Ni/Co水滑石活化过一硫酸盐高效降解四环素
Ni/Co Hydrotalcite Activated Peroxymonosulfate for Efficient Degradation of Tetracycline
DOI: 10.12677/hjcet.2024.144034, PDF, HTML, XML, 下载: 15  浏览: 26 
作者: 陈芳明, 李建军*, 张芷瑜, 郝跃龙:安徽理工大学材料科学与工程学院,安徽 淮南
关键词: 水滑石过一硫酸盐四环素水处理Hydrotalcite Peroxymonosulfate Tetracycline Water Treatment
摘要: 本文采用了水热共沉淀法合成了Ni/Co水滑石,并将其用于活化过一硫酸盐(PMS)高效降解四环素(TC)。通过进行不同的反应体系、氧化剂用量、催化剂用量、PH值、共存阴离子、循环实验和自由基猝灭等实验来评估催化剂的催化能力。结果表明:在PMS添加量1.5 mmol/L、催化剂添加量为0.2 g/L、pH为7时,催化效果最好可达到97.1%。共存阴离子CO32−、SO42−、Cl和H2PO4对催化剂的催化效果影响不大,经过5次循环实验,TC的降解率仍能保持在80%以上。自由基猝灭实验表明,在反应过程中自由基途径和非自由基途径均存在,两种途径中起作用从大到小依次为1O2 >SO4⋅−>O2⋅−> ·OH。
Abstract: This article synthesized Ni/Co hydrotalcite using hydrothermal co precipitation method and used it to activate peroxymonosulfate (PMS) for efficient degradation of tetracycline (TC). The catalytic ability of the catalyst was evaluated by conducting different reaction systems, oxidant dosage, catalyst dosage, pH, coexisting anions, cycling experiments, and free radical quenching experiments. The results indicate that when the PMS addition is 1.5 mmol/L, the catalyst addition is 0.2 g/L, and the pH is 7, the best catalytic effect can reach 97.1%. The coexisting anions CO32−、SO42−、Cl和H2PO4− have little effect on the catalytic performance of the catalyst. After 5 cycles of experiments, the degradation rate of TC can still be maintained above 80%. The free radical quenching experiment shows that both the free radical pathway and the non-free radical pathway exist during the reaction process, and the two pathways play a role in descending order from large to small: 1O2 >SO4⋅−>O2⋅−> ·OH.
文章引用:陈芳明, 李建军, 张芷瑜, 郝跃龙. Ni/Co水滑石活化过一硫酸盐高效降解四环素[J]. 化学工程与技术, 2024, 14(4): 318-325. https://doi.org/10.12677/hjcet.2024.144034

1. 引言

四环素(TC)是一种典型的广谱抗生素,被广泛应用于临床医学和畜牧业等产业[1]。抗生素的广泛使用导致大量抗生素进入环境中,长期残留在环境中的抗生素可能会引发耐药性细菌和抗性基因的产生,并对陆生和水生生物造成慢性毒性作用[2] [3]。因此,水体中的抗生素不仅破坏生态环境,还对人体健康构成威胁。如何更有效地控制和去除水中的抗生素,减少其对人体健康和生态环境的影响,已成为当前水处理领域的热点问题[4] [5]。然而,由于TC的高稳定性和生物毒性,传统的TC去除方法,主要包括有吸附[6] [7]、膜分离[8]和光催化[9]等方法,很难高效地从环境中去除TC。因此,迫切需要找到一种更有效的策略来去除TC。

近年来,高级氧化工艺(AOP)已被用于有效去除染料和抗生素[10] [11]。AOPs是根据羟基自由基(HR-AOPs)和硫酸盐自由基(SR-AOPs)的生成进行分类的。基于硫酸根自由基的高级氧化技术因其强大的氧化能力和广泛的应用范围而备受关注。过一硫酸盐(PMS)的氧化还原电位为1.82 V,可以通过热、碱、光、过渡金属及其氧化物、碳材料等进行活化,生成具有更高氧化还原电位的羟基自由基(·OH)和硫酸根自由基( SO 4 ),从而氧化有机物[12] [13]。此外,PMS还可以通过生成单线态氧(1O2)或通过表面电子转移形成络合物中间体的非自由基途径来氧化有机物[14]。特别是,含有Fe、Co和Ni等过渡金属氧化物的非均相催化反应由于其强氧化能力、避免二次污染和便于回收利用等优势,受到了广泛关注[15] [16]

水滑石(LDHs)是一种由带正电的主层和可交换的层间阴离子组成的二维材料[17]。最近的研究强调了LDHs在类Fenton反应中作为催化剂去除各种有机污染物的优异性能,这是因为它们的化学成分可调且具有独特的层状结构[18] [19]。特别重要的是,LDH中的过渡金属阳离子可以通过其层状结构避免聚集或流失。因此,本研究采用了简单的水热共沉淀法合成了Ni/Co-LDH,并将其用于活化PMS高效降解TC。研究了氧化剂用量、催化剂用量、pH值、共存阴离子等因素对降解效果的影响,并进行了自由基淬灭实验确定了降解过程中主要反应活性物种,旨在扩展LDHs在水体有机污染物处理中的应用潜力。

2. 实验部分

2.1. 试剂与仪器

化学试剂:盐酸四环素(TC),过硫酸氢钾(PMS),六水硝酸钴(Co(NO3)2·6H2O),六水硝酸镍(Ni(NO3)2·6H2O),甲醇(MeOH),叔丁醇(TBA),对苯醌(p-BQ),糠醇(FFA),氢氧化钠(NaOH),盐酸(HCI),碳酸钠(Na2CO3),硫酸钠(Na2SO4),氯化钠(NaCl),磷酸二氢钾(KH2PO4)。上述所有试剂均购自阿拉丁化学试剂有限公司且均为分析级试剂,所有实验均使用去离子水。

试验仪器:DZF-6050真空干燥箱、FA1004电子天平、JK-100超声波清洗器、移液枪、JJ-6B六联异步电动搅拌器、UV-5100分光光度计等。

2.2. Ni/Co-LDH的制备

Ni/Co-LDH采用水热共沉淀法制备。将20 mmol Co(NO3)2·6H2O和10 mmol Ni(NO3)2·6H2O溶50 mL去离子水中,超声震荡30 min得到混合盐溶液。向混合盐溶液中逐滴加入2 mol/L的NaOH溶液,将溶液的pH值调至10,并在室温下搅拌3小时。然后将混合物放入水热反应釜中,在105℃下放置18小时。反应结束后,抽滤,并将沉淀物分别用去离子水和无水乙醇洗涤至中性。然后将沉淀物在烘箱中真空干燥以获得Ni/Co-LDH。

2.3. TC的浓度测试

配置浓度为0、2、4、6、8、10 mg/L的四环素溶液,利用紫外可见分光光度计(UV-5100)在特定波长357 nm处测定其吸光度,绘制一条标准曲线,得其标准方程为:

Y= 0.0346+0.03463 X,  R 2 =0.9999 (1)

式中,Y:吸光度;X:浓度(mg/L)。

2.4. Ni/Co-LDH催化剂的性能测试

所有氧化实验均在一系列250 mL烧杯中进行。将200 mL浓度为50 mg/L的四环素溶液加入烧杯内,恒速搅拌器搅拌,温度均控制在25℃,同时加入Ni/Co-LDH和PMS即可开始计时,在一定间隔时间内,取出3 mL试样并立即使用0.1 mL MeOH (100 mmol/L)淬灭反应,使用分光光度计检测反应溶液吸光度,计算溶液反应溶液抗生素浓度。

3. 结果与讨论

3.1. 不同反应体系中TC的去除

Ni/Co-LDH的催化活性通过比较不同系统中的TC去除率来评估。如图1所示,反应45分钟后Ni/Co-LDH体系和PMS体系对四环素去除率分别为21.7%和41.9%。结果表明,Ni/Co-LDH催化剂对TC具有一定吸附性。在没有催化剂的条件下,PMS的对TC的降解率相对较低。在同时存在Ni/Co-LDH和PMS的反应体系中,TC的降解率可达到97.1%。这表明Ni/Co-LDH可以有效活化PMS,显著的提高PMS的氧化能力。

3.2. PMS用量对催化效果的影响

研究发现,PMS的用量对TC的降解有着直接影响。如图2所示,当PMS添加量为0.5 mmol/L、1.0 mmol/L、1.5 mmol/L、2.0 mmol/L时,45 min内TC的去除率分别为76.5%、86.1%、96.1%和97.6%。随着PMS添加量的增加,TC的去除率也在逐渐的提高。但添加量超过1.5 mmol/L时,TC的去除率提升的并不明显,可能是随着PMS添加量的提升,自由基本身会发生自淬灭反应从而导致氧化能力减弱。故后续实验中选用浓度为1.5 mmol/L的PMS添加量。

Figure 1. Comparison of TC removal in various systems

1. 不同体系下TC去除的比较

Figure 2. Effect of different PMS dosage on TC removal

2. PMS浓度对TC去除率的影响

3.3. 催化剂用量对催化效果的影响

Figure 3. Effect of different catalyst dosage on TC removal

3. 催化剂用量对TC去除率的影响

图3所示,催化剂的用量对TC的去除率也会显著影响。当催化剂添加量从0.05 g/L增加到0.25 g/L时,45 min TC的降解率从83.8%增加到了97.3%。随着Ni/Co-LDH催化剂添加量的增加,TC的去除率也在增加。催化剂添加量为0.20 g/L时,TC的去除率为97.1%,与催化剂添加量为0.25 g/L时差距不大。基于经济环保的角度,选择浓度0.20 g/L的Ni/Co-LDH为催化剂最佳添加量。

3.4. pH值对催化效果的影响

图4所示,pH值同样会对催化剂的效果产生较大影响。在pH = 2时,TC的去除率仅为55.5%。随着pH的逐渐升高,TC的去除率也在逐渐升高。当pH = 7时,TC的去除率达到了最高,为97.1%。随着pH值的进一步提高,TC的去除率又会逐渐下降。在pH = 12时,TC的去除率为74.3%。在强碱性条件下,具有较低氧化还原电位和较短半衰期的·OH会清除 SO 4 并作为主要活性物种。结果表明,催化剂在中性条件下,具有优异的催化效果,在弱酸弱碱条件下也有着不错的表现。

Figure 4. Effect of different pH on TC removal

4. 不同pH对TC去除率的影响

3.5. 共存阴离子对催化效果的影响

Figure 5. Effect of coexisting anions on TC removal

5. 共存阴离子对TC去除率的影响

由于实际水体中往往含有各种阴离子,这些阴离子可能会影响四环素的降解过程,因此有必要进行共存阴离子离子实验。本研究中,分别使用了50 mg/L的Na2CO3、Na2SO4、NaCl和KH2PO4来探究 CO 3 2 SO 4 2 、Cl H 2 PO 4 对催化效果的影响。如图5所示,在 CO 3 2 SO 4 2 、Cl H 2 PO 4 存在的情况下,TC的去除率分别降至89.1%、87.0%、86.5%和81.9%。虽然体系中共存阴离子的存在对催化作用有一定的作用但总体影响不大,表明Ni/Co-LDH催化剂环境承受能力较强。

3.6. 催化剂的循环使用性能

Ni/Co-LDH具有一定的磁性,可以通过磁铁进行高效磁分离多次回收利用,将分离后的样品进行了五次循环使用实验。如图6所示,5次循环实验TC的去除率分别为97.1%、92.8%、87.9%、82.6%和80.2%,表明催化剂具有良好的循环稳定性。

Figure 6. Results of cyclic experiments

6. 循环实验结果

3.7. 自由基猝灭实验

基于PMS的高级氧化技术是通过反应产生的具有强氧化性的活性物种来消除有机物,包括自由基途径和非自由基途径。用四种不同的清除剂猝灭反应物种,以检测Ni/Co-LDH/PMS系统中其主要作用的活性物种。分别用TBA、p-BQ、MeOH和FFA快速猝灭·OH、 SO 4 O 2 1O2。如图7所示,当体系中加入TBA、p-BQ、MeOH和FFA时,TC的去除率分别为89.4%、85.6%、72.4%和47.9%。结果表明,在反应过程中自由基途径和非自由基途径均存在,两种途径中起作用从大到小依次为1O2> SO 4 > O 2 > ·OH。

Figure 7. Effects of ROS quenching tests

7. 自由基猝灭实验

4. 结论

1) 本研究采用了简单的水热共沉淀法合成了Ni/Co-LDH,并将其用于活化PMS高效降解TC。Ni/Co-LDH/PMS系统对TC降解率最佳可达到97.1%。

2) 共存阴离子 CO 3 2 SO 4 2 、Cl H 2 PO 4 对催化剂的催化效果影响不大,表明Ni/Co-LDH催化剂环境承受能力较强。经过5次循环实验,TC的降解率仍能保持在80%以上,表明催化剂具有良好的循环稳定性。

3) 自由基猝灭实验表明,在反应过程中自由基途径和非自由基途径均存在,两种途径中起作用从大到小依次为1O2 > SO 4 > O 2 > ·OH。

NOTES

*通讯作者。

参考文献

[1] Yang, Y., Gong, F., Liu, X., Li, Y., Chen, Q. and Pan, S. (2024) Construction of NiP/Ni(OH)2/Ag-ZIF Photocatalyst with 2-Methylimidazole Framework for Rapid Removal of Tetracycline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, Article ID: 132997.
https://doi.org/10.1016/j.colsurfa.2023.132997
[2] He, N., Yu, Z., Yang, G., Tan, Q., Wang, J. and Chen, Y. (2024) Designing with A-Site Cation Defects in LaFeO3: Removal of Tetracycline Hydrochloride in Complex Environments Using Photo-Fenton Synergy. Chemical Engineering Journal, 484, Article ID: 149613.
https://doi.org/10.1016/j.cej.2024.149613
[3] Yang, J., Du, Y., Li, W., Shan, S., Hu, T. and Su, H. (2024) Iron Oxide/alginate Hydrogel Composites for Removal of Tetracycline via Adsorption-Coupled Fenton-Like Reaction. Materials Chemistry and Physics, 315, Article ID: 129034.
https://doi.org/10.1016/j.matchemphys.2024.129034
[4] Feng, S., Xie, T., Wang, J., Yang, J., Kong, D., Liu, C., et al. (2023) Photocatalytic Activation of PMS over Magnetic Heterojunction Photocatalyst SrTiO3/BaFe12O19 for Tetracycline Ultrafast Degradation. Chemical Engineering Journal, 470, Article ID: 143900.
https://doi.org/10.1016/j.cej.2023.143900
[5] An, B., Liu, J., Zhu, B., Liu, F., Jiang, G., Duan, X., et al. (2023) Returnable Mos2@carbon Nitride Nanotube Composite Hollow Spheres Drive Photo-Self-Fenton-Pms System for Synergistic Catalytic and Photocatalytic Tetracycline Degradation. Chemical Engineering Journal, 478, Article ID: 147344.
https://doi.org/10.1016/j.cej.2023.147344
[6] Zhang, D., He, Q., Hu, X., Zhang, K., Chen, C. and Xue, Y. (2021) Enhanced Adsorption for the Removal of Tetracycline Hydrochloride (TC) Using Ball-Milled Biochar Derived from Crayfish Shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, Article ID: 126254.
https://doi.org/10.1016/j.colsurfa.2021.126254
[7] Li, Y., Fu, M., Wang, R., Wu, S. and Tan, X. (2022) Efficient Removal TC by Zn@SnO2/PI via the Synergy of Adsorption and Photocatalysis under Visible Light. Chemical Engineering Journal, 444, Article ID: 136567.
https://doi.org/10.1016/j.cej.2022.136567
[8] Xu, H., Deng, Y., Li, M., Zhang, K., Zou, J., Yang, Y., et al. (2023) Removal of Tetracycline in Nitrification Membrane Bioreactors with Different Ammonia Loading Rates: Performance, Metabolic Pathway, and Key Contributors. Environmental Pollution, 332, Article ID: 121922.
https://doi.org/10.1016/j.envpol.2023.121922
[9] Zhang, C., Ni, J., Ding, N. and Liu, H. (2023) Visible-Light-Assisted PMS Activation by Heterojunction Photocatalyst MgIn2S4/Bi2O3 for Tetracycline Degradation. Catalysis Communications, 183, Article ID: 106773.
https://doi.org/10.1016/j.catcom.2023.106773
[10] Dhiman, P., Kumar, A., Rana, G. and Sharma, G. (2023) Cobalt-Zinc Nanoferrite for Synergistic Photocatalytic and Peroxymonosulfate-Assisted Degradation of Sulfosalicylic Acid. Journal of Materials Science, 58, 9938-9966.
https://doi.org/10.1007/s10853-023-08669-z
[11] Le, V., Nguyen, T., Doong, R., Chen, C., Tran, C. and Dong, C. (2023) Peroxymonosulfate Activation over NiCo2O4/MnOOH for Enhancing Ciprofloxacin Degradation in Water. Environmental Technology & Innovation, 30, Article ID: 103117.
https://doi.org/10.1016/j.eti.2023.103117
[12] You, Y., Xu, G., Yang, X., Liu, Y., Ma, X. and Ji, Y. (2024) Cu-Fe-Ni Layered Hydroxides/Magnetic Biochar Composite as Peroxymonosulfate Activator for Removal of Enrofloxacin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, Article ID: 133082.
https://doi.org/10.1016/j.colsurfa.2023.133082
[13] Gao, S., Pan, J., Zhang, Y., Zhao, Z. and Cui, J. (2024) Mn-NSC Co-Doped Modified Biochar/permonosulfate System for Degradation of Ciprofloxacin in Wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, Article ID: 132640.
https://doi.org/10.1016/j.colsurfa.2023.132640
[14] Tan, Y., Li, C., Sun, Z., Bian, R., Dong, X., Zhang, X., et al. (2020) Natural Diatomite Mediated Spherically Monodispersed CoFe2O4 Nanoparticles for Efficient Catalytic Oxidation of Bisphenol a through Activating Peroxymonosulfate. Chemical Engineering Journal, 388, Article ID: 124386.
https://doi.org/10.1016/j.cej.2020.124386
[15] Li, J., Li, S., Cao, Z., Zhao, Y., Wang, Q. and Cheng, H. (2023) Heterostructure CoFe2O4/Kaolinite Composite for Efficient Degradation of Tetracycline Hydrochloride through Synergetic Photo-Fenton Reaction. Applied Clay Science, 244, Article ID: 107102.
https://doi.org/10.1016/j.clay.2023.107102
[16] Gong, C., Chen, F., Yang, Q., Luo, K., Yao, F., Wang, S., et al. (2017) Heterogeneous Activation of Peroxymonosulfate by Fe-Co Layered Doubled Hydroxide for Efficient Catalytic Degradation of Rhoadmine B. Chemical Engineering Journal, 321, 222-232.
https://doi.org/10.1016/j.cej.2017.03.117
[17] Bai, J., Zhang, X., Wang, C., Li, X., Xu, Z., Jing, C., et al. (2024) The Adsorption-Photocatalytic Synergism of LDHs-Based Nanocomposites on the Removal of Pollutants in Aqueous Environment: A Critical Review. Journal of Cleaner Production, 436, Article ID: 140705.
https://doi.org/10.1016/j.jclepro.2024.140705
[18] Deng, J., Xiao, L., Yuan, S., Wang, W., Zhan, X. and Hu, Z. (2021) Activation of Peroxymonosulfate by Cofeni Layered Double Hydroxide/Graphene Oxide (LDH/GO) for the Degradation of Gatifloxacin. Separation and Purification Technology, 255, Article ID: 117685.
https://doi.org/10.1016/j.seppur.2020.117685
[19] Zhang, S., Zhang, L., Liu, L., Wang, X., Pan, J., Pan, X., et al. (2022) NiCo-LDH@MnO2 Nanocages as Advanced Catalysts for Efficient Formaldehyde Elimination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, Article ID: 129619.
https://doi.org/10.1016/j.colsurfa.2022.129619