基于质体基因组序列变异位点的松科油杉属和冷杉属植物资源遗传多样性的分子鉴定新方法
A Novel Method for Molecular Identification of Genetic Diversity of Plant Resources in Abies Mill. and Keteleeria Carrière (Pinaceae) Based on Taxon-Specific Variable Nucleotide Characters from Complete Plastomes
DOI: 10.12677/br.2024.134046, PDF, HTML, XML, 下载: 10  浏览: 15  科研立项经费支持
作者: 刘美辰:北京市食品检验研究院(北京市食品安全监控和风险评估中心),北京;李 斌*:中国林业科学研究院林业研究所,北京;中国林业科学研究院林木遗传和育种国家重点实验室,北京;左云娟:中国科学院东南亚生物多样性研究中心,云南 西双版纳;中国科学院西双版纳热带植物园综合保护中心,云南西双版纳;靳晓白:国家植物园,北京;索志立*:中国科学院植物研究所系统与进化植物学国家重点实验室,北京
关键词: 松科油杉属冷杉属植物资源多样性质体基因组核苷酸变异位点分子鉴定Pinaceae Abies Mill. Keteleeria Carrière Plant Resource Diversity Plastome Variable Nucleotide Character Molecular Identification
摘要: 物种多样性的精确鉴定是植物资源可持续利用的基础。油杉属和冷杉属是松科内的2个近缘的属。我们利用油杉属和冷杉属的种/变种的质体基因组序列中的物种特有的107个核苷酸变异位点作为分子性状首次编制分子鉴定检索表,供试样品得到成功鉴定。物种特有变异位点的数量和核苷酸构成存在种间差异。铁坚油杉(原变种)Keteleeria davidiana (C.E. Bertrand) var. Davidiana (44个)的特有变异位点的数量最多,随后依次是云南油杉Keteleeria evelyniana Mast. (34)、库页冷杉Abies sachalinensis (F. Schmidt) Mast. (19)以及白叶冷杉Abies veitchii Lindl. (10)。铁坚油杉(原变种)的特有变异位点中,T的比例(36.36%)最高,随后依次是A (29.55%)、G (20.45%)和C (13.64%),T的比例为C的比例的约2.6倍。云南油杉的特有变异位点中,A的比例(50.00%)最高,是T或C的比例(17.65%)的约2.8倍,是G的比例(14.71%)的约3.4倍。库页冷杉的特有变异位点中,C的比例(31.58%)最高,随后依次是T (26.32%)、A (21.05%)和G (21.05%),C的比例为A或G的比例的1.5倍。白叶冷杉的特有变异位点中,C的比例(30.00%)最高,是另外3种核苷酸(A、C或G)比例的1.5倍。结果显示,质体基因组的单核苷酸变异位点信息,可用于油杉属和冷杉属植物资源遗传多样性的分子鉴定。调查了中国过去120多年油杉属和冷杉属植物标本的收集现状,讨论了存在的问题和对策。本研究对于油杉属和冷杉属植物的分类修订、种质资源的保护和利用具有重要价值。
Abstract: Accurate identification of genetic diversity at species/varietas levels is essential for sustainable utilization of plant resources. The genus Abies Mill. and Keteleeria Carrière are two closely related plant groups in the Pinaceae. In this paper, 107 taxon-specific variable nucleotide characters in the plastomes of species/varietas from Abies and Keteleeria were used as molecular traits to identify the plant genetic resource diversity of these plant genera and to compile a molecular classification key for the first time. There are differences in aspects of amount and base composition of variable nucleotide characters among the species/varietas. The amount of taxon-specific variable nucleotide characters in Keteleeria davidiana (C.E. Bertrand) Beissn. var. davidiana (44) is the highest, higher than that in Keteleeria evelyniana Mast. (34) or Abies sachalinensis (F. Schmidt) Mast. (19) or Abies veitchii Lindl.(10). In Keteleeria davidiana (C.E. Bertrand) Beissn. var. davidiana, the proportion of T(36.36%) ishigher than that of A(29.55%), or G(20.45%), C (13.64%) and is 2.6 times that of C. In Keteleeria evelyniana, the proportion of A (50.00%) is the highest and is 2.7 times that of T or C (17.65%), and 3.4 times that of G (14.71%). In Abies sachalinensis, the proportion of C (31.58%) is the highest, higher than T (26.32%), A (21.05%) or G (21.05%), and is 1.5 times that of A or G. In Abies veitchii, the proportion of C (30.00%) is the highest, 1.5 times that of each of the other three nucleotides. Our results indicated that taxon-specific variable nucleotide characters from the plastomes could be used for distinguishing different species successfully in the genus Abies and Keteleeria. The status of Abies and Keteleeria plant specimens collected in the past over 120 years in China is investigated and problems and possible strategies have been discussed. This study is valuable for taxonomic revision, conservation and utilization of Abies and Keteleeria plant germplasm resources.
文章引用:刘美辰, 李斌, 左云娟, 靳晓白, 索志立. 基于质体基因组序列变异位点的松科油杉属和冷杉属植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(4): 434-445. https://doi.org/10.12677/br.2024.134046

1. 引言

松科是裸子植物中最大的科,利用球果、花粉、胚、苞鳞、种鳞、种子、子叶、叶(形态及生理习性)、染色体核型、气孔类型等的形态特征划分为10属,即松属Pinus L.、云杉属Picea A. Dietr.、银杉属Cathaya Chun & Kuang、黄杉属Pseudotsuga Carrière、落叶松属Larix Mill.、铁杉属Tsuga (Endl.) Carrière、金钱松属Pseudolarix Gordon、冷杉属Abies Mill.、油杉属Keteleeria Carrière和雪松属Cedrus Trew;根据雌球花、球果、种翅、叶、气孔线、柔毛、芽型、树枝(果枝、营养枝、枝的年龄及其表皮)等的形态特征进一步分类,全球约有230种/亚种/变种[1]-[13]

由于形态特征存在一定的种间相似性,形态性状的表现受环境条件(不同季节或地区)的影响,不同分类专家对各形态特征在分类学上的重要性的判断存在差异,导致分类观点产生差异。例如,油杉属与冷杉属的物种在形态特征方面相似性较高,油杉属的物种最早被归类在冷杉属内。1866年,以油杉(Keteleeria fortunei (A. Murray bis) Carrière)为模式种,从冷杉属中独立出来,成立了油杉属[8] [9]。油杉属植物是常绿乔木,全球约11种,自然野生分布于中国、老挝和越南[1] [2] [6] [12]。油杉属植物具有树干端直、木材纹理直、材质重、耐水湿、抗腐性强等多种特点,可作为建筑、桥梁、家具、船舱、面板、农具等的优质用材,枝叶繁茂浓绿,树形优雅美观,适应性较广,是优良的园林绿化树种。树根含有胶质,民间用作造纸的胶料。种子含油率较高,可作为木本油料植物。寿命可达千年,自古广泛引种,多种植于低海拔地带。由于受到人为乱砍乱伐的影响,被列为国家重点保护野生植物[7]。冷杉属植物全球约50种,分布于北半球温带至亚热带的高山地带,是优良的造林树种。木材优良耐用,可作为建筑及工业等用材[1]-[13]

油杉属和冷杉属植物具有很高的生态、经济和观赏价值,急需研究、制定高效的保护和可持续利用对策。其物种分类鉴定研究经历了形态学、细胞学、孢粉学、化学成分、RAPD、PCR-RFLP、AP-PCR、SSCP、SSR标记、DNA条形码技术等阶段,上述方法信息量较少、分辨率有限[1]-[13]。近年,质体基因组序列数据提供的信息量较大,增加了物种分辨率,已广泛应用于植物的物种鉴定和系统发生学研究[14]-[28]。为促进油杉属和冷杉属植物资源的保护和利用,本文报道在分子水平上鉴定油杉属和冷杉属植物资源遗传多样性的一种新方法。

2. 材料与方法

选取10份样品代表油杉属和冷杉属的4个种/变种。供试样品名称及其质体基因组的序列号如表1 (https://www.ncbi.nlm.nih.gov)。利用本团队研发的方法[14]-[28]编制分子分类检索表。用MAFFT v7.055b软件[29] (http://mafft.cbrc.jp/alignment/software)获得比对序列矩阵。比对后的序列矩阵的长度为124,896个核苷酸,由左向右,左端(5’-端)起的第1个核苷酸字母的位置编号为1,最右端的核苷酸字母的位置编号为124,896。用MEGA 7.0 [30]和DnaSP v6软件[31] (http://www.ub.edu/dnasp/)检测核苷酸变异位点(图1表2)。每个物种/变种的特有核苷酸变异位点作为分子分类性状,用于编写油杉属和冷杉属供试样品的分子分类检索表(见图1)。松科铁杉属Tsuga (Endl.) Carrière的米铁杉为外类群(表1图2)。用MEGA 7.0软件的Tamura 3-parameter model参数模型推断系统发生关系(图2)。

Figure 1. Molecular taxonomic key to four species/varietas of the genus Abies and Keteleeria (Pinaceae) based on the taxon-specific variable nucleotide characters from the complete plastomes

1. 基于质体基因组的物种特有核苷酸变异位点的冷杉属和油杉属4个种/变种的分子分类检索表

Figure 2. Phylogenetic tree of the four species/varietas of the genus Keteleeria Carrière and Abies Mill. based on complete plastome sequences using the neighbour-joining method with the Tamura 3-parameter model. The numbers near the branches are bootstrap support values (%) of 1000 replications

2. 基于质体基因组序列的油杉属和冷杉属4个种/变种的系统发生关系。分支附近的数字为1000次重复抽样的自展支持率

Table 1. Samples and Genbank accession numbers of plastome sequences used in this study

1. 供试样品及质体基因组序列号


拉丁学名

Latin name

中文名称

Chinese name

序列号

Genbank accession no.

1

Abies sachalinensis (F.Schmidt) Mast.

库页冷杉

LC509035.1

2

Abies sachalinensis (F.Schmidt) Mast.

库页冷杉

LC509036.1

3

Abies veitchii Lindl.

白叶冷杉

OR459817.1

4

Abies veitchii Lindl.

白叶冷杉

OR459820.1

5

Abies veitchii Lindl.

白叶冷杉

OR459821.1

6

Abies veitchii Lindl.

白叶冷杉

OR459823.1

7

Keteleeria davidiana (C.E. Bertrand) Beissn. var. davidiana

铁坚油杉(原变种)

OQ657007.1

8

Keteleeria davidiana (C.E. Bertrand) Beissn. var. davidiana

铁坚油杉(原变种)

OQ657008.1

9

Keteleeria evelyniana Mast.

云南油杉

OQ657001.1

10

Keteleeria evelyniana Mast.

云南油杉

OQ657028.1

11

Tsuga diversifolia (Maxim.) Mast.

米铁杉*

MH171102.1

12

Tsuga diversifolia (Maxim.) Mast.

米铁杉*

OR528870.1

注:*外类群。

3. 结果

油杉属和冷杉属供试样品的质体基因组的长度为116,867 (OQ657001.1,云南油杉Keteleeria evelyniana Mast.)~121,412 (OR459817.1,白叶冷杉Abies veitchii Lindl.)个核苷酸。在比对序列中,共检测到4592个核苷酸变异位点,占质体基因组序列全长的约3.93%。其中,具有分类价值的特有核苷酸变异位点数目合计为107个核苷酸,占变异位点总数的2.33%。

铁坚油杉(原变种)Keteleeria davidiana (C.E. Bertrand) var. davidiana (44)的特有变异位点的数量最多,

Table 2. Base composition of variable nucleotide sites for classification of four species/varietas from the genus Abies and Keteleeriaof the Pinaceae

2. 松科油杉属和冷杉属4种/变种的具有分类价值的核苷酸变异位点数目及碱基构成

*

A (%)**

T (%)**

C (%)**

G (%)**

Total***

合计 (%)

1a

13 (29.55)

16 (36.36)

6 (13.64)

9 (20.45)

44 (41.12/0.96)

1b

9 (20.45)

4 (9.09)

17 (38.64)

14 (31.82)

44 (41.12/0.96)

2a

17 (50.00)

6 (17.65)

6 (17.65)

5 (14.71)

34 (31.78/0.74)

2b

5 (14.71)

7 (20.59)

10 (29.41)

12 (35.29)

34 (31.78/0.74)

3a

2 (20.00)

2 (20.00)

3 (30.00)

2 (20.00)

10 (9.35/0.22)

3b

1 (11.11)

2 (22.22)

3 (33.33)

3 (33.33)

9 (8.41/0.20)

4a

4 (21.05)

5 (26.32)

6 (31.58)

4 (21.05)

19 (17.76/0.41)

4b

6 (31.58)

6 (31.58)

3 (15.79)

4 (21.05)

19 (17.76/0.41)

合计





107/4592

注:*该列的序号与检索表内的序号对应,1a为铁坚油杉(原变种),2a为云南油杉,3a为白叶冷杉,4a为库页冷杉。**核苷酸变异位点数(在4种碱基中的占比);***此列括号中,前一个数字是在物种特有变异位点总数(107)中所占的比例;后一个数字是在全部核苷酸变异位点总数(4592)中所占的比例。

随后依次为云南油杉Keteleeria evelyniana Mast. (34)、库页冷杉Abies sachalinensis (F. Schmidt) Mast. (19)以及白叶冷杉Abies veitchii Lindl. (10)。铁坚油杉(原变种)的特有变异位点中,T的比例(36.36%)最高,随后依次为A (29.55%)、G (20.45%)和C (13.64%),T的比例约为C的比例的2.6倍。云南油杉的特有变异位点中,A的比例(50.00%)最高,是TC的比例(17.65%)的约2.8倍,是G的比例(14.71%)的约3.4倍。库页冷杉的特有变异位点中,C的比例(31.58%)最高,随后依次为T (26.32%)、A (21.05%)和G(21.05%),C的比例为A或G的比例的约1.5倍。白叶冷杉的特有变异位点中,C的比例(30.00%)最高,是另外3种碱基比例的1.5倍(表2)。特有变异位点的数量和核苷酸构成存在种(属)间差异。利用特有核苷酸变异位点,编制分子分类检索表,供试样品得到精准鉴定(图1图2)。

4. 讨论

中国数字植物标本库(http://www.cvh.ac.cn/)的数据显示,中国采集油杉属植物标本的最早记录是1903年,经过120多年的积累,来自国内外的油杉属植物标本数量共计2,066份,含6个种/变种(表3(a)),包括形态特征图片和文字描述。存在同名异物和同物异名现象,例如,Keteleeria calcarea W.C. Cheng & L.K. Fu、Keteleeria chien-peii Flous、Keteleeria davidiana var. calcarea (W.C. Cheng & L.K. Fu) Silba、Keteleeria davidiana var. chien-peii (Flous) W.C. Cheng & L.K. Fu、Keteleeria esquirolii H. Lév.、Keteleeria pubescens W.C. Cheng & L.K. Fu以及Keteleeria xerophila Hsueh & S.H. Hao是铁坚油杉(原变种)Keteleeria davidiana (C.E. Bertrand) var. davidiana的异名;Keteleeria formosana Hayata是台湾油杉Keteleeria davidiana var. formosana (Hayata) Hayata的异名;Keteleeria cyclolepis Flous、Keteleeria fortunei var. cyclolepis (Flous) Silb以及Keteleeria oblonga W.C. Cheng & L.K. Fu是油杉Keteleeria fortunei (A. Murray bis) Carrière的异名;Keteleeria hainanensis Chun & Tsiang是云南油杉Keteleeria evelyniana Mast.的异名。有的名称实际上是油杉属以外的松科的其它属的物种的异名。例如,Keteleeria fabri Mast.是峨眉冷杉Abies fabri (Mast.) Craib的异名(https://tnrs.biendata.org/)。47%以上的油杉属植物标本的采集日期为50年以前。油杉属植物标本的19个名称中,异名(13个)的比例占68.42%。铁坚油杉(611份)、油杉(577份)、云南油杉(520份)以及

Table 3. (a) Specimens of Keteleeria of the Pinaceae in the Chinese Virtual Herbarium; (b) Specimens of Abies of the Pinaceae in the Chinese Virtual Herbarium

3. (a) 中国数字植物标本库馆藏的松科油杉属植物标本;(b) 中国数字植物标本库馆藏的冷杉属植物标本

(a)


/变种

Species/Varietas

中文名

Chinese name

标本份数

Amount of herbarium sheets

1

Keteleeria davidiana (C.E. Bertrand) Beissn.

铁坚油杉

611

2

Keteleeria davidiana (C.E. Bertrand)var. davidiana

铁坚油杉(原变种)

353

3

Keteleeria davidiana var. formosana (Hayata) Hayata

台湾油杉

4

4

Keteleeria evelyniana Mast.

云南油杉

520

5

Keteleeria fortunei (A. Murray bis) Carrière

油杉

577

6

Keteleeria fortunei var. rhombisquama


1

合计



2066

(b)


/亚种/变种

Species/Subspecies/Varietas

中文名

Chinese name

标本份数

Amount of
herbarium sheets

1

Abies alba Mill.

欧洲冷杉

23

2

Abies amabilis (Douglas ex. Loudon) J. Forbes


10

3

Abies balsamea (L.) Mill.

胶冷杉

28

4

Abies beshanzuensis M.H. Wu

百山祖冷杉

24

5

Abies borisii-regis Mattf.


14

6

Abies bracteata (D. Don) Poit.


11

7

Abies cephalonica Loudon

希腊冷杉

43

8

Abies chensiensis Tiegh.

秦岭冷杉

163

9

Abies chensiensis subsp. salouenensis (Bordères & Gaussen) Rushforth

云南黄果冷杉

139

10

Abies chensiensis subsp. yulongxueshanensis Rushforth

玉龙雪山冷杉

2

11

Abies cilicica (Antoine & Kotschy) Carrière

西里西亚冷杉

7

12

Abies concolor (Gordon) Lindl. ex. Hildebr.

白冷杉

10

13

Abies delavayi Franch.

大理冷杉

302

14

Abies delavayi subsp. fansipanensis (Q.P. Xiang, L.K.Fu & Nan Li) Rushforth

越南冷杉

2

15

Abies delavayi var. motuoensis W.C. Cheng & L.K. Fu

墨脱冷杉

45

16

Abies delavayi var. nukiangensis (W.C. Cheng & L.K. Fu) Farjon & Silba

怒江冷杉

33

17

Abies densa Griff.

锡金冷杉

42

18

Abies durangensis Martínez

杜兰戈冷杉

8

19

Abies durangensis var. coahuilensis (I.M. Johnstone) Martínez

杜兰戈冷杉科
阿韦拉变种

1

续表

20

Abies fabri (Mast.) Craib

峨眉冷杉

584

21

Abies fabri subsp. minensis (Bordères & Gaussen) Rushforth


1

22

Abies fanjingshanensis W.L.Huang, Y.L. Tu & S.Z. Fang

梵净山冷杉

46

23

Abies fargesii Franch.

巴山冷杉

488

24

Abies fargesii var. faxoniana (Rehder & E.H. Wilson) Tang S.Liu

岷江冷杉

740

25

Abies fargesii var. sutchuenensis Franch.

洮河冷杉

41

26

Abies firma Siebold & Zucc.

日本冷杉

167

27

Abies flinckii Rushforth


3

28

Abies forrestii Coltm.-Rog.

长苞冷杉

654

29

Abies forrestii var. ferreana (Bordères & Gaussen) Farjon & Silba

中甸冷杉

138

30

Abies forrestii var. georgei (Orr) Farjon

长苞冷杉一变种

6

31

Abies forrestii var. smithii R.Vig. & Gaussen

急尖长苞冷杉

324

32

Abies fraseri (Pursh) Poir.


9

33

Abies grandis (Douglas ex. D. Don) Lindl.

大冷杉

8

34

Abies guatemalensis Rehder

危地马拉冷杉

26

35

Abies hickelii Flous & Gaussen


30

36

Abies hidalgensis Debreczy, I.Rácz & Guízar


4

37

Abies holophylla Maxim.

臭冷杉

137

38

Abies homolepis Siebold & Zucc.

日光冷杉

24

39

Abies homolepis var. umbellata (Mayr) E.H. Wilson


1

40

Abies jaliscana (Martínez) Mantilla, Shalisko & A.Vázquez


1

41

Abies kawakamii (Hayata) Ito

台湾冷杉

26

42

Abies koreana E.H. Wilson

朝鲜冷杉

16

43

Abies lasiocarpa (Hook.) Nutt.

落基山冷杉

18

44

Abies lasiocarpa var. arizonica (Merriam) Lemmon

毛果冷杉

1

45

Abies magnifica A. Murray bis


1

46

Abies mariesii Mast.


3

47

Abies motuoensis


3

48

Abies nebrodensis (Lojac.) Mattei


4

49

Abies nephrolepis (Trautv. ex. Maxim.) Maxim.

沙松冷杉

392

50

Abies nordmanniana (Steven) Spach

高加索冷杉

15

51

Abies nordmanniana subsp. equi-trojani (Asch. & Sint. ex. Boiss.) Coode & Cullen


5

52

Abies numidica de Lannoy ex. Carrière

阿尔及利亚冷杉

15

53

Abies pindrow (Royle ex. D. Don) Royle

喜马拉雅冷杉

13

续表

54

Abies pindrow var. brevifolia Dallim. & A.B. Jacks.


1

55

Abies pinsapo Boiss.

西班牙冷杉

6

56

Abies pinsapo subsp. marocana (Trab.) Emb. & Maire


1

57

Abies procera Rehder

壮丽冷杉

3

58

Abies recurvata Mast.


188

59

Abies recurvata var. ernestii (Rehder) Rushforth

黄果冷杉

381

60

Abies religiosa (Kunth) Schltdl. & Cham.


15

61

Abies sachalinensis (F. Schmidt) Mast.

北海道冷杉

11

62

Abies sachalinensis var. mayriana Miyabe & Kudô


1

63

Abies sibirica Ledeb.

新疆冷杉

60

64

Abies spectabilis (D. Don) Mirb.

西藏冷杉

134

65

Abies squamata Mast.

紫果冷杉

289

66

Abies veitchii Lindl.

白叶冷杉

12

67

Abies veitchii var. sikokiana (Nakai) Kusaka


1

68

Abies vejarii Martínez


8

69

Abies vilmorinii Mast.


1

70

Abies yuanbaoshanensis Y.J. Lu & L.K. Fu

元宝山冷杉

25

71

Abies ziyuanensis L.K. Fu & S.L. Mo

华南冷杉

47

合计



6,035

铁坚油杉(原变种)(353份)的标本数量较多,台湾油杉(4份)和Keteleeria fortunei var. rhombisquama(1份)的标本数量很少(表3(a))。

冷杉属标本的最早采集记录是1900年,经过120多年的积累,来自国内外的冷杉属植物标本数量共计6035份,71个种/亚种/变种(表3(b)),包括形态特征图片和文字描述。存在同名异物和同物异名现象,例如,Abies pardei Gaussen是欧洲冷杉Abies alba Mill.的异名;Abies cephalonica var. apollinis (Link) Beissn.是希腊冷杉Abies cephalonica Loudon的异名;Abies ernestii var. salouenensis (Bordères & Gaussen) W.C. Cheng & L.K. Fu、Abies recurvata var. salouenensis (Bordères & Gaussen) C.T. Kuan、Abies salouenensis Bordères & Gaussen是云南黄果冷杉Abies chensiensis subsp. salouenensis (Bordères & Gaussen) Rushforth的异名;Abies lowiana var. viridula Debreczy, I. Rácz & G. Ramirez是白冷杉Abies concolor (Gordon) Lindl. ex. Hildebr.的异名;Abies fansipanensis Q.P. Xiang, L.K. Fu & Nan Li是Abies delavayi subsp. fansipanensis (Q.P. Xiang, L.K. Fu & Nan Li) Rushforth的异名;Abies nukiangensis W.C. Cheng & L.K. Fu是怒江冷杉Abies delavayi var. nukiangensis (W.C. Cheng & L.K. Fu) Farjon & Silba的异名;Abies neodurangensis Debreczy, I. Rácz & R.M. Salazar是杜兰戈冷杉Abies durangensis Martínez的异名;Abies durangensis var. coahuilensis (I.M. Johnstone) Martínez是杜兰戈冷杉科阿韦拉变种Abies durangensis var. coahuilensis (I.M. Johnstone) Martínez的异名;Abies minensis Bordères & Gaussen是Abies fabri subsp. minensis (Bordères & Gaussen) Rushforth的异名;Abies fargesii var. hupehensis Silba是巴山冷杉Abies fargesii Franch.的异名;Abies delavayi var. faxoniana (Rehder & E.H. Wilson) A.B. Jacks.及Abies faxoniana Rehder & E.H. Wilson是岷江冷杉Abies fargesii var. faxoniana (Rehder & E.H. Wilson) Tang S. Liu的异名;Abies kansouensis Bordères & Gaussen及Abies sutchueennsis (Franch.) Rehder & E.H. Wilson是洮河冷杉Abies fargesii var. sutchuenensis Franch.的异名;Abies georgei Hand.-Mazz.是长苞冷杉Abies forrestii Coltm.-Rog.的异名;Abies chayuensis W.C. Cheng & L.K. Fu、Abies ferreana Bordères & Gausse、Abies ferreana var. longibracteata L.K. Fu & Nan Li、Abies forrestii var. ferreana (Bordères & Gaussen) Farjon & Silba、Abies rolii Bordères & Gaussen以及Abies yuana Bordères & Gaussen是中甸冷杉Abies forrestii var. ferreana (Bordères & Gaussen) Farjon & Silba的异名;Abies georgei subsp. wumongensis Silba是长苞冷杉一变种Abies forrestii var. georgei (Orr) Farjon的异名;Abies georgei var. smithii (R. Vig. & Gaussen) C.Y. Cheng, W.C. Cheng & L.K. Fu是急尖长苞冷杉Abies forrestii var. smithii R. Vig. & Gaussen的异名;Abies guatemalensis var. longibracteata Debreczy, I. Rácz & G. Ramirez以及Abies zapotekensis Debreczy, I. Rácz & G. Ramirez是危地马拉冷杉Abies guatemalensis Rehder的异名;Abies brachyphylla Maxim.是日光冷杉Abies homolepis Siebold & Zucc.的异名;Abies guatemalensis var. jaliscana Martínez是哈利斯科冷杉Abies jaliscana (Martínez) Mantilla, Shalisko & A. Vázquez的异名;Abies arizonica Merriam是亚利桑那冷杉Abies lasiocarpa var. arizonica (Merriam) Lemmon的异名;Abies sibirica var. nephrolepis Trautv. ex. Maxim.是沙松冷杉Abies nephrolepis (Trautv. ex. Maxim.) Maxim.的异名;Abies pinsapo var. glauca Carrière是西班牙冷杉Abies pinsapo Boiss.的异名;Abies marocana Trab.是Abies pinsapo subsp. marocana (Trab.) Emb. & Maire的异名;Abies nobilis (Douglas ex. D. Don) Lindl.是壮丽冷杉Abies procera Rehder的异名;Abies ernestii Rehder是黄果冷杉Abies recurvata var. ernestii (Rehder) Rushforth的异名;Abies webbiana (Wall. ex. D. Don) Lindl.是西藏冷杉Abies spectabilis (D. Don) Mirb.的异名;Abies veitchii var. olivacea Shiras.是白叶冷杉Abies veitchii Lindl.的异名;Abies beshanzuensis var. ziyuanensis (L.K. Fu & S.L. Mo) L.K. Fu & Nan Li是华南冷杉Abies ziyuanensis L.K. Fu & S.L. Mo的异名。

有些名称实际上是冷杉属以外的其它属的物种的异名。例如,Abies davidiana (C.E. Bertrand) Franch.及Abies sacra Franch.是铁坚油杉Keteleeria davidiana (C.E. Bertrand) Beissn.的异名;Abies larix J.St.-Hil.是欧洲落叶松Larix decidua (L.) Mill.的异名;Abies gmelinii Rupr.是兴安落叶松Larix gmelinii (Rupr.) Kuzen.的异名;Abies pectinata Gilib.是欧洲云杉Picea abies (L.) H. Karst.的异名;Abies brachytyla Franch.是麦吊云杉Picea brachytyla (Franch.) Pritz.的异名;Abies likiangensis Franch.是丽江云杉Picea likiangensis (Franch.) E. Pritz.的异名;Abies sitchensis (Bong.) Lindl. & Gordon是巨云杉Picea sitchensis (Bong.) Carrière的异名;Abies chinensis Franch.Abies dumosa var. chinensis (Franch.) Franch.是Tsuga chinensis (Franch.) Pritz.的异名;Abies yunnanensis Franch.是云南铁杉Tsuga dumosa (D. Don) Eichler的异名(https://tnrs.biendata.org/及https://powo.science.kew.org/)。

52%以上的冷杉属植物标本的采集日期为50年以前。冷杉属植物标本的121个名称中,异名(50个)的比例占41.32%。岷江冷杉(740份)、长苞冷杉(654份)、峨眉冷杉(584份)以及巴山冷杉(488份)的标本份数最多。大于100份标本的有16个种/亚种/变种。大于3份(含)标本的有58个种/亚种/变种,小于3份标本的有13个种/亚种/变种。相关研究团队应该同时赠送一套供试样品各物种的标本到国家植物标本馆,以便分享准确的物种形态鉴定信息,减少异名对科学发展造成的混乱影响。对21国40个植物标本馆的4500份标本的取样调查结果显示,50%以上的热带植物标本存在名称鉴定错误[32]。在标本信息中,有的物种的拉丁学名出现对应多个汉语名称的现象,例如,Abies nephrolepis (Trautv. ex. Maxim.) Maxim. (华北冷杉、臭冷杉、臭松、东陵冷杉,CAF CAF00000170)。全球冷杉属异名的清理需要同时结合DNA数据等进行多方面验证,尚需要做大量工作[32]-[35]。应该创造条件,让更多的学者和技术人员有多样的机会接触和讨论。

5. 结论

由于人工种植历史悠久,油杉属植物的叶绿体单倍型资源的收集保存和研究应该是未来的方向之一,有助于深入研究杂交后代群体的遗传变异及价值。全球范围内探讨科属内全部物种的分类和进化关系,应该是研究的方向和趋势。全球野外调查和样品采集滞后仍然是制约相关研究的重要因素之一。本文报道的新方法从叶绿体基因组序列大数据中提取可用于物种分类的关键特征数据,在应用人工智能管理和利用全球植物资源多样性方面可达到节省算力、提高运算速度的目的。

感 谢

本研究得到天津市人力资源和社会保障局、天津市人力资源建设服务中心、山东省人力资源和社会保障厅、鲁东大学、上海市人力资源和社会保障局、上海计算技术培训中心、上海海洋大学以及国家专业技术人才知识更新工程项目的大力支持。袁国华、方爱国、崔正、杨智慧、严志宏和田宏进行了有意义的讨论。

基金项目

国家自然科学基金项目(No. 31770744)。

NOTES

*通讯作者。

参考文献

[1] 中国科学院中国植物志编辑委员会. 中国植物志第7卷: 松科[M]. 北京: 科学出版社, 1978.
http://www.cn-flora.ac.cn/
[2] Wu, Z.Y., Hong, D.Y. and Raven, P.H. (1999) Flora of China, Vol. 4, Pinaceae. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, 11-25.
https://www.iplant.cn/info/Pinus?t=foc
[3] Wang X.Q., Tank D.C. and Sang T. (2000) Phylogeny and Divergence Times in Pinaceae: Evidence from Three Genomes. Molecular Biology and Evolution, 17, 773-781.
[4] 李楠, 傅立国, 朱政德. 松科系统学研究(Ⅰ) [J]. 植物研究, 1996, 16(1): 32-45.
[5] Lin, C.P., Huang, J.P., Wu, C.S., Hsu, C.Y., and Chaw, S.M. (2010) Comparative Chloroplast Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies. Genome Biology and Evolution, 2, 504-517.
https://doi.org/10.1093/gbe/evq036
[6] 李楠. 论松科植物的地理分布、起源和扩散[J]. 植物分类学报, 1998, 33(2): 105-130.
[7] 钟华, 周彬. 国家重点保护野生植物名录中松科植物濒危状态评估[J]. 西部林业科学, 2010, 39(3): 76-78.
https://doi.org/10.16473/j.cnki.xblykx1972.2010.03.001
[8] Farjon, A. (1989) A Second Revision of the Genus Keteleeria carrière (Taxonomic Notes on Pinaceae II). Notes Royal Botanical Garden Edinburgh, 46, 81-99.
[9] 牟凤娟, 戴兴芬, 李双智, 等. 油杉属植物研究动态[J]. 西部林业科学, 2012, 41(6): 92-99.
[10] 向巧萍, 向秋云, Liston, A., 傅立国, 傅德志. ITS (nrDNA)片段在冷杉属植物中的长度多态性及其在松科的系统与演化研究中的应用[J]. 植物学报, 2000, 42(9): 946-951.
[11] 贯春雨, 张含国, 张磊, 朱航勇, 邓继峰. 基于松科树种EST序列的落叶松SSR引物开发[J]. 东北林业大学学报, 2011,39(1):20-23.
https://doi.org/10.13759/j.cnki.dlxb.2011.01.023
[12] Semerikova, S. A. and Semerikov, V. L. (2016) Phylogeny of Firs (Genus Abies, Pinaceae) Based on Multilocus Nuclear Markers (AFLP). Russian Journal of Genetics, 52(11), 1164–1175.
[13] 杨雪丹. 基于叶绿体基因组的油杉属系统学和生物地理学研究[D]. [硕士学位论文]. 西安: 西北大学, 2022.
[14] Dong, W.P., Xu, C., Li, D.L., Jin, X.B., Li, R.L., Lu, Q. and Suo Z.L. (2016) Comparative Analysis of the Complete Chloroplast Genome Sequences in Psammophytic Haloxylon Species (Amaranthaceae). PeerJ, 4, e2699.
https://doi.org/10.7717/peerj.2699
[15] Dong, W.P., Xu, C., Li, W.Q., Xie, X.M., Lu, Y.Z., Liu, Y.L., Jin, X.B. and Suo, Z.L. (2017) Phylogenetic Resolution in Juglans Based on Complete Chloroplast Genomes and Nuclear DNA Sequences. Frontiers in Plant Science, 8, Article 1148.
https://doi.org/10.3389/fpls.2017.01148
[16] Xu, C., Dong, W.P., Li, W.Y., Lu, Y.Z., Xie, X.M., Jin, X.B., Shi, J.P., He, K.H. and Suo, Z.L. (2017) Comparative Analysis of Six Lagerstroemia Complete Chloroplast Genomes. Frontiers in Plant Science, 8, Article 15.
https://doi.org/10.3389/fpls.2017.00015
[17] Li, W.Q., Liu, Y.L., Yang, Y., Xie, X.M., Lu, Y.Z., Yang, Z.R., Jin, X.B., Dong, W.P. and Suo, Z.L. (2018) Interspecific Chloroplast Genome Sequence Diversity and Genomic Resources in Diospyros. BMC Plant Biology, 18, Article No. 210.
https://doi.org/10.1186/s12870-018-1421-3
[18] Dong, W.P., Xu, C., Liu, Y.L., Shi, J.P., Li, W.Y. and Suo, Z.L. (2021) Chloroplast Phylogenomics and Divergence Times of Lagerstroemia (Lythraceae). BMC Genomics, 22, Article No. 434.
https://doi.org/10.1186/s12864-021-07769-x
[19] Guo, C., Liu, K.J., Li, E.Z., Chen, Y.F., He, J.Y., Li, W.Y., Dong, W.P. and Suo, Z.L. (2023) Maternal Donor and Genetic Variation of Lagerstroemia indica Cultivars. International Journal of Molecular Sciences, 24, Article 3606.
https://doi.org/10.3390/ijms24043606
[20] Suo, Z.L., Zhang, C.H., Zheng, Y.Q., He, L.X., Jin, X.B., Hou, B.X. and Li, J.J. (2012) Revealing Genetic Diversity of Tree Peonies at Micro-Evolution Level with Hyper-Variable Chloroplast Markers and Floral Traits. Plant Cell Reports, 31, 2199-2213.
https://doi.org/10.1007/s00299-012-1330-0
[21] Suo, Z.L., Chen, L.N., Pei, D., Jin, X.B. and Zhang, H.J. (2015) A New Nuclear DNA Marker from Ubiquitin Ligase Gene Region for Genetic Diversity Detection of Walnut Germplasm Resources. Biotechnology Reports, 5, 40-45.
https://doi.org/10.1016/j.btre.2014.11.003
[22] Suo, Z.L., Li, W.Y., Jin, X.B. and Zhang, H.J. (2016) A New Nuclear DNA Marker Revealing Both Microsatellite Variations and Single Nucleotide Polymorphic Loci: A Case Study on Classification of Cultivars in Lagerstroemia indica L. Journal of Microbial & Biochemical Technology, 8, 266-271.
https://doi.org/10.4172/1948-5948.1000296
[23] 李文清, 杨勇, 解孝满, 鲁仪增, 常青, 靳晓白, 索志立. E3泛素-蛋白连接酶UPL3 DNA序列揭示德阳柿和油柿为栽培柿的最近缘物种[J]. 农业科学, 2018, 8(6): 657-673.
https://doi.org/10.12677/hjas.2018.86100
[24] 索志立, 顾翠花, 左云娟, 杨志荣, 孙忠民, 杨强发, 靳晓白. 利用叶绿体基因组大单拷贝区的单核苷酸多态位点鉴定紫薇属和马尾藻属植物[J]. 植物学研究, 2022, 11(2): 218-228.
https://doi.org/10.12677/br.2022.112026
[25] 刘儒, 潘文婷, 李斌, 靳晓白, 李锐丽, 索志立. 利用叶绿体全基因组的单核苷酸多态位点对鹅掌楸和北美鹅掌楸的分子鉴定[J]. 农业科学, 2022, 12(11): 1098-1108.
https://doi.org/10.12677/hjas.2022.1211151
[26] 李斌, 左云娟, 刘艳磊, 杨志荣, 靳晓白, 潘伯荣, 常青, 索志立. 基于叶绿体基因组的单核苷酸多态位点的落叶松属(Larix Mill.)植物的分子鉴定新方法[J]. 植物学研究, 2023, 12(4): 227-239.
https://doi.org/10.12677/br.2023.124030
[27] 刘美辰, 左云娟, 刘艳磊, 杨志荣, 靳晓白, 索志立. 基于叶绿体全基因组核苷酸变异位点的大豆属(Glycine Willd.)植物的分子鉴定新方法[J]. 植物学研究, 2024, 13(2): 124-142.
https://doi.org/10.12677/BR.2024.132015
[28] 刘美辰, 张建农, 左云娟, 杨志荣, 靳晓白, 潘伯荣, 常青, 索志立. 基于叶绿体全基因组序列变异位点的葫芦科植物资源遗传多样性的分子鉴定新方法[J]. 植物学研究, 2024, 13(3): 289-314.
[29] Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30, 772-780.
https://doi.org/10.1093/molbev/mst010
[30] Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[31] Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado P., Ramos-Onsins, S.E. and Sán chez-Gracia, A. (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34, 3299-3302.
https://doi.org/10.1093/molbev/msx248
[32] Goodwin, Z.A., Harris, D.J., Filer, D., Wood, J.R.I. and Scotland, R.W. (2015) Wide Spread Mistaken Identity in Tropical Plant Collections. Current Biology, 25, R1057-R1069.
https://doi.org/10.1016/j.cub.2015.10.002
[33] 洪德元. 生物多样性事业需要科学、可操作的物种概念[J]. 生物多样性, 2016, 24(9): 979-999.
https://doi.org/10.17520/biods.2016203
[34] 王文采, 等. 世界植物简志[M]. 北京: 北京出版集团北京出版社, 2021: 1-172.
[35] 朱旭, 李嘉奇. 全球协同落实《昆明-蒙特利尔全球生物多样性框架》的挑战与出路: 基于SFIC模型的分析[J]. 生物多样性, 2023, 31(8): 168-176.