCR

1. RT-PCR所需引物序列

Gene序列(5’-3’)

miR-133b F: AAAGGACCCCAACAACCAGCAA

miR-133b R: TTGCTGGTTGTTGGGGTCCTTT

U6-F: CTCGCTTCGGCAGCACATATACT

U6-R: ACGCTTCACGAATTTGCGTGTC

2.10. Western blot检测

提取各组小鼠缺血半暗区皮层脑组织总蛋白。BCA法进行蛋白定量,采用SDS-PAGE电泳分离蛋白,然后转至PVDF膜,封闭2 h,分别加入一抗:claudin-5 (1:500)、ZO-1 (1:500)、RhoA (1:300),4℃孵育过夜。以HRP标记的二抗(1:500)室温孵育1 h。以目标蛋白与内参β-actin比值作为其相对含量。实验重复3次。凝胶成像仪进行曝光拍照并行条带灰度值分析。

2.11. 统计学分析

采用GraphPadPrism 5.0和SPSS 19.0进行统计学分析,数据采用均数 ± 标准差表示。多组间比较采用单因素方差分析的Dunnett’s或Bonferroni’s多重比较方法,两组间比较采用独立样本t检验,P < 0.05认为差异有统计学意义。

3. 结果

3.1. MCAO小鼠缺血半暗区脑组织及血浆中miR-133b表达情况

小鼠经过脑缺血再灌注处理后,分别采集小鼠血液样本与缺血半暗区脑皮质组织,RT-PCR检测发现,与假手术组小鼠比较,MCAO/R小鼠缺血半暗区及血浆中miR-133b表达水平显著低(图1)。

(a) (b)

Figure 1. Expression of miR-133b in the ischemic penumbra (a) and plasma (b) of acute ischemia-reperfusion mice

1. miR-133b在急性缺血再灌注小鼠缺血半暗带(a)与血浆(b)与中的表达

3.2. 过表达miR-133b对MCAO/R小鼠缺血再灌注损伤的保护作用

伊文思蓝渗透实验表明,与agomir NC组小鼠比较,miR-133bagomir组小鼠梗死区伊文思蓝渗透显著减少(图2)与假手术组比较,miR-133b agomir组小鼠皮层组织中miR-133b表达显著增加,而agomir NC组小鼠脑内miR-133b表达显著降低,提示在小鼠脑内miR-133b成功过表达(图3)。与agomir NC组小鼠比较,miR-133b agomir组小鼠脑梗死体积显著减小(图4);miR-133b agomir组小鼠神经功能缺损程度评分值较假手术组和agomir NC组均显著降低(表2)。

3.3. 过表达miR-133b对MCAO/R小鼠缺血半暗带区脑组织RhoA、claudin-5、ZO-1表达的影响

免疫组化和Western blot实验表明,与agomir NC组小鼠比较,miR-133b agomir组小鼠缺血半暗区中脑组织RhoA表达显著降低,claudin-5、ZO-1表达显著升高(P < 0.05);与假手术组小鼠比较,agomir NC组小鼠缺血半暗区脑组织的RhoA表达显著升高,claudin-5、ZO-1表达显著下降(P < 0.05) (表3)。

Figure 2. Effect of overexpression of miR-133b on blood-brain barrier permeability in acute ischemia-reperfusion mice

2. 过表达miR-133b对急性缺血再灌注小鼠血脑屏障通透性的影响

Figure 3. Effect of miR-133b agomir on miR-133b expression in brain tissue of acute ischemia-reperfusion mice

3. miR-133b agomir对急性缺血再灌注小鼠脑组织miR-133b表达的影响

Figure 4. Effect of overexpression of miR-133b on cerebral infarction volume in acute ischemia-reperfusion mice

4. 过表达miR-133b对急性缺血再灌注小鼠脑梗死体积的影响

Table 2. The effect of overexpression of mir-133b on the neurological deficit score in MCAO/R mice

2. mir-133b过表达对MCAO/R小鼠神经功能缺损评分的影响

组别

样本n

再灌注后24 h后神经功能评分

Sham

5

0

Agomir NC

5

9.36 ± 1.38**

miR-133b Agomir

5

7.52 ± 1.09*#

与Sham组比较,*P < 0.05,**P < 0.01;与Agomir NC比较,#P < 0.05。

Table 3. Effects of overexpression of mir-133b on the expression of RhoA, claudin-5, and ZO-1 in the ischemic penumbra of MCAO/R mice

3. mir-133b过表达对MCAO/R小鼠缺血半暗带区RhoA、claudin-5、ZO-1表达的影响

组别

Sham阳性细胞数

Agomir NC阳性细胞数

miR-133bagomir阳性细胞数

样本n

5

5

5

免疫组化




RhoA

9.72 ± 1.83

32.72 ± 6.05

14.26 ± 5.83#

claudin-5

27.20 ± 3.95

11.47 ± 2.82

21.35 ± 3.49#

ZO-1

25.81 ± 4.35

9.18 ± 2.41▲▲

19.72 ± 4.92##

续表

Western blot




RhoA

0.41 ± 0.05

0.92 ± 0.19

0.51 ± 0.14#

claudin-5

0.98 ± 0.10

0.49 ± 0.17

0.89 ± 0.20#

ZO-1

0.75 ± 0.09

0.78 ± 0.15▲▲

0.85 ± 0.16##

与Sham组比较,P < 0.05,▲▲P < 0.01;与agomir NC组比较,#P < 0.05,##P < 0.01。

4. 讨论

缺血性卒中是危害人类健康的主要脑重大疾病,致死、致残率高,严重危害人民身体健康。目前用于保护缺血性卒中早期血脑屏障破坏的方法非常有限,因此探索缺血再灌注早期血脑屏障通透性的调控机制,进一步开发有效的血脑屏障保护手段,成为减低出血转化发生率、减轻缺血再灌注损伤的关键。

在生理和病理条件下,环状RNA (circRNAs)、长链非编码RNA (lncRNAs)和miRNAs等非编码RNA (ncRNAs)发挥重要的基因表达调节作用[13]-[17]。既往研究表明脑缺血发生后脑组织和血液中某些miRNA如miR-132、miR-133b、miR-874等,会出现差异性表达[18]-[20]。《Science》杂志发表研究证实miR-133b在人脑神经元中表达丰富[21]。脑梗死动物模型脑脊液外泌体中miR-133b表达显著降低。上调miR-132 [22]及下调miR-155 [23]的表达能逆转缺血再灌注后血脑屏障的损伤效应。本研究发现MCAO/R小鼠再灌注24h的血浆miR-133b表达水平显著降低,MCAO/R小鼠的缺血侧脑皮层组织中miR-133b的表达较假手术组亦显著下降,表明miR-133b可能参与调控缺血再灌注血脑屏障损伤的发生发展。

将miR-133b过表达的小鼠再次进行MCAO/R造模,TTC染色结果表明,miR-133b过表达可显著减少MCAO/R小鼠脑梗死的体积。miR-133b过表达能逆转MCAO/R小鼠脑缺血半暗区中的RhoA表达升高及claudin-5、ZO-1表达降低。神经功能损害评估实验表明,miR-133b过表达对脑缺血再灌注损伤引起神经功能缺损均有改善作用。

在缺血性脑卒中的病理过程中,RhoA/ROCK信号上调参与神经炎症、血脑屏障功能障碍、神经元凋亡、轴突生长抑制和星形胶质细胞形成[24]-[27]。RhoA通常被认为在血脑屏障破坏过程中发挥关键作用。抑制RhoA/ROCK通路来减轻缺血性脑卒中动物模型的脑损伤[28]。TLR4/RhoA/ROCK信号通路参与脑缺血损伤后血脑屏障的破坏,而心房钠尿肽(ANF)可能通过抑制TLR4/RhoA/ROCK信号通路来保持血脑屏障的完整性[29]。本研究表明抑制RhoA/ROCK通路能改善小鼠血脑屏障,提高血脑屏障连接蛋白Occludin、Claudin-5和ZO-1表达水平[30]-[32],降低血脑屏障通透性。抑制RhoA的表达能上调Claudin-5的表达水平,减轻血脑屏障渗透损害,促进神经功能恢复[33]。推测miR-133b过表达可能依赖RhoA信号通路介导发挥缺血后神经保护作用。

5. 小结

miR-133b对脑组织缺血再灌注损伤的保护作用可能是通过RhoA信号通路介导的。由于miRNA调控网络的复杂性,miR-133b在脑缺血再灌注后血脑屏障通透性调控中的作用还有待进一步的研究。

基金项目

基金自助:山东省自然科学基金面上项目(项目编号:ZR2021MH364)。

NOTES

*通讯作者,Email: yypeng6688@126.com

参考文献

[1] Xu, L., Yang, X., Gao, H., Wang, X., Zhou, B., Li, Y., et al. (2022) Clinical Efficacy and Safety Analysis of Argatroban and Alteplase Treatment Regimens for Acute Cerebral Infarction. Journal of Neurorestoratology, 10, Article ID: 100017.
https://doi.org/10.1016/j.jnrt.2022.100017
[2] Yu, Y., Zheng, Y., Dong, X., Qiao, X. and Tao, Y. (2022) Efficacy and Safety of Tirofiban in Patients with Acute Ischemic Stroke without Large-Vessel Occlusion and Not Receiving Intravenous Thrombolysis: A Randomized Controlled Open-Label Trial. Journal of Neurorestoratology, 10, Article ID: 100026.
https://doi.org/10.1016/j.jnrt.2022.100026
[3] Huang, H., Chen, L., Chopp, M., Young, W., Robert Bach, J., He, X., et al. (2021) The 2020 Yearbook of Neurorestoratology. Journal of Neurorestoratology, 9, 1-12.
https://doi.org/10.26599/jnr.2021.9040002
[4] Yang, C., Hawkins, K.E., Doré, S. and Candelario-Jalil, E. (2019) Neuroinflammatory Mechanisms of Blood-Brain Barrier Damage in Ischemic Stroke. American Journal of Physiology-Cell Physiology, 316, C135-C153.
https://doi.org/10.1152/ajpcell.00136.2018
[5] Andersen, H.H., Duroux, M. and Gazerani, P. (2014) Micrornas as Modulators and Biomarkers of Inflammatory and Neuropathic Pain Conditions. Neurobiology of Disease, 71, 159-168.
https://doi.org/10.1016/j.nbd.2014.08.003
[6] Bi, C., Zhang, G., Bai, Y., Zhao, B. and Yang, H. (2019) Increased Expression of Mir-153 Predicts Poor Prognosis for Patients with Prostate Cancer. Medicine, 98, e16705.
https://doi.org/10.1097/md.0000000000016705
[7] Shao, H., Dong, D. and Shao, F. (2019) Long Non-Coding RNA Tug1-Mediated Down-Regulation of KLF4 Contributes to Metastasis and the Epithelial-to-Mesenchymal Transition of Colorectal Cancer by miR-153-1. Cancer Management and Research, 11, 8699-8710.
https://doi.org/10.2147/cmar.s208508
[8] Ma, H., Tian, T., Liu, X., Xia, M., Chen, C., Mai, L., et al. (2019) Upregulated Circ_0005576 Facilitates Cervical Cancer Progression via the miR-153/KIF20A Axis. Biomedicine & Pharmacotherapy, 118, Article ID: 109311.
https://doi.org/10.1016/j.biopha.2019.109311
[9] Eyileten, C., Wicik, Z., De Rosa, S., Mirowska-Guzel, D., Soplinska, A., Indolfi, C., et al. (2018) Micrornas as Diagnostic and Prognostic Biomarkers in Ischemic Stroke—A Comprehensive Review and Bioinformatic Analysis. Cells, 7, Article No. 249.
https://doi.org/10.3390/cells7120249
[10] Gong, P., Li, R., Jia, H., Ma, Z., Li, X., Dai, X., et al. (2019) Anfibatide Preserves Blood-Brain Barrier Integrity by Inhibiting TLR4/RhoA/ROCK Pathway after Cerebral Ischemia/reperfusion Injury in Rat. Journal of Molecular Neuroscience, 70, 71-83.
https://doi.org/10.1007/s12031-019-01402-z
[11] Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., et al. (2013) MiR-133b Promotes Neural Plasticity and Functional Recovery after Treatment of Stroke with Multipotent Mesenchymal Stromal Cells in Rats via Transfer of Exosome-Enriched Extracellular Particles. Stem Cells, 31, 2737-2746.
https://doi.org/10.1002/stem.1409
[12] Liu, T., Hao, Q., Zhang, Y., Li, Z., Cui, Z. and Yang, W. (2018) Effects of MicroRNA‐133b on Retinal Vascular Endothelial Cell Proliferation and Apoptosis through Angiotensinogen‐Mediated Angiotensin II-Extracellular Signal‐Regulated Kinase 1/2 Signalling Pathway in Rats with Diabetic Retinopathy. Acta Ophthalmologica, 96, e626-e635.
https://doi.org/10.1111/aos.13715
[13] Chen, L. (2020) The Expanding Regulatory Mechanisms and Cellular Functions of Circular RNAs. Nature Reviews Molecular Cell Biology, 21, 475-490.
https://doi.org/10.1038/s41580-020-0243-y
[14] Zhou, W., Cai, Z., Liu, J., Wang, D., Ju, H. and Xu, R. (2020) Circular RNA: Metabolism, Functions and Interactions with Proteins. Molecular Cancer, 19, Article No. 172.
https://doi.org/10.1186/s12943-020-01286-3
[15] Wang, Y.Y., Wang, Y.Z., Zhang, H.Y. and He, Z.Y. (2021) The Role of Circular RNAs in Brain and Stroke. Frontiers in Bioscience (Landmark Ed.), 26, 36-50.
[16] Zhang, X., Hamblin, M.H. and Yin, K. (2018) Noncoding RNAs and Stroke. The Neuroscientist, 25, 22-26.
https://doi.org/10.1177/1073858418769556
[17] Zang, J., Lu, D. and Xu, A. (2018) The Interaction of circRNAs and RNA Binding Proteins: An Important Part of circRNA Maintenance and Function. Journal of Neuroscience Research, 98, 87-97.
https://doi.org/10.1002/jnr.24356
[18] Jeyaseelan, K., Lim, K.Y. and Armugam, A. (2008) MicroRNA Expression in the Blood and Brain of Rats Subjected to Transient Focal Ischemia by Middle Cerebral Artery Occlusion. Stroke, 39, 959-966.
https://doi.org/10.1161/strokeaha.107.500736
[19] Lusardi, T.A., Farr, C.D., Faulkner, C.L., Pignataro, G., Yang, T., Lan, J., et al. (2009) Ischemic Preconditioning Regulates Expression of microRNAs and a Predicted Target, MeCP2, in Mouse Cortex. Journal of Cerebral Blood Flow & Metabolism, 30, 744-756.
https://doi.org/10.1038/jcbfm.2009.253
[20] Bam, M., Yang, X., Sen, S., Zumbrun, E.E., Dennis, L., Zhang, J., et al. (2017) Characterization of Dysregulated miRNA in Peripheral Blood Mononuclear Cells from Ischemic Stroke Patients. Molecular Neurobiology, 55, 1419-1429.
https://doi.org/10.1007/s12035-016-0347-8
[21] Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., et al. (2007) A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons. Science, 317, 1220-1224.
https://doi.org/10.1126/science.1140481
[22] Zuo, X., Lu, J., Manaenko, A., Qi, X., Tang, J., Mei, Q., et al. (2019) MicroRNA-132 Attenuates Cerebral Injury by Protecting Blood-Brain-Barrier in MCAO Mice. Experimental Neurology, 316, 12-19.
https://doi.org/10.1016/j.expneurol.2019.03.017
[23] Lopez-Ramirez, M.A., Wu, D., Pryce, G., Simpson, J.E., Reijerkerk, A., King-Robson, J., et al. (2014) MicroRNA-155 Negatively Affects Blood-Brain Barrier Function during Neuroinflammation. The FASEB Journal, 28, 2551-2565.
https://doi.org/10.1096/fj.13-248880
[24] Lu, W., Chen, Z. and Wen, J. (2021) RhoA/ROCK Signaling Pathway and Astrocytes in Ischemic Stroke. Metabolic Brain Disease, 36, 1101-1108.
https://doi.org/10.1007/s11011-021-00709-4
[25] Lu, W., Chen, Z. and Wen, J. (2023) The Role of RhoA/ROCK Pathway in the Ischemic Stroke-Induced Neuroinflammation. Biomedicine & Pharmacotherapy, 165, Article ID: 115141.
https://doi.org/10.1016/j.biopha.2023.115141
[26] Lu, W., Wang, Y. and Wen, J. (2024) The Roles of RhoA/ROCK/NF-κB Pathway in Microglia Polarization Following Ischemic Stroke. Journal of Neuroimmune Pharmacology, 19, Article No. 19.
https://doi.org/10.1007/s11481-024-10118-w
[27] Zhang, Y., Miao, L., Peng, Q., Fan, X., Song, W., Yang, B., et al. (2022) Parthenolide Modulates Cerebral Ischemia-Induced Microglial Polarization and Alleviates Neuroinflammatory Injury via the RhoA/ROCK Pathway. Phytomedicine, 105, Article ID: 154373.
https://doi.org/10.1016/j.phymed.2022.154373
[28] Lu, W. and Wen, J. (2022) H2S-Mediated Inhibition of RhoA/ROCK Pathway and Noncoding RNAs in Ischemic Stroke. Metabolic Brain Disease, 38, 163-176.
https://doi.org/10.1007/s11011-022-01130-1
[29] Feng, S., Zou, L., Wang, H., He, R., Liu, K. and Zhu, H. (2018) RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability. Molecules, 23, Article No. 2371.
https://doi.org/10.3390/molecules23092371
[30] Feng, S., Zou, L., Wang, H., He, R., Liu, K. and Zhu, H. (2018) RhoA/ROCK-2 Pathway Inhibition and Tight Junction Protein Upregulation by Catalpol Suppresses Lipopolysaccaride-Induced Disruption of Blood-Brain Barrier Permeability. Molecules, 23, Article No. 2371.
https://doi.org/10.3390/molecules23092371
[31] 王煜, 阚伯红, 赵岚, 等. 三焦针法对SAM小鼠血脑屏障通透性的改善作用及通过RhoA/ROCK通路的调控作用[J]. 吉林大学学报(医学版), 2021, 47(5): 1086-1091.
[32] 蔡维平, 陈燕芬, 汤李超, 等. 七叶皂苷钠对细菌性脑膜炎大鼠RhoA/ROCK通路及血脑屏障通透性的影响[J]. 中国微生态学杂志, 2022, 34(6): 644-650.
[33] 崔庆宏. Rho激酶抑制剂对大鼠脑缺血后RhoA、GAP-43和Claudin-5表达的影响[D]: [硕士学位论文]. 北京: 首都医科大学, 2012.