MECT与抑郁患者VEGF表达间相关性研究进展
Research Progress on the Correlation between MECT and VEGF Expression in Patients with Depression
DOI: 10.12677/acm.2024.1472143, PDF, HTML, XML, 下载: 12  浏览: 16 
作者: 吉荣图:内蒙古医科大学精神卫生学院,内蒙古 呼和浩特;郑兰兵*:内蒙古自治区胸科医院,内蒙古 呼和浩特
关键词: 抑郁症无抽搐电休克治疗血管内皮生长因子分子机制影响因素Depressive Disorder MECT VEGF Molecular Mechanism Influencing Factors
摘要: 抑郁症是临床最常见的精神疾病之一,给患者个人及社会带来巨大的疾病负担。抑郁症发病可能与神经营养因子功能失调所致的神经系统受损及神经功能异常有关,其中,血管内皮生长因子(vascular endothelial growth factor, VEGF)因具有成为抑郁症生物标志物的潜力被广泛研究。无抽搐电休克治疗(modified electroconvulsive therapy, MECT)可能通过调节VEGF表达影响神经元生长、血脑屏障通透性及突触可塑性,进而发挥抗抑郁作用。本文就MECT与抑郁患者VEGF表达间的相关性进行探讨,系统回顾和分析现有文献,旨在深入理解抑郁症的病理机制及MECT对神经系统的影响机制。
Abstract: Depressive disorder is one of the most common mental illnesses in clinical practice, which brings a huge burden to patients and society. The onset of depressive disorder may be related to neurological damage and dysfunction caused by dysfunction of neurotrophic factors. Among them, vascular endothelial growth factor (VEGF) has been widely studied as a potential biomarker for depressive disorder. Modified electroconvulsive therapy (MECT) may exert antidepressant effects by regulating VEGF expression, affecting neuronal growth, blood-brain barrier permeability, and synaptic plasticity. This article explores the correlation between MECT and VEGF expression in patients with depressive disorder, systematically reviews and analyzes existing literature, aiming to gain a deeper understanding of the pathological mechanisms of depressive disorder and the impact of MECT on the nervous system.
文章引用:吉荣图, 郑兰兵. MECT与抑郁患者VEGF表达间相关性研究进展[J]. 临床医学进展, 2024, 14(7): 1275-1283. https://doi.org/10.12677/acm.2024.1472143

1. 引言

抑郁症是精神科临床工作中最常见的精神障碍之一,以持续性心境低落、快感缺乏及显著的精力减退为主要临床特点,给患者造成极大的精神痛苦,并容易继发自伤自杀行为。世界卫生组织2019年的数据统计显示,全球每年有70.3万人自杀身亡,其中抑郁症是主要的自杀风险因素之一[1]。关于抑郁症的发病机制,有学者提出神经营养因子的表达及功能异常可能导致神经元凋亡增加,信号传导通路受损、突触可塑性下降、神经系统结构改变,进而导致抑郁症的发生[2] [3]。目前已知的可能参与抑郁症发病及转归过程的神经营养因子有脑源性神经营养因子(brain derived neurotrophic factor, BDNF)、胶质细胞源性神经营养因子(glial cell derived neurotrophic factor, GDNF)、血管内皮生长因子(vascular endothelial growth factor, VEGF)等[4],有学者提出VEGF可能具有成为抑郁症生物标志物的潜力[5]

无抽搐电休克治疗(modified electroconvulsive therapy, MECT)指患者处于麻醉状态后,对患者大脑施加一定强度的脉冲电流刺激,使大脑皮层广泛性放电,进而影响神经元活动及神经递质释放过程的物理治疗方法,一般用于重度抑郁伴自伤自杀行为、兴奋躁动、冲动伤人、拒食、违拗、木僵或精神药物无效的精神疾病患者,研究报道使用MECT治疗后,有60%到70%患者的社会功能得到改善[6],MECT临床有效率在60%~80% [7]。因此,本文就MECT与抑郁患者VEGF表达情况间相关性,及MECT与VEGF对神经系统的影响进行综述,深入了解MECT治疗对神经系统的影响机制,以期为临床治疗及进一步研究提供依据。

2. MECT对抑郁患者VEGF表达的影响

Shi Y团队对来自177项研究的1757例抑郁患者数据及2117例健康人数据进行meta分析后发现,抑郁患者的VEGF水平高于健康人[8]。但另一项涉及469名重度抑郁患者的大规模临床研究显示,患者的VEGF水平较健康人偏低[9]。除病情严重程度外,患者年龄、是否吸烟、治疗方案、检测指标等方面的差异也可能是各临床研究结果不同的影响因素。

MECT能够对患者的VEGF表达产生影响。研究结果显示,在MECT治疗1个月及8周后,患者的外周血VEGF水平都有明显增加[10] [11]。Sorri A团队检测30名抑郁患者接受MECT治疗后的外周血VEGF水平后发现,患者在第一次及第五次MECT治疗后的2小时及4小时后,外周血VEGF水平都有升高[12],而在MECT治疗1小时后,虽然患者外周血VEGF水平呈上升趋势,但并没有显著高于治疗前水平[13]。另有研究显示,MECT治疗后,患者的外周血VEGF水平没有明显改变[14]

而在脑脊液中,动物模型研究结果提示MECT治疗能够提升脑脊液VEGF水平[15] [16],但Kranaster L团队检测患者接受MECT治疗1天及7天的脑脊液VEGF水平,并未发现明显改变[17]。采样时间可能是造成上述结果存在明显差异的原因之一,癫痫持续状态后24小时,脑内VEGF水平会显著升高[18],达峰时间约为3小时[15]。因此设置合适的采样时间,可能更有助于获得准确的实验结论。另外,受试者种群特征,检测方式,及MECT治疗的频率、电量大小差异等也可能对实验结果造成影响。

MECT可能通过5-HT受体途径以及磷脂酰肌醇3激酶/蛋白激酶B细胞信号途径(phosphoinositide 3-kinases/protein kinase B/mammalian target of rapamycin signaling pathway, PI3K/Akt)调节VEGF表达过程。目前已经证实,氟西汀经神经元上的5-HT1A受体介导,能够促进VEGF表达[19]。Ferrés团队对大鼠脑干中缝背核区的五羟色胺转运体(serotonin transporter, SERT)行siRNA处理后发现,SERT表达减少,5-HT水平升高,同时脑内VEGF水平明显升高[20]。上述研究结果提示5-HT与VEGF表达过程存在关联。MECT治疗后,患者的前扣带回、眶额皮质、杏仁核、海马和岛叶等脑区的突触后膜5-HT1A受体对5-HT的结合能力明显下降,通过负反馈机制促进突触前膜进一步释放5-HT,增加脑内5-HT浓度[21]。因此,MECT同样可能通过调节脑内5-HT浓度,在发挥抗抑郁作用的同时,调节脑内VEGF水平,上述推论需要进一步研究加以验证。

研究者发现单次MECT后,大鼠皮层中活化Akt蛋白水平在1小时后达到峰值,而VEGF水平在3到6小时后达到峰值,并在72小时内恢复至接近对照水平,使用药物阻断PI3K能够抑制MECT治疗后的VEGF表达过程[15]。说明PI3K/Akt细胞信号途径同样是MECT影响VEGF表达的中介因素之一。

3. MECT及VEGF对神经系统的影响

3.1. MECT及VEGF对海马脑区的影响

抑郁患者的海马脑区会出现体积缩小、锥体神经元萎缩、神经元树突分支数量减少、长度缩短等一系列不良变化[22],MECT治疗显著增加海马齿状回颗粒细胞层神经元数量及突触数量[23],同时还能增加右侧顶叶中央后回、右侧额叶中央前回、左侧颞叶颞下回和左侧顶叶中央旁小叶体积[24] [25]。以上结果反映出MECT治疗对神经系统具有显著的改善作用。同时,有研究者发现MECT能够快速控制症状,依赖于MECT治疗后神经元存活时间延长,突触密度及复杂性提升,神经元网络整合能力增强,为精神活动的正常化提供了健全的神经系统环境[26]

目前已经证实,VEGF通过丝裂原活化蛋白激酶/细胞外信号调节激酶信号通路(mitogen activated protein kinase/extracellular signal regulated kinase signaling pathway, MAPK/ERK)以及PI3K/Akt细胞信号途径参与神经元生长、存活、分化、保护过程[27]-[29]。Warner团队向模型大鼠侧脑室输注VEGF后发现,大鼠海马齿状回下区的神经干细胞数量明显增加[30],由此可推测,VEGF可能是MECT影响神经系统过程中的中介因素之一。后续研究证实,单次MECT治疗在显著持续增加海马CA1区辐射层体积、微血管总长度、线粒体数量和突触数量的同时,还能使VEGF水平显著升高[31],并且MECT治疗在海马齿状回诱导VEGF表达的时间过程与神经发生的时间过程一致[30]。在VEGF介导下,MECT治疗诱导神经干细胞增殖,促进海马神经元新生并维持神经元存活[32] [33]

3.2. MECT及VEGF对血脑屏障的影响

血脑屏障是一种由脑毛细血管内皮细胞、基膜、星形胶质细胞及相关蛋白等组成的选择性屏障,在避免外源性损伤物质经血流进入大脑的同时,也妨碍了药物进入中枢神经系统,对神经精神疾病的治疗造成了一定程度的负面影响。为克服这一难题,研究人员正在探索包括纳米颗粒、化学修饰、病毒载体和物理方法等在内的多种策略,以增强药物的脑部传递效率[34]

VEGF能够增加血脑屏障的通透性。星形胶质细胞中IL-1β介导的NF-kB p65磷酸化过程能够促进VEGF释放[35]。VEGF促进血管生成过程,新生血管较成熟血管具有更强的通透性。同时,VEGF还可通过下游的内皮型一氧化氮合酶途径,促进一氧化氮的合成及释放,扩张血脑屏障毛细血管,增加血脑屏障通透性[36]。使用药物阻断VEGF途径,能够提升occludin、ZO-1等紧密连接蛋白的含量,维持血脑屏障稳定性[37] [38]

同样,MECT也能对血脑屏障通透性产生影响。研究者根据神经元电缆理论,建立了血脑屏障电场放大与神经元极化计算模型,经模拟计算后提出,MECT治疗时,血脑屏障处的电场强度约为脑实质平均电场的400倍,可能影响血脑屏障的通透性[39]。动物模型研究证实对小鼠微血管小脑内皮细胞施加100千赫兹的交流电场即可短暂削弱血脑屏障紧密连接蛋白之间的连接,从而增加血脑屏障通透性,电流停止后上述现象消失[40]。这可能是MECT治疗后血脑屏障通透性出现短暂性增加的原因。MECT还能够通过增加VEGF表达,下调血脑屏障多重耐药P糖蛋白的活性,促使抗抑郁药物穿透血脑屏障,增加脑内抗抑郁药物浓度[41] [42]。此外,MECT治疗后,受试动物血脑屏障的星形胶质细胞足突发生肿胀,伴有S100β含量升高,提示星形胶质细胞发生一过性损伤,可能导致血脑屏障通透性暂时增加[43],但长期来看,MECT通过加速A2型星形胶质细胞活化,并促进星形胶质细胞足突对血管的覆盖,能够修复受损的血脑屏障胶质血管单位,发挥神经保护及抗抑郁作用[44] [45]

3.3. MECT及VEGF对突触的影响

抑郁患者的认知功能明显受损,表现为信息加工速度下降、执行功能下降、注意力及记忆力减退[46]。动物模型证实,抑郁状态会降低海马脑区和前额叶皮质的树突结构复杂性、突触密度及连接性,在基底外侧杏仁核和伏隔核则相反[47]。上述病理改变可能会对患者的认知能力、决策能力、情绪调节能力等造成破坏。突触后致密蛋白95 (postsynaptic density 95, PSD95)是一种无蛋白酶活性的细胞质内蛋白,依靠不同结构域与细胞膜各受体及信号分子结合发挥作用,参与神经递质分泌、突触可塑性调节等生物学过程。研究发现海马组织中mRNA的PSD95含量与大鼠认知功能存在正相关性[48]。以上结果说明抑郁状态下的认知功能损害存在神经病理基础。

VEGF可以在神经元损伤早期保持神经元兴奋性,维持膜电位和自发性突触后电流,显著降低海马脑区神经元死亡率[49]。后续研究证实,VEGF经VEGFR2介导,作用于突触后膜N-甲基-D-天冬氨酸受体(N-methyl-D-aspartic acid receptor, NMDA),促进PSD95及NMDA受体的NR2B亚基在突触后膜上富集并耦联,推进突触长时程增强(long-term potentiation, LTP)过程[50],从而加快神经信号传导速度,提升认知功能。此外,在哺乳动物的小脑发育过程中,VEGF经VEGFR2介导,激活Src家族激酶,使NMDA受体的NR2B亚基发生酪氨酸磷酸化,以增强NMDA受体介导的钙离子内流过程,并增强NMDA受体对内源性谷氨酸的敏感性,二者协同作用推动小脑颗粒细胞由外颗粒层向内颗粒层迁移,构建苔藓纤维–颗粒细胞–浦肯野细胞神经通路[51]。苔藓纤维将来自脑干、脊髓、脑桥等的感觉、运动和内部状态信号传递给颗粒细胞,颗粒细胞将信号传导至浦肯野细胞微区,使不同微区发生激活或抑制。同时,小脑皮层部分脑区编码奖励信号,经苔藓纤维–颗粒细胞–浦肯野细胞神经通路传递至浦肯野细胞微区。这一可重复的神经信号模式推动学习过程。当动物学习到哪些感觉和运动任务参数导致奖励时,预测性奖励信号就会出现,而当奖励是可预测的时,奖励反应就会被抑制[52]。上述信号机制可能有助于小脑选择最有价值的动作,并使该动作被正确执行,从而确保运动活动准确协调。

MECT可能造成患者认知功能的潜在损伤。在临床实践中,大量患者在接受MECT治疗后,会出现短期记忆力减退,头痛等不良反应[53]。造成以上结果的原因,可能是MECT治疗对患者突触功能的不良影响。在动物模型中,虽然MECT能够增加海马脑区齿状回颗粒细胞层的突触数量[23],但MECT也会抑制LTP过程[54],且MECT次数与受试动物的LTP过程存在负相关性[55]。对此,有研究者提出,MECT后海马脑区内突触素(synaptophysin, SYN)过表达可能是造成突触功能损害的原因之一[56]。过量的突触素刺激突触过度生长,打破海马脑区稳态,不利于突触功能正常维持。但是,抑郁患者在接受MECT合并药物治疗后,认知功能往往能得到显著改善[57] [58],这可能与MECT增加血脑屏障通透性,增加脑内药物浓度,提高治疗效果有关。MECT治疗能否通过VEGF途径影响患者的突触功能,仍需进一步研究验证。

4. VEGF对MECT疗效的预测作用

目前国内外已有研究者将患者的治疗前VEGF水平与抗抑郁治疗效果、梗死后溶栓疗效、心梗后心血管不良事件发生率等疾病指标建立统计学联系[59]-[61],提出患者治疗前VEGF水平可能能够作为预测疾病疗效的指标。在MECT治疗过程中,现有研究显示,较低的治疗前VEGF水平可能导致抑郁患者MECT治疗有效性下降[62],而治疗前VEGF水平越高,患者的症状改善越明显[5]

较高的治疗前VEGF水平反映出机体应对疾病所致神经损伤的能力较强。研究证明,老年抑郁患者及难治性抑郁患者的治疗前VEGF水平往往低于健康人水平[63] [64],高龄及疾病程度严重都可能是疾病所致神经系统受损加重的影响因素。VEGF是MECT治疗后神经元生长、血脑屏障通透性改变等过程的重要中介因素,患者较高的VEGF水平有助于MECT治疗快速改善症状,修复受损的神经系统。

有研究者从基因及其单核苷酸多态性表达(single nucleotide polymorphism, SNP)角度分析MECT疗效与VEGF水平的关系。人类的VEGF基因位点在6号染色体的6p21.1位点上,具有VEGF表达减少相关SNP的患者,接受MECT治疗后的疗效不佳[65],从基因角度提示MECT治疗与VEGF具有密切联系。另有研究证实,VEGF基因上的SNP rs699947位点的C等位基因越多,MECT治疗期间VEGF表达水平越高,从而有助于新生血管形成及神经元生长过程[66]

5. 结语

本文就MECT对抑郁患者VEGF表达的影响及其对神经系统的作用机制进行论述。MECT可能通过5-HT受体途径和PI3K/Akt细胞信号途径升高抑郁患者的VEGF水平,进而促进神经元生长、血脑屏障通透性增加以及突触功能恢复。尽管MECT可能对认知功能产生短期不良影响,但其通过VEGF途径发挥神经修复和抗抑郁作用的潜力仍值得进一步探索,患者治疗前的VEGF水平可能作为预测MECT疗效的指标之一。未来研究应进一步明确VEGF在抑郁症及其治疗中的具体作用机制,同时研究MECT对神经系统的影响机制,以提高其临床疗效和安全性。

NOTES

*通讯作者。

参考文献

[1] 世界卫生组织. 自杀[EB/OL].
https://www.who.int/zh/news-room/fact-sheets/detail/suicide, 2021-06-17.
[2] Duman, R.S., Malberg, J. and Thome, J. (1999) Neural Plasticity to Stress and Antidepressant Treatment. Biological Psychiatry, 46, 1181-1191.
https://doi.org/10.1016/s0006-3223(99)00177-8
[3] Pilar-Cuéllar, F., Vidal, R., Díaz, A., Castro, E., dos Anjos, S., Pascual-Brazo, J., et al. (2013) Neural Plasticity and Proliferation in the Generation of Antidepressant Effects: Hippocampal Implication. Neural Plasticity, 2013, Article 537265.
https://doi.org/10.1155/2013/537265
[4] 王惠芹, 王真真, 林美妤, 等. 抑郁症发病与神经营养因子异常研究进展[J]. 中国药理学通报, 2020, 36(10): 1333-1337.
[5] Clark-Raymond, A. and Halaris, A. (2013) VEGF and Depression: A Comprehensive Assessment of Clinical Data. Journal of Psychiatric Research, 47, 1080-1087.
https://doi.org/10.1016/j.jpsychires.2013.04.008
[6] Loo, C. (2010) ECT in the 21st Century: Optimizing Treatment. The Journal of ECT, 26, 157.
https://doi.org/10.1097/yct.0b013e3181efa1c4
[7] Perugi, G., Medda, P., Zanello, S., Toni, C. and Cassano, G.B. (2012) Episode Length and Mixed Features as Predictors of ECT Nonresponse in Patients with Medication-Resistant Major Depression. Brain Stimulation, 5, 18-24.
https://doi.org/10.1016/j.brs.2011.02.003
[8] Shi, Y., Luan, D., Song, R. and Zhang, Z. (2020) Value of Peripheral Neurotrophin Levels for the Diagnosis of Depression and Response to Treatment: A Systematic Review and Meta-Analysis. European Neuropsychopharmacology, 41, 40-51.
https://doi.org/10.1016/j.euroneuro.2020.09.633
[9] Rigal, A., Colle, R., Asmar, K.E., Trabado, S., Loeb, E., Martin, S., et al. (2019) Lower Plasma Vascular Endothelial Growth Factor a in Major Depressive Disorder Not Normalized after Antidepressant Treatment: A Case Control Study. Australian & New Zealand Journal of Psychiatry, 54, 402-408.
https://doi.org/10.1177/0004867419893433
[10] Minelli, A., Zanardini, R., Abate, M., Bortolomasi, M., Gennarelli, M. and Bocchio-Chiavetto, L. (2011) Vascular Endothelial Growth Factor (VEGF) Serum Concentration during Electroconvulsive Therapy (ECT) in Treatment Resistant Depressed Patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 1322-1325.
https://doi.org/10.1016/j.pnpbp.2011.04.013
[11] Zhang, T., Tang, X., Wei, Y., Xu, L., Hu, Y., Cui, H., et al. (2023) Serum Angioneurin Levels Following Electroconvulsive Therapy for Mood Disorders. Bipolar Disorders, 25, 671-682.
https://doi.org/10.1111/bdi.13317
[12] Sorri, A., Järventausta, K., Kampman, O., Lehtimäki, K., Björkqvist, M., Tuohimaa, K., et al. (2021) Electroconvulsive Therapy Increases Temporarily Plasma Vascular Endothelial Growth Factor in Patients with Major Depressive Disorder. Brain and Behavior, 11, e02001.
https://doi.org/10.1002/brb3.2001
[13] 张敏玲, 欧玉芬, 古智文, 等. 难治性抑郁症患者MECT治疗前后血清VEGF水平的变化[J]. 四川精神卫生, 2014, 27(4): 324-327.
[14] Ryan, K.M. and McLoughlin, D.M. (2018) Vascular Endothelial Growth Factor Plasma Levels in Depression and Following Electroconvulsive Therapy. European Archives of Psychiatry and Clinical Neuroscience, 268, 839-848.
https://doi.org/10.1007/s00406-018-0919-x
[15] Fujiki, M., Abe, E., Nagai, Y., Shiqi, K., Kubo, T., Ishii, K., et al. (2010) Electroconvulsive Seizure-Induced VEGF Is Correlated with Neuroprotective Effects against Cerebral Infarction: Involvement of the Phosphatidylinositol-3 Kinase/Akt Pathway. Experimental Neurology, 225, 377-383.
https://doi.org/10.1016/j.expneurol.2010.07.010
[16] Warner-Schmidt, J.L., Madsen, T.M. and Duman, R.S. (2008) Electroconvulsive Seizure Restores Neurogenesis and Hippocampus-Dependent Fear Memory after Disruption by Irradiation. European Journal of Neuroscience, 27, 1485-1493.
https://doi.org/10.1111/j.1460-9568.2008.06118.x
[17] Kranaster, L., Blennow, K., Zetterberg, H. and Sartorius, A. (2019) Reduced Vascular Endothelial Growth Factor Levels in the Cerebrospinal Fluid in Patients with Treatment Resistant Major Depression and the Effects of Electroconvulsive Therapy—A Pilot Study. Journal of Affective Disorders, 253, 449-453.
https://doi.org/10.1016/j.jad.2019.04.080
[18] Nicoletti, J.N., Shah, S.K., McCloskey, D.P., Goodman, J.H., Elkady, A., Atassi, H., et al. (2008) Vascular Endothelial Growth Factor Is up-Regulated after Status Epilepticus and Protects against Seizure-Induced Neuronal Loss in Hippocampus. Neuroscience, 151, 232-241.
https://doi.org/10.1016/j.neuroscience.2007.09.083
[19] Greene, J., Banasr, M., Lee, B., Warner-Schmidt, J. and Duman, R.S. (2009) Vascular Endothelial Growth Factor Signaling Is Required for the Behavioral Actions of Antidepressant Treatment: Pharmacological and Cellular Characterization. Neuropsychopharmacology, 34, 2459-2468.
https://doi.org/10.1038/npp.2009.68
[20] Ferrés-Coy, A., Pilar-Cuellar, F., Vidal, R., Paz, V., Masana, M., Cortés, R., et al. (2013) RNAi-Mediated Serotonin Transporter Suppression Rapidly Increases Serotonergic Neurotransmission and Hippocampal Neurogenesis. Translational Psychiatry, 3, e211.
https://doi.org/10.1038/tp.2012.135
[21] Lanzenberger, R., Baldinger, P., Hahn, A., Ungersboeck, J., Mitterhauser, M., Winkler, D., et al. (2012) Global Decrease of Serotonin-1A Receptor Binding after Electroconvulsive Therapy in Major Depression Measured by PET. Molecular Psychiatry, 18, 93-100.
https://doi.org/10.1038/mp.2012.93
[22] Duric, V. and Duman, R.S. (2012) Depression and Treatment Response: Dynamic Interplay of Signaling Pathways and Altered Neural Processes. Cellular and Molecular Life Sciences, 70, 39-53.
https://doi.org/10.1007/s00018-012-1020-7
[23] Chen, F., Madsen, T.M., Wegener, G. and Nyengaard, J.R. (2009) Repeated Electroconvulsive Seizures Increase the Total Number of Synapses in Adult Male Rat Hippocampus. European Neuropsychopharmacology, 19, 329-338.
https://doi.org/10.1016/j.euroneuro.2008.12.007
[24] 林虹, 林伟成, 谢友许, 等. 无抽搐电休克在首发抑郁障碍治疗中的应用价值及对脑结构的影响分析[J]. 中国医学创新, 2022, 19(3): 65-68.
[25] Jonckheere, J., Deloulme, J., Dall’Igna, G., Chauliac, N., Pelluet, A., Nguon, A., et al. (2018) Short-and Long-Term Efficacy of Electroconvulsive Stimulation in Animal Models of Depression: The Essential Role of Neuronal Survival. Brain Stimulation, 11, 1336-1347.
https://doi.org/10.1016/j.brs.2018.08.001
[26] Brockington, A., Lewis, C., Wharton, S. and Shaw, P.J. (2004) Vascular Endothelial Growth Factor and the Nervous System. Neuropathology and Applied Neurobiology, 30, 427-446.
https://doi.org/10.1111/j.1365-2990.2004.00600.x
[27] 仇志富, 颜勇, 吴晓光. PI3K/Akt信号转导通路与神经细胞凋亡研究进展[J]. 中风与神经疾病杂志, 2015, 32(10): 952-953.
[28] 张治楠, 梁丽艳, 连嘉惠, 等. 中枢神经系统PI3K/AKT/mTOR信号通路研究进展[J]. 实用医学杂志, 2020, 36(5): 689-694.
[29] Warner-Schmidt, J.L. and Duman, R.S. (2007) VEGF Is an Essential Mediator of the Neurogenic and Behavioral Actions of Antidepressants. Proceedings of the National Academy of Sciences, 104, 4647-4652.
https://doi.org/10.1073/pnas.0610282104
[30] Chen, F., Danladi, J., Wegener, G., Madsen, T.M. and Nyengaard, J.R. (2020) Sustained Ultrastructural Changes in Rat Hippocampal Formation after Repeated Electroconvulsive Seizures. International Journal of Neuropsychopharmacology, 23, 446-458.
https://doi.org/10.1093/ijnp/pyaa021
[31] Segi-Nishida, E. (2011) Exploration of New Molecular Mechanisms for Antidepressant Actions of Electroconvulsive Seizure. Biological and Pharmaceutical Bulletin, 34, 939-944.
https://doi.org/10.1248/bpb.34.939
[32] Olesen, M.V., Wörtwein, G., Folke, J. and Pakkenberg, B. (2016) Electroconvulsive Stimulation Results in Long-Term Survival of Newly Generated Hippocampal Neurons in Rats. Hippocampus, 27, 52-60.
https://doi.org/10.1002/hipo.22670
[33] Teleanu, R.I., Preda, M.D., Niculescu, A., Vladâcenco, O., Radu, C.I., Grumezescu, A.M., et al. (2022) Current Strategies to Enhance Delivery of Drugs across the Blood-Brain Barrier. Pharmaceutics, 14, Article 987.
https://doi.org/10.3390/pharmaceutics14050987
[34] Wang, Q., Ding, H., Chen, S., Liu, X., Deng, Y., Jiang, W., et al. (2020) Hypertonic Saline Mediates the NLRP3/IL-1β Signaling Axis in Microglia to Alleviate Ischemic Blood-Brain Barrier Permeability by Downregulating Astrocyte-Derived VEGF in Rats. CNS Neuroscience & Therapeutics, 26, 1045-1057.
https://doi.org/10.1111/cns.13427
[35] Argaw, A.T., Asp, L., Zhang, J., Navrazhina, K., Pham, T., Mariani, J.N., et al. (2012) Astrocyte-Derived VEGF-A Drives Blood-Brain Barrier Disruption in CNS Inflammatory Disease. Journal of Clinical Investigation, 122, 2454-2468.
https://doi.org/10.1172/jci60842
[36] Liu, J., Chen, L., Zhang, X., Pan, L. and Jiang, L. (2020) The Protective Effects of Juglanin in Cerebral Ischemia Reduce Blood-Brain Barrier Permeability via Inhibition of VEGF/VEGFR2 Signaling. Drug Design, Development and Therapy, 14, 3165-3175.
https://doi.org/10.2147/dddt.s250904
[37] Ali, M., Falkenhain, K., Njiru, B.N., Murtaza-Ali, M., Ruiz-Uribe, N.E., Haft-Javaherian, M., et al. (2022) VEGF Signalling Causes Stalls in Brain Capillaries and Reduces Cerebral Blood Flow in Alzheimer’s Mice. Brain, 145, 1449-1463.
https://doi.org/10.1093/brain/awab387
[38] Khadka, N. and Bikson, M. (2022) Neurocapillary-Modulation. Neuromodulation: Technology at the Neural Interface, 25, 1299-1311.
https://doi.org/10.1111/ner.13338
[39] Salvador, E., Kessler, A.F., Domröse, D., Hörmann, J., Schaeffer, C., Giniunaite, A., et al. (2022) Tumor Treating Fields (TTFields) Reversibly Permeabilize the Blood-Brain Barrier in vitro and in vivo. Biomolecules, 12, Article 1348.
https://doi.org/10.3390/biom12101348
[40] Hawkins, B.T., Sykes, D.B. and Miller, D.S. (2010) Rapid, Reversible Modulation of Blood-Brain Barrierp-Glycoprotein Transport Activity by Vascular Endothelial Growth Factor. The Journal of Neuroscience, 30, 1417-1425.
https://doi.org/10.1523/jneurosci.5103-09.2010
[41] O’Brien, F.E., Dinan, T.G., Griffin, B.T. and Cryan, J.F. (2011) Interactions between Antidepressants and P-Glycoprotein at the Blood-Brain Barrier: Clinical Significance of in vitro and in vivo Findings. British Journal of Pharmacology, 165, 289-312.
https://doi.org/10.1111/j.1476-5381.2011.01557.x
[42] Ito, M., Bolati, K., Kinjo, T., Ichimura, K., Furuta, A., McLoughlin, D.M., et al. (2017) Electroconvulsive Stimulation Transiently Enhances the Permeability of the Rat Blood-Brain Barrier and Induces Astrocytic Changes. Brain Research Bulletin, 128, 92-97.
https://doi.org/10.1016/j.brainresbull.2016.11.011
[43] Chen, L., Lv, F., Min, S., Yang, Y. and Liu, D. (2023) Roles of Prokineticin 2 in Electroconvulsive Shock-Induced Memory Impairment via Regulation of Phenotype Polarization in Astrocytes. Behavioural Brain Research, 446, Article 114350.
https://doi.org/10.1016/j.bbr.2023.114350
[44] Azis, I.A., Hashioka, S., Tsuchie, K., Miyaoka, T., Abdullah, R.A., Limoa, E., et al. (2019) Electroconvulsive Shock Restores the Decreased Coverage of Brain Blood Vessels by Astrocytic Endfeet and Ameliorates Depressive-Like Behavior. Journal of Affective Disorders, 257, 331-339.
https://doi.org/10.1016/j.jad.2019.07.008
[45] 中华医学会精神医学分会抑郁障碍研究协作组. 抑郁症认知症状评估与干预专家共识[J]. 中华精神科杂志, 2020, 53(5): 369-376.
[46] Duman, C.H. and Duman, R.S. (2015) Spine Synapse Remodeling in the Pathophysiology and Treatment of Depression. Neuroscience Letters, 601, 20-29.
https://doi.org/10.1016/j.neulet.2015.01.022
[47] 翁孝琴, 薛山, 罗彬彬, 等. 舍曲林对抑郁症大鼠认知功能和海马突触后致密蛋白-95 mRNA表达的影响[J]. 新乡医学院学报, 2022, 39(3): 208-213.
[48] Yang, J., Yao, Y., Chen, T. and Zhang, T. (2013) VEGF Ameliorates Cognitive Impairment in in vivo and in vitro Ischemia via Improving Neuronal Viability and Function. NeuroMolecular Medicine, 16, 376-388.
https://doi.org/10.1007/s12017-013-8284-4
[49] De Rossi, P., Harde, E., Dupuis, J.P., Martin, L., Chounlamountri, N., Bardin, M., et al. (2016) A Critical Role for VEGF and VEGFR2 in NMDA Receptor Synaptic Function and Fear-Related Behavior. Molecular Psychiatry, 21, 1768-1780.
https://doi.org/10.1038/mp.2015.195
[50] Meissirel, C., Ruiz de Almodovar, C., Knevels, E., Coulon, C., Chounlamountri, N., Segura, I., et al. (2011) VEGF Modulates NMDA Receptors Activity in Cerebellar Granule Cells through Src-Family Kinases before Synapse Formation. Proceedings of the National Academy of Sciences, 108, 13782-13787.
https://doi.org/10.1073/pnas.1100341108
[51] Kostadinov, D. and Häusser, M. (2022) Reward Signals in the Cerebellum: Origins, Targets, and Functional Implications. Neuron, 110, 1290-1303.
https://doi.org/10.1016/j.neuron.2022.02.015
[52] 秦勇. 无抽搐电休克(MECT)治疗精神障碍的疗效及不良反应分析[J]. 中外医疗, 2013, 32(32): 74-75.
[53] Yu, J., Ren, L., Min, S., Lv, F., Luo, J., Li, P., et al. (2021) Inhibition of CB1 Receptor Alleviates Electroconvulsive Shock-Induced Memory Impairment by Regulating Hippocampal Synaptic Plasticity in Depressive Rats. Psychiatry Research, 300, Article 113917.
https://doi.org/10.1016/j.psychres.2021.113917
[54] Wu, B., Guo, Y., Deng, J., Chen, Q. and Min, S. (2021) Reduced Synaptic Plasticity Contributes to Resistance against Constant-Stimulus Electroconvulsive Treatment in a Rat Model of Stress-Induced Depression. Neuropsychiatric Disease and Treatment, 17, 1433-1442.
https://doi.org/10.2147/ndt.s304075
[55] 黎平, 郝学超, 律峰, 等. 抑郁大鼠电休克治疗后认知功能与突触可塑性研究[J]. 中国神经精神疾病杂志, 2014, 40(12): 715-720.
[56] 李伟民. 无抽搐电休克联合氟西汀治疗抑郁障碍患者的临床研究[J]. 现代医学与健康研究电子杂志, 2021, 5(23): 37-39.
[57] 鄢传东, 王鹏, 房茂胜. 长春西汀对抑郁大鼠MECT后学习记忆障碍的改善作用机制[J]. 西安交通大学学报(医学版), 2023, 44(6): 873-879.
[58] Clark-Raymond, A., Meresh, E., Hoppensteadt, D., Fareed, J., Sinacore, J., Garlenski, B., et al. (2016) Vascular Endothelial Growth Factor: Potential Predictor of Treatment Response in Major Depression. The World Journal of Biological Psychiatry, 18, 575-585.
https://doi.org/10.3109/15622975.2015.1117655
[59] 于海群, 程锦锦, 袁艳. 老年急性脑梗死患者外周血血管内皮生长因子、正五聚蛋白3、神经元特异性烯醇化酶水平与溶栓疗效的关系研究[J]. 实用医院临床杂志, 2022, 19(4): 85-88.
[60] 张欢, 苏炳新, 徐良成. hs-CRP联合VEGF-B检测对急性STEMI患者介入术后MACE的预测价值[J]. 中国急救复苏与灾害医学杂志, 2022, 17(7): 939-942.
[61] Minelli, A., Maffioletti, E., Bortolomasi, M., Conca, A., Zanardini, R., Rillosi, L., et al. (2013) Association between Baseline Serum Vascular Endothelial Growth Factor Levels and Response to Electroconvulsive Therapy. Acta Psychiatrica Scandinavica, 129, 461-466.
https://doi.org/10.1111/acps.12187
[62] Valiuliene, G., Valiulis, V., Dapsys, K., Vitkeviciene, A., Gerulskis, G., Navakauskiene, R., et al. (2021) Brain Stimulation Effects on Serum BDNF, VEGF, and TNF α in Treatment-Resistant Psychiatric Disorders. European Journal of Neuroscience, 53, 3791-3802.
https://doi.org/10.1111/ejn.15232
[63] 杨杰, 易志凯, 李娜. 中老年首发抑郁症患者血清VEGF、FGF-22水平及相关性[J]. 中国老年学杂志, 2022, 42(23): 5727-5729.
[64] Pisoni, A., Strawbridge, R., Hodsoll, J., Powell, T.R., Breen, G., Hatch, S., et al. (2018) Growth Factor Proteins and Treatment-Resistant Depression: A Place on the Path to Precision. Frontiers in Psychiatry, 9, Article 386.
https://doi.org/10.3389/fpsyt.2018.00386
[65] Maffioletti, E., Gennarelli, M., Magri, C., Bocchio-Chiavetto, L., Bortolomasi, M., Bonvicini, C., et al. (2020) Genetic Determinants of Circulating VEGF Levels in Major Depressive Disorder and Electroconvulsive Therapy Response. Drug Development Research, 81, 593-599.
https://doi.org/10.1002/ddr.21658
[66] Van Den Bossche, M.J.A., Emsell, L., Dols, A., Vansteelandt, K., De Winter, F., Van den Stock, J., et al. (2019) Hippocampal Volume Change Following ECT Is Mediated by rs699947 in the Promotor Region of VEGF. Translational Psychiatry, 9, Article No. 191.
https://doi.org/10.1038/s41398-019-0530-6