下肢静脉性溃疡辅助疗法的研究进展
Research Progress of Adjuvant Therapy for Venous Leg Ulcers
DOI: 10.12677/acm.2024.1472129, PDF, HTML, XML, 下载: 7  浏览: 14  科研立项经费支持
作者: 陶禹琪, 孙雪薇, 高华阳:黑龙江中医药大学研究生院,黑龙江 哈尔滨;郭伟光*, 于 洋:黑龙江中医药大学附属第二医院周围血管病科,黑龙江 哈尔滨
关键词: 下肢静脉性溃疡发病机制辅助疗法Venous Leg Ulcers Pathogenesis Adjuvant Therapy
摘要: 下肢静脉性溃疡(VLU)是最常见的慢性伤口病因之一,具有显著的发病率,全球约3%的人口受其影响。VLU的并发症包括慢性疼痛、感染和活动受限等,其并发症的危险因素包括年龄、家族史、深静脉血栓形成和肥胖。目前,随着研究的逐步深入,关于VLU伤口的治疗策略也产生了更新,辅助治疗愈加显得额外重要。现就目前VLU的辅助疗法进行主要综述。
Abstract: Venous leg ulcer (VLU) is one of the most common causes of chronic wounds with significant morbidity, affecting about 3% of the global population. Complications of VLU include chronic pain, infection, and limited mobility, and risk factors for complications include age, family history, deep vein thrombosis, and obesity. At present, with the gradual deepening of research, the treatment strategy of VLU wound has also been updated, and adjuvant treatment has become more and more important. This article mainly reviews the current adjuvant therapy of VLU.
文章引用:陶禹琪, 郭伟光, 于洋, 孙雪薇, 高华阳. 下肢静脉性溃疡辅助疗法的研究进展[J]. 临床医学进展, 2024, 14(7): 1178-1185. https://doi.org/10.12677/acm.2024.1472129

1. 引言

下肢静脉性溃疡(venous leg ulcer, VLU)是最常见的慢性伤口病因之一,是由静脉高压引起的静脉疾病的结果[1],经常发生于下肢静脉曲张的患者。VLU有病程长、迁延不愈、愈后易复等特点。它的发生部位通常在脚踝和小腿中部之间的足靴区,其溃疡的难愈性是临床工作者面对的一项挑战。VLU的并发症包括慢性疼痛、感染和活动受限等,其并发症的危险因素包括年龄、家族史、深静脉血栓形成和肥胖[1]。当前,对VLU的预防及治疗仍然是具有挑战性的。据估计,全球约3%的人口受VLU的影响[2],几乎占所有下肢溃疡的70% [3],影响了西方国家30%以上的人口[4]。慢性伤口的治疗时间长,其长期护理产生的费用使财政及卫生系统都面临了巨大的挑战。据报道,美国每年VLU的治疗费用超过140亿美元,在澳大利,每年用于VLU治疗的医疗费用超过30亿澳元[5],而英国则高达9.41亿英镑[6]。这对全球卫生系统来说都是极大的负担。

2. VLU的发病机制

VLU的本质是小腿静脉血液瘀滞引起静脉高压。小腿静脉高压是下肢静脉血液倒流或回流障碍所致的结果,并认为是VLU形成的主要机制[7]。静脉瓣膜衰竭和小腿肌泵功能不全是导致静脉淤滞和静脉高压的主要原因。当静脉处于高压状态时,会改变维持血液流动性和抑制血细胞附着的机械应力,机械应力的改变会破坏保护内皮细胞的保护性糖萼层,使内皮细胞活化,增加内皮细胞的通透性[8]。内皮细胞一旦被激化,粘附分子如ICAM-1、VCAM-1和e-选择素则会发生表达,并化学引诱分子的释放,这些分子则会吸引和招募白细胞,使其在静脉壁和周围组织内附着和迁移[9]。有研究发现,在大鼠体内,血液循环的减慢使白细胞被困于毛细血管中,被困的白细胞则进一步影响毛细血管循环,当毛细血管发生阻塞时,外周的血管阻力会大大升高,此时,白细胞会释放出有毒的氧代谢物和蛋白水解酶,最终导致毛细血管的损伤和缺血[10]。Wilkinson LS等发现,巨噬细胞和T淋巴细胞在血管周围以及真皮基质中的积累与粘附使得VLU皮肤发生变化,最终形成溃疡[11]。综上可知,持续的炎症环境是溃疡发生的主要原因。

3. VLU的治疗进展

3.1. 传统治疗

3.1.1. 压迫疗法

VLU有着众多的传统治疗方式。压迫疗法通过对下肢施加压力,在足踝部和膝部之间形成递减的压力梯度,从而将体液挤压回静脉和淋巴系统,阻止静脉反流,促进静脉回流,以达到减轻淤血、水肿,增加组织氧合,促进溃疡愈合的治疗目的[12]。然而,据统计,压迫疗法有着极高的复发率,12个月内的复发率高达69% [13],与此同时,有高达30%的VLU对压迫治疗毫不见效,甚至在治疗1年后伤口继续开放[14]。由于腿部静脉回流受损,一旦复发成开放性伤口,缓慢的血液流速会增加静脉压力,使得伤口更加难以愈合。

3.1.2. 药物治疗

己酮可可碱是甲基化黄嘌呤衍生物,是一种竞争性、非选择性磷酸二酯酶抑制剂,具有抗氧化和降低炎性反应作用,同时也减少血液黏滞度、降低潜在的血小板聚集与血栓形成[7]。舒洛地特是硫酸氨基葡萄糖类物质,具有纤溶酶原和抗血栓形成活性[15],二者均是形成糖萼的糖蛋白,对改善内皮细胞的通透性,降低炎性反应有着重要作用。阿司匹林对VLU具有缩短愈合时间,减少VLU复发次数的作用[16]。有关资料显示,服用阿司匹林的参与者中有38%报告完全愈合,而安慰剂组为0%。有52%的参与者出现改善(通过伤口大小减少来评估),而安慰剂组为26% [16]。这使阿司匹林的抗炎、抗凝活性得到了进一步证实。

开放性伤口是细菌建立自身并确保自身生存和进化的理想生态位[17],识别和治疗感染静脉性腿部溃疡使得抗生素的合理使用显得尤为重要。生物膜是聚集在表面或空气/液体界面上的在群落中生长的微生物,与浮游生物相比,生物膜对抗菌素、免疫、掠食性和化学攻击的抵抗力更强。下肢静脉溃疡等慢性伤口的表面是细菌生物膜常出现的地方,一旦出现会导致慢性炎症的发生和伤口愈合延迟[18]。由于生物膜本身抗抗菌剂的特性,导致其缺乏对抗菌剂的响应性,故应将伤口研究重点放在抗生物膜疗法上。Dowd等人建立了LCWB模型来评估不同抗菌剂体外抑制生物膜形成的疗效。结果显示,20%木糖醇、10%赤藓糖醇、1000 mg/mL法尼醇、20 mM水杨酸和0.1%的Sanguitec凝胶对生物膜的形成具有完全抑制作用[19]。Thorn等人研究了含银(Aquacel Ag)和碘(Iodozyme)的伤口敷料对平板灌注生物膜模型的抗菌效果。结果显示,碘敷料对生物膜的去除效果优于银敷料[20]

3.1.3. 手术治疗

手术治疗包括针对浅静脉、交通静脉及深静脉三大系统的治疗。浅静脉系统是对大隐静脉或小隐静脉、曲张静脉剥脱,或硬化剂注射等其他治疗[21];对于交通支静脉的治疗,近些年先后出现了以腔内热消融(endovascular thermal ablation, EVTA),泡沫硬化治疗(foam sclerotherapy, FS)及氰基丙烯酸酯栓塞(cyanoaerylate adhesive perforator embolization, CAPE)为代表的治疗方式[22]-[24]。深、浅静脉功能不全的病理变化常互为因果。先天性无瓣症,或下肢深静脉血栓形成后遗症(PTS)等原因所导致的深静脉瓣膜功能不全或阻塞可产生下肢深、浅静脉系统和穿通静脉的反流,进而产生下肢静脉高压[12]。因此,深静脉回流手术作为深度重建手术需与浅表和穿支手术结合,故深静脉回流手术的具体效应不容易得到评估。

3.2. 辅助疗法

对静脉溃疡当前病理生理学的更好理解导致了其管理方法的更新,包括生长因子、新型伤口敷料、光疗、低温常压等离子体、皮肤微生物群、富血小板血浆疗法、高压氧治疗、负压治疗和高强度聚焦超声等治疗方式。保持生长因子与愈合组织接触可能会加速溃疡的愈合。在一项开放的随机对照试验中,一种人羊膜异体移植物(EpiFix)在伤口愈合方面取得了有效的效果。羊膜的生物特性包括抗炎、抗微生物和抗纤维化等,其富含的生长因子通过抑制炎症和感染、促进角质形成细胞的增殖和分化达到促进伤口愈合的目的[25] [26]。Noriko Koizumi等采用RT-PCR检测人羊膜中生长因子及生长因子受体mRNA的表达,RT-PCR结果显示,人羊膜含有EGF、TGF-α、KGF、HGF、bFGF、TGF-β1、-β2 7种生长因子[26]。有研究表明,与剥去上皮的羊膜相比,天然完整的羊膜含有更高水平的EGF、KGF、HGF和bFGF [27],这表明这些生长因子起源于羊膜上皮,并可能在羊膜移植后的伤口愈合中发挥了重要作用。

慢性伤口治疗所需的伤口敷料有各种类型,其目的多种多样,包括为创面提供湿润的愈合环境(如薄膜、泡沫、水胶体、海藻酸盐、水凝胶),减少细菌负荷和感染(如含银或碘的敷料[28]或含有支持伤口愈合成分的敷料(如胶原蛋白、纤维素等) [29]。银离子对宿主和微生物细胞的蛋白质、多肽、氨基酸和细胞表面结构有很强的亲和力[30],因其已被证实的抗菌性能而被广泛应用。当前,对伤口微环境的深入了解使得新型伤口敷料逐渐被开发。盐酸辛替尼定对溃疡中分离的革兰氏阴性菌和革兰氏阳性菌均有较高的抑菌活性,这为使用现代敷料治疗创面打下了基础[31]。Simon Barrett等研究显示,一种新型的具有有机硅界面的自粘高吸水性敷料可以有效地控制中等至高度渗出性创面的伤口渗出,从而对创面边缘和创面周围的皮肤产生积极的影响[32]。Siyao Cheng等制备的不使用交联剂的阳离子水凝胶(PHCI)具有高生物相容性和较强的内在抗菌性能,同样对革兰氏阳性和革兰氏阴性菌株有良好的抗菌活性,与此同时可以促进巨噬细胞由促炎M1表型向修复M2表型转化,加速胶原沉积和血管形成,从而实现快速止血和加速伤口愈合的目的[33]。PHCI的高水平生物相容性使其在生物领域的应用上具备了潜在的发展前景,为水凝胶创面敷料领域提供了新的思路。

低强度光疗法(LLLT)是一种光疗形式,作用包括加速组织修复,增加肉芽组织形成,减小伤口,减轻炎症和疼痛[34]。其产生电磁辐射的能量可以与活组织相互作用,重建细胞稳态环境。LLLT具有生物刺激等特点,当光能量被细胞色素C氧化酶即线粒体呼吸链复合体Ⅳ的细胞分子光感受器吸收时,组织会产生物理或化学变化,开启生化途径,使细胞活化[35]。细胞活性的增加以及相关细胞的增殖可能有助于组织修复和再生[36]。发光二极管(led)是另一种类型的LLLT,通过“启动”细胞产生更多的三磷酸腺苷(ATP)来增加DNA和RNA的活性,从而对细胞产生有益的影响。LED具有抗炎消退、新生血管生成、成纤维细胞和上皮细胞增殖、胶原合成和沉积等生理作用,被用于治疗感染、缺血和缺氧伤口以及人类和动物软组织损伤[37]。一名患有下肢静脉溃疡的47岁男子,在使用LED结合伤口敷料治疗18次后,腿部溃疡的大小、深度和疼痛均有减少[37]。这为使用LED治下肢静脉性溃疡提供了新的证据。有研究表明红色led照射的强度和持续时间是提高生物活性的关键因素,660 nm的红色LED可以促进细胞迁移,这可能成为光疗在伤口愈合治疗上的良好医学来源,但其传导机制尚未确定[38]。光生物调节疗法(PBMT)与蓝光联合标准治疗在伤口愈合方面也显示出良好的耐受性、安全性和有效性[39]

低温常压等离子体(CAP)作为一种有前途的创新方法,在肿瘤学、皮肤病学等不同医学领域被广泛研究,其在伤口愈合和抗菌性能方面具有很大优势,目前已作为一种潜在的新型治疗方式被引入到慢性伤口的治疗中[40]。CAP具有抗菌、抗肿瘤、抗炎和促进伤口愈合的作用[41]。先前的研究证明了CAP在治疗压疮、烧伤创面、糖尿病足小鼠的溃疡等方面的有效性。CAP喷射治疗通过减小创面面积和细菌负荷来缩短VLU创面愈合的时间。Shirin Samsavar等报导了一例低温常压等离子体喷射(CAP-jet)治疗慢性静脉溃疡的病例,在CAP-jet治疗4周后患者的溃疡完全愈合[42]。这证明了CAP喷射治疗对慢性静脉溃疡似乎是一种安全有效的治疗方式。

皮肤微生物群在慢性伤口的发生和愈合中起着至关重要的作用[43]。最近的研究进展发现,在伤口环境中,不同微生物物种之间以及微生物物种与宿主免疫系统之间存在着相互作用[44]。一些共生细菌被发现对伤口愈合的过程产生了有益的影响,包括表皮葡萄球菌、植物乳杆菌、发酵乳杆菌、酿酒酵母菌、罗伊氏乳杆菌和纳豆枯草芽孢杆菌[9]。共生微生物群是由浆细胞样树突状细胞(pDC)产生的I型干扰素(IFN)募集和激活介导的。pDC产生的I型IFN作为皮肤修复的早期触发因素有着关键作用,而I型IFN伤口中的表达是通过激活TLR9发生的[45]。定植在皮肤伤口上的共生菌可激活中性粒细胞表达趋化因子CXCL10,CXCL10可将pDC招募到受伤的皮肤中,并通过杀死细菌和与其DNA形成免疫原性复合物来触发TLR9的激活。因此,活化的pDC产生大量I型IFN,并通过刺激成纤维细胞和巨噬细胞产在伤口愈合中起主要作用的生长因子,释放早期伤口修复反应[46]。这为皮肤微生物群在慢性伤口中的治疗奠定了发展基础。不足的是,I型IFN激活成纤维细胞和巨噬细胞的确切机制尚不清楚,还有待进一步研究。

血小板含包含的蛋白质被称为生长因子,其触发的生物效应是组织修复和再生过程中的关键因素,包括定向细胞迁移(即趋化性)、血管生成、细胞增殖和分化[47]。近年来随着对血小板功能的理解不断深入,富血小板血浆(PRP)在刺激和加速软组织愈合方面取得了突破性进展,PRP愈加成为临床工作者关注和讨论的焦点[47]。PRP是血小板α-颗粒分泌的凝血细胞,是细胞因子和各种生长因子的集合体,在调节炎症、血管生成、合成和重塑组织细胞方面具有积极作用[48]。有研究将低白细胞PRP (P-PRP)凝胶外敷治疗与生理盐水组做观察比较,结果显示,在相同加压剂和局部护理的条件下,P-PRP组在慢性静脉性溃疡的愈合过程中疗效优于生理盐水组[49]。一项meta分析显示,与对照组相比,PRP组对于伤口感染发生的概率更低,更有利于完全愈合[50]。不幸的是,相关研究表示有恶性肿瘤病史的一些患者使用生长因子制剂rhPDGF-BB与其死亡风险增加有关,故不建议在这些患者中使用[51]。因此,关于PRP的长期安全性,需要有更长时间的随访期的前瞻性研究来验证。

高压氧治疗(HBOT)被证明会导致组织的高氧合、血管收缩、成纤维细胞活化、炎症细胞因子的下调、生长因子的上调、抗菌作用、抗生素的增强以及白细胞趋化性的降低[52]。其应用于慢性伤口的主要原理是改善组织氧合进而促进创面愈合。通过在压缩室中以2.0~2.5个大气压吸100%的氧气来增加血浆氧水平从而改善伤口愈合情况,已被建议用于治疗慢性伤口[53]。但是,由于HBOT对VLU愈合的影响缺乏证据,故VLU还不是HBOT的公认适应症[54]。未来需要开发出更多新的证据并将研究重点应放在HBOT对VLU的疗效上。

负压伤口疗法(NPWT)作为慢性溃疡管理的一种替代疗法,具有增加血流量,加速肉芽组织生长,减轻伤口水肿和渗出的作用[55]。NPWT通过在伤口上敷上带有可以施加负压(或真空)的机器的敷料,将组织液从目标区域吸到一个罐中。一项随机对照研究显示,将真空辅助治疗组与进行定时创面清创的对照组对比,真空辅助治疗组的肉芽组织生长速度更明显[56]。这表明真空辅助疗法对是一种可行的、安全有效的方法。

高强度聚焦超声(HIFU)的概念于1942年提出,用于治疗肿瘤、肾结石和子宫肌瘤[57]。当前,HIFU被用于治疗静脉曲张、腿部静脉溃疡和其他静脉反流性疾病[58]。HIFU通过高强度聚焦光将超声波能量从传感器发射到静脉上方的皮肤上,然后在静脉上方的皮肤上轻轻按压,不但可以使静脉闭合,还可以清除任何可能形成血栓的血液[58] [59]。高功率声束的聚焦会诱导局部高温(接近100℃),故会在超声前注射少量麻醉剂(8 ml) [59]

4. 展望

随着人口年龄的增长,VLU的发生变得愈加普遍,这使其治疗策略不断更新,持续全程的溃疡管理也显得尤为重要。在近些年的临床治疗中,辅助疗法的应用受到了广泛重视并取得了良好的临床效应。但是,目前关于辅助疗法的临床研究和证据仍具有局限性,现有的技术需进一步改进,现有的项目需进行进一步评估和临床验证。在未来的随机调查研究中,应侧重于更大的样本量和更长时间的随访时来证实这些发现。

基金项目

黑龙江省中医药管理局课题,课题编号ZHY2020-156。

NOTES

*通讯作者。

参考文献

[1] Veličković, V.M., Macmillan, T., Kottner, J., et al. (2024) Prognostic Models for Clinical Outcomes in Patients with Venous Leg Ulcers: A Systematic Review. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 12, Article 101673.
https://doi.org/10.1016/j.jvsv.2023.06.017
[2] Lichterfeld-Kottner, A., Lahmann, N., Blume-Peytavi, U., et al. (2018) Dry Skin in Home Care: A Representative Prevalence Study. Tissue Viability, 27, 226-231.
https://doi.org/10.1016/j.jtv.2018.07.001
[3] Abbade, L. and Lastoria, S. (2005) Venous Ulcer: Epidemiology, Physiopathology, Diagnosis and Treatment. International Journal of Dermatology, 44, 449-456.
https://doi.org/10.1111/j.1365-4632.2004.02456.x
[4] Evans, C.J., Fowkes, F.G.R., Ruckley, C.V. and Lee, A.J. (1999) Prevalence of Varicose Veins and Chronic Venous Insufficiency in Men and Women in the General Population: Edinburgh Vein Study. Journal of Epidemiology and Community Health, 53, 149-153.
https://doi.org/10.1136/jech.53.3.149
[5] Weller, C. and Evans, S. (2012) Venous Leg Ulcer Management in General Practice—Practice Nurses and Evidence Based Guidelines. Australian Family Physician, 41, 331-337.
[6] Guest, J.F., Ayoub, N., McIlwraith, T., et al. (2017) Health Economic Burden That Different Wound Types Impose on the UK’S National Health Service. International Wound Journal, 14, 322-330.
https://doi.org/10.1111/iwj.12603
[7] 崔超毅, 黄新天. 下肢静脉性溃疡诊治进展[J]. 中国实用外科杂志, 2021, 41(12): 1419-1422.
[8] Liu, H.Q., Li, J., Xuan, C.L., et al. (2020) A Review on the Physiological and Pathophysiological Role of Endothelial Glycocalyx. Journal of Biochemical and Molecular Toxicology, 34, E22571.
https://doi.org/10.1002/jbt.22571
[9] Coelho, G.A., Secretan, P.H., Tortolano, L., et al. (2023) Evolution of the Chronic Venous Leg Ulcer Microenvironment and Its Impact on Medical Devices and Wound Care Therapies. Clinical Medicine, 12, Article 5605.
https://doi.org/10.3390/jcm12175605
[10] Smith, P.D.C., Thomas, P., Scurr, J.H., et al. (1988) Causes of Venous Ulceration: A New Hypothesis. British Medical Journal, 296, Article 1726.
https://doi.org/10.1136/bmj.296.6638.1726
[11] Wilkinson, L.S., Bunker, C., Edwards, J.C., et al. (1993) Leukocytes: Their Role in the Etiopathogensis of Skin Damage in Venous Disease. Journal of Vascular Surgery, 17, 669-675.
[12] 李政, 崔佳森. 下肢静脉性溃疡的治疗进展[J]. 中国普通外科杂志, 2017, 26(12): 1604-1608.
[13] Turner, B.R.H., Jasionowska, S., Machin, M., et al. (2023) Systematic Review and Meta-Analysis of Exercise Therapy for Venous Leg Ulcer Healing and Recurrence. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 11, 219-226.
https://doi.org/10.1016/j.jvsv.2022.09.003
[14] Guest, J.F., Vowden, K. and Vowden, P. (2017) The Health Economic Burden That Acute and Chronic Wounds Impose on an Average Clinical Commissioning Group/Health Board in the UK. Wound Care, 26, 292-303.
https://doi.org/10.12968/jowc.2017.26.6.292
[15] 蒋超, 叶炜. 舒洛地特在静脉疾病方面的临床应用[J]. 血管与腔内血管外科杂志, 2016, 2(3): 246-250.
[16] de Oliveira Carvalho, P.E., et al. (2016) Oral Aspirin for Treating Venous Leg Ulcers (Review). Cochrane Database of Systematic Reviews, 2016, Article No. CD009432.
https://doi.org/10.1002/14651858.CD009432.pub2
[17] Landis, S.J. (2008) Chronic Wound Infection and Antimicrobial Use. Advances in Skin & Wound Care, 21, 531-540.
https://doi.org/10.1097/01.ASW.0000323578.87700.a5
[18] Wolcott, R. and Dowd, S. (2011) The Role of Biofilms: Are We Hitting the Right Target? Plastic and Reconstructive Surgery, 127, 36S-37S.
https://doi.org/10.1097/PRS.0b013e3182001845
[19] Dowd, S.E., Sun, Y., Smith, E., et al. (2009) Effects of Biofilm Treatments on the Multi-Species Lubbock Chronic Wound Biofilm Model. Wound Care, 18, 508-512.
https://doi.org/10.12968/jowc.2009.18.12.45608
[20] Thorn, R.M., Austin, A.J., Greenman, J., et al. (2009) In Vitro Comparison of Antimicrobial Activity of Iodine and Silver Dressings Against Biofilms. Wound Care, 18, 343-346.
https://doi.org/10.12968/jowc.2009.18.8.43635
[21] Malas, M.B., Qazi, U., Lazarus, G., et al. (2014) Comparative Effectiveness of Surgical Interventions Aimed at Treating Underlying Venous Pathology in Patients with Chronic Venous Ulcer. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2, 212-225.
https://doi.org/10.1016/j.jvsv.2013.10.002
[22] Rabinovich, A. and Kahn, S.R. (2017) The Postthromboticsyndrome: Current Evidence and Future Challenge. Thrombosis and Haemostasis, 15, 230-241.
https://doi.org/10.1111/jth.13569
[23] Chen, C.H., Chiu, C.S. and Yang, C.H. (2012) Ultrasound-Guided Foam Scle—Rotherapy for Treating Incompetent Great Saphenous Veins-Results of 5 Years of Analysis and Morphologic Evolvement Study. Dermatologic Surgery, 38, 851-857.
https://doi.org/10.1111/j.1524-4725.2012.02408.x
[24] Murad, M.H., Coto-Yglesias, F., Zumaeta-Garcia, M., et al. (2011) A Systematic Review and Meta-Analysis of the Treatments of Varicose Veins. Vascular Surgery, 53, 49-65.
https://doi.org/10.1016/j.jvs.2011.02.031
[25] Niknejad, H., Peirovi, H., Jorjani, M., Ahmadiani, A., Ghanavi, J. and Seifalian, A.M. (2008) Properties of the Amniotic Membrane for Potential Use in Tissue Engineering. European Cells & Material, 15, 88-99.
https://doi.org/10.22203/eCM.v015a07
[26] Koizumi, N.J., Inatomi, T.J., Sotozono, C.J., Fullwood, N.J., Quantock, A.J. and Kinoshita, S. (2000) Growth Factor mRNA and Protein in Preserved Human Amniotic Membrane. Current Eye Research, 20, 173-177.
https://doi.org/10.1076/0271-3683(200003)20:3;1-9;FT173
[27] Uchida, S., Inanaga, Y., Kobayashi, M., et al. Neurotrophic Function of Conditioned Medium from Human Amniotic Epithelial Cells. Neuroscience Research, 62, 585-590.
https://doi.org/10.1002/1097-4547(20001115)62:4%3C585::AID-JNR13%3E3.0.CO;2-U
[28] Powers, J.G., Morton, L.M. and Phillips, T.J. (2013) Dressings for Chronic Wounds. Dermatologic Therapy, 26, 197-206.
https://doi.org/10.1111/dth.12055
[29] Velasco, M. (2011) Diagnostic and Treatment of Leg Ulcers. Actas Dermo-Sifiliográficas, 102, 780-790.
https://doi.org/10.1016/j.ad.2011.05.005
[30] Walker, M. and Parsons, D. (2014) The Biological Fate of Silver Ions Following the Use of Silver-Containing Wound Care Products—A Review. International Wound Journal, 11, 496-504.
https://doi.org/10.1111/j.1742-481X.2012.01115.x
[31] Sopata, M., Kucharzewski, M. and Tomaszewska, E. (2016) Antiseptic with Modern Wound Dressings in the Treatment of Venous Leg Ulcers: Clinical and Microbiological Aspects. Wound Care, 25, 419-426.
https://doi.org/10.12968/jowc.2016.25.8.419
[32] Barrett, S., Rippon, M. and Rogers, A.A. (2020) Treatment of 52 Patients with a Self-Adhesive Siliconised Superabsorbent Dressing: A Multicentre Observational Study. Journal of Wound Care, 29, 340-349.
https://doi.org/10.12968/jowc.2020.29.6.340
[33] Cheng, S., Wang, H., Pan, X., et al. (2022) Dendritic Hydrogels with Robust Inherent Antibacterial Properties for Promoting Bacteria-Infected Wound Healing. ACS Applied Materials & Interfaces Journal, 14, 11144-11155.
https://doi.org/10.1021/acsami.1c25014
[34] Tchanque-Fossuo, C.N., Ho, D., Dahle, S.E., et al. (2016) A Systematic Review of Low-Level Light Therapy for Treatment of Diabetic Foot Ulcer. Wound Repair and Regeneration, 24, 418-426.
https://doi.org/10.1111/wrr.12399
[35] Illescas-Montes, R., Atkinson, R.A. and Cullum, N. (2018) Low-Level Light Therapy for Treating Venous Leg Ulcers. Cochrane Database of Systematic Reviews, 2018, CD013061.
https://doi.org/10.1002/14651858.CD013061
[36] de Freitas, L.F. and Hamblin, M.R. (2016) Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE Journal of Selected Topics in Quantum Electronics, 22, Article 7000417.
https://doi.org/10.1109/JSTQE.2016.2561201
[37] Sitohang, I.B.S., Ramadhiani, M., Rachmani, K., et al. (2020) Combination Treatment with Light Emitting Diode and Wound Dressings in a Patient with a Venous Leg Ulcer: A Case Report. Acta Dermatovenerologica Alpina, Pannonica et Adriatica, 29, 39-42.
https://doi.org/10.15570/actaapa.2020.9
[38] Kim, M.S., Cho, Y.I., Kook, M.S., et al. (2015) Effect of 660 nm Lightemitting Diode on the Wound Healing in Fibroblast-Like Cell Lines. International Journal of Photoenergy, 2015, Article ID: 916838.
https://doi.org/10.1155/2015/916838
[39] Khoo, V.B., Soon, S., Yap, C.J., et al. (2021) Use of Blue Light in the Management of Chronic Venous Ulcer in Asian Patients: A Case Series. Cureus, 13, e17703.
https://doi.org/10.7759/cureus.17703
[40] Haertel, B., Von Woedtke, T., Weltmann, K.D., et al. (2014) Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing. Biomolecules & Therapeutics, 22, 477-490.
https://doi.org/10.4062/biomolther.2014.105
[41] García-Alcantara, E., López-Callejas, R., Morales-Ramírez, P.R., et al. (2013) Accelerated Mice Skin Acute Wound Healing in Vivo by Combined Treatment of Argon and Helium Plasma Needle. Archives of Medical Research, 44, 77-166.
https://doi.org/10.1016/j.arcmed.2013.02.001
[42] Samsavar, S., Mahmoudi, H., Khani, M.R., et al. (2022) Treatment of Chronic Venous Ulcer with Cold Atmospheric Plasma Jet. Case Reports in Dermatology, 14, 344-349.
https://doi.org/10.1159/000527018
[43] Omar, A., Wright, J.B., Schultz, G., et al. (2017) Microbial Biofilms and Chronic Wounds. Microorganisms, 5, Article 9.
https://doi.org/10.3390/microorganisms5010009
[44] Canchy, L., Kerob, D., Demessant, A., et al. (2023) Wound Healing and Microbiome, an Unexpected Relationship. Journal of the European Academy of Dermatology and Venereology, 37, 7-15.
https://doi.org/10.1111/jdv.18854
[45] Gregorio, J., Meller, S., Conrad, C., et al. (2010) Plasmacytoid Dendritic Cells Sense Skin Injury and Promote Wound Healing Through Type I Interferons. Journal of Experimental Medicine, 207, 2921-2930.
https://doi.org/10.1084/jem.20101102
[46] Di Domizio, J., Belkhodja, C., et al. (2020) The Commensal Skin Microbiota Triggers Type I IFN Dependent Innate Repair Responses in Injured Skin. Nature Immunology, 21, 1034-1045.
https://doi.org/10.1038/s41590-020-0721-6
[47] Suthar, M., Gupta, S., Bukhari, S., et al. (2017) Treatment of Chronic Non-Healing Ulcers Using Autologous Platelet Rich Plasma: A Case Series. Journal of Biomedical Science, 24, Article No. 16.
https://doi.org/10.1186/s12929-017-0324-1
[48] Andia, I. and Abate, M. (2013) Platelet-Rich Plasma: Underlying Biology and Clinical Correlates. RegenMed, 8, 645-658.
https://doi.org/10.2217/rme.13.59
[49] Huber, S.C., de Moraes Martinelli, B., Quintero, M., et al. (2021) A Case Series of Platelet Rich Plasma in Chronic Venous Ulcers. Regenerative Therapy, 18, 51-58.
https://doi.org/10.1016/j.reth.2021.03.005
[50] Carter, M.J., Fylling, C.P. and Parnell, L.K.S. (2011) Use of Platelet Rich Plasma Gel on Wound Healing: A Systematic Review and Meta-Analysis. Eplasty, 11, E38.
[51] Lacci, K.M. and Dardik, A. (2010) Platelet-Rich Plasma: Support for Its Use in Wound Healing. Yale Journal of Biology and Medicine, 83, 1-9.
[52] Dimitrijevich, S.D., Paranjape, S., Wilson, J.R., et al. (1999) Effect of Hyperbaric Oxygen on Human Skin Cells in Culture and in Human Dermal and Skin Equivalents. Wound Repair and Regeneration, 7, 53-64.
https://doi.org/10.1046/j.1524-475x.1999.00053.x
[53] Tibbles, P.M. and Edelsberg, J.S. (1996) Hyperbaric-Oxygen Therapy. The New England Journal of Medicine, 334, 1642-1648.
https://doi.org/10.1056/NEJM199606203342506
[54] Lalieu, R.C., Akkerman, I. and Hulst, R.A.V. (2021) Hyperbaric Oxygen Therapy for Venous Leg Ulcers: A 6 Year Retrospective Study of Results of a Single Center. Frontiers in Medicine, 8, 671-678.
https://doi.org/10.3389/fmed.2021.671678
[55] Ali, Z., Anjum, A., et al. (2015) Evaluation of Low-Cost Custom Made VAC Therapy Compared with Conventional Wound Dressings in the Treatment of Non-Healing Lower Limb Ulcers in Lower Socio-Economic Group Patients of Kashmir Valley. Journal of Orthopaedic Surgery and Research, 10, Article 183.
https://doi.org/10.1186/s13018-015-0314-5
[56] Gonzalez, I.G., Angel, M.A.L., Baez, M.V., et al. (2017) Handcrafted Vacuum-Assisted Device for Skin Ulcers Treatment versus Traditional Therapy, Randomized Controlled Trial. World Journal of Surgery, 41, 386-393.
https://doi.org/10.1007/s00268-016-3782-9
[57] Alizadeh, Z., Halabchi, F., Mazaheri, R., et al. (2016) Review of the Mechanisms and Effects of Noninvasive Body Contouring Devices on Cellulite and Subcutaneous Fat. Endocrinology and Metabolism, 14, e36727.
https://doi.org/10.5812/ijem.36727
[58] Whiteley, M.S. (2020) High Intensity Focused Ultrasound (HIFU) for the Treatment of Varicose Veins and Venous Leg Ulcers—A New Noninvasive Procedure and a Potentially Disruptive Technology. Current Medical Research and Opinion, 36, 509-512.
https://doi.org/10.1080/03007995.2019.1699518
[59] Obermayer, A., Aubry, J.F. and Barnat, N. (2020) Extracorporeal Treatment with High Intensity Focused Ultrasound of an Incompetent Perforating Vein in a Patient with Active Venous Ulcers. EJVES Vascular Forum, 50, 1-5.
https://doi.org/10.1016/j.ejvsvf.2020.11.005