OCT和OCTA在各种眼底疾病中的应用
Application of OCT and OCTA in Various Fundus Diseases
DOI: 10.12677/acm.2024.1472114, PDF, HTML, XML, 下载: 2  浏览: 6 
作者: 王声蕊:内蒙古民族大学第二临床医学院,内蒙古 通辽;内蒙古林业总医院眼科,内蒙古 呼伦贝尔;赵全良*:内蒙古林业总医院眼科,内蒙古 呼伦贝尔
关键词: 光学相干断层扫描(OCT)光学相干断层扫描血管造影(OCTA)糖尿病性视网膜病变年龄相关性黄斑变性视网膜静脉阻塞视网膜动脉阻塞OCT OCT Angiography Diabetic Retinopathy Age-Related Macular Degeneration Retinal Venous Obstruction (RVO) Retinal Arterial Obstruction (RAO)
摘要: 光学相干断层扫描(OCT)利用低相干光波来评估眼部特征。OCT是一种无创成像方式,可以快速生成眼部组织图像。两种常用的OCT包括谱域(SD)和扫描源(SS)。每一种都有不同的波长和组织穿透能力。OCT血管造影(OCTA)是OCT的功能延伸,它通过大量像素来捕获组织和潜在的血流。这使得OCTA可以在广泛的条件下测量缺血和血管的划分。本文综述了四种常见的视网膜疾病,包括糖尿病性视网膜病变(DR)、年龄相关性黄斑变性(AMD)、视网膜静脉阻塞(RVO),视网膜动脉阻塞(RAO)。成像技术包括OCT和OCTA,除了在临床环境中进行常规诊断和管理外,还有助于了解疾病的发病机制和疾病进展的自然史。
Abstract: Optical coherence tomography (OCT) utilizes low coherence light waves to assess characteristics in the eye. OCT is a noninvasive imaging modality that generates images of ocular tissues at a rapid speed. Two commonly used iterations of OCT include spectral-domain (SD) and swept-source (SS). Each comes with different wavelengths and tissue penetration capacities. OCT angiography (OCTA) is a functional extension of the OCT. It generates a large number of pixels to capture the tissue and underlying blood flow. This allows OCTA to measure ischemia and demarcation of the vasculature in a wide range of conditions. This review focused on the study of four commonly encountered diseases involving the retina including diabetic retinopathy (DR), age-related macular degeneration (AMD), retinal venous obstruction (RVO), retinal arterial obstruction (RAO). Imaging techniques including OCT, and OCTA assist with understanding the disease pathogenesis and natural history of disease progression, in addition to routine diagnosis and management in the clinical setting.
文章引用:王声蕊, 赵全良. OCT和OCTA在各种眼底疾病中的应用[J]. 临床医学进展, 2024, 14(7): 1057-1065. https://doi.org/10.12677/acm.2024.1472114

1. 引言

光学相干断层扫描(OCT)是一种非侵入性的成像方式,可以实现视网膜横切面的体内成像[1]。自1991年首次推出以来[2],OCT已被用于定量评估视网膜厚度和定性评估解剖变化,如存在或不存在许多病理特征,包括视网膜内和视网膜下积液。原始OCT实现使用时域技术(TD-OCT),需要移动参考镜。因此,TD-OCT每秒只允许400次a扫描,通常只用于评估在中央凹相交的6个均匀间隔的径向线扫描。在最理想的情况下,TD-OCT的分辨率也限制在10~15 mm [2]。在实施频域技术(SD-OCT),即傅立叶域(FD-OCT)方法之前,TD-OCT的整体接受度和临床应用受到限制,该方法允许每秒进行20,000至40,000次a扫描。这大大提高了视场和图像分辨率(3~5 mm),减少了运动伪影。随后的进展,如扫描源OCT (SS-OCT),结合了长波长和窄带宽的源,可以在宽范围的光学频率上扫描,从而实现非常高的空间分辨率和改进的组织穿透力。这些成像技术都可能受到介质混浊如致密性白内障或玻璃体出血的限制。

光学相干断层扫描血管造影(OCTA)是一种新颖的、无创的、无染料的成像方式,可提供体内视网膜血管的高分辨率、深度分辨率成像[3]。OCTA技术是基于检测从视网膜同一位置快速连续拍摄的重复横切面OCT图像之间的信号差异。与来自静态结构背景组织的稳定信号相比,重复扫描之间的这些时间信号差异归因于血管内红细胞的运动[4]。该过程突出显示血流区域,使微血管可视化达到毛细血管水平,分辨率接近组织学精度[5]。此外,由于OCTA基于OCT技术,该技术提供视网膜的结构横截面数据,因此可以对视网膜不同层的血管进行分割和单独分析。根据特定的参考平面,可以对不同的组织层或“板”进行分割,生成视网膜特定层内不同血管丛的二维面视图[6]。OCTA图像分析的新方法越来越多地采用体绘制来可视化完整的3D血管系统,而不是传统的二维(2D)投影方法[7]。临床上,OCTA可以发现多种血管病理特征,包括微动脉瘤和大动脉瘤、毛细血管重构、新生血管形成、黄斑毛细血管扩张、视网膜非灌注和静脉畸形[8]。因此,OCTA在视网膜血管疾病的诊断成像中开辟了一个新的范例,将加深我们对这些疾病的理解,并可能最终为患者带来临床益处。本文综述了四种常见的视网膜疾病,包括糖尿病性视网膜病变(DR)、年龄相关性黄斑变性(AMD)、视网膜静脉阻塞(RVO),视网膜动脉阻塞(RAO)。目的是为了展示这些现代成像技术如何进一步服务于眼科临床诊断和管理。

2. 糖尿病性视网膜病变

2.1. 背景

糖尿病视网膜病变(DR)是糖尿病最常见、最严重的眼部并发症[9]。DR是发达国家视力丧失的主要原因[10]。2015年全球糖尿病患者数量达到4.1亿,预计到2040年将达到6.4亿。大约40%的2型糖尿病患者和86%的1型糖尿病患者患有糖尿病视网膜病变。糖尿病视网膜病变可分为非增殖性和增殖性。DR的其他危险因素包括高脂血症、微量白蛋白尿和高血压[11]。因此,早期诊断并及时控制血压和血糖可显著减少糖尿病并发症。

2.2. DR在OCT和OCTA中的应用

DR有两种亚型分别是非增殖性和增殖性。基于糖尿病的持续时间及其严重程度,使用OCT和OCTA这两种成像技术,提高了对DR的研究和管理的整体认识[12]。本文综述了这些影像学检查的临床表现。

糖尿病导致视力丧失有两个主要原因:毛细血管渗漏引起的黄斑水肿和毛细血管阻塞引起的黄斑缺血。视网膜毛细血管丛位于视网膜内,也位于深部神经节细胞、内丛状层和深部内核层中[13]。此外,视网膜内层的破坏(DRIL)程度与视力呈正相关。这表明DRIL可以作为预测DME眼视觉变化的可靠标记物[14]

氨基聚糖和炎症改变视网膜血管的完整性,导致浅表血管缺血和新生血管形成,同时也会累及脉络膜[15]。SD-OCT用于测量脉络膜厚度,正常眼睛的脉络膜厚度通常在250~350 µm之间。最近的一项研究使用SS-OCT测量2型糖尿病患者眼睛的脉络膜厚度,在图像上显示弥漫性脉络膜变薄[16]

SS-OCT显示脉络膜厚度的细微变化可区分早期和晚期DR [17]。一些资料显示,在轻度DR中,脉络膜厚度轻度增加,之后随着DR的进展脉络膜厚度逐渐变薄[18]。这一观察结果解释了DR早期脉络膜厚度的临床变化,并提示了多模态成像方法可能对糖尿病视网膜病变的管理和监测起着至关重要的作用。

DME是由视网膜潜在缺血血管的炎症和灌注不足引起的。长期的高血糖导致视网膜供氧减少和血管舒张所需氧增加[19]-[21]。由于静水压力增加导致血管渗漏,导致黄斑积聚液体。潜在的血管生成和炎症都参与了DME的发展。然而,因果关系尚不清楚:因此尚不清楚血管生成是炎症过程的原因还是结果[19]。OCT的进步使得DME根据其影像学表现有了更具体的分类。OCT上DME的四种主要类型是弥漫性视网膜增厚、囊样黄斑水肿、浆液性视网膜脱离(SRD)和混合型[22]。在每个亚型中都发现了炎症的变化,需要针对不同类型进行治疗。SRD型对视力丧失的预后较差。因此,房水和玻璃体中较高浓度的炎症细胞因子,如IL-6,促进了针对炎症的药物治疗的各种临床试验,特别是在SRD型中[22]

DME又可分为中心累及和非中心累及。累及中心的DME引起的视网膜增厚是糖尿病人群视力丧失的最常见原因[23]。中央凹无血管区(FAZ)解剖学上位于中央凹中心,生理性上缺乏血液供应。视网膜色素上皮层(RPE)泵是在FAZ水平上重吸收细胞外液的唯一机制[20],这解释了该解剖区域常有液体聚集的原因。

DR的眼睛会存在各种血管异常,而OCTA可以很好地识别这些血管异常,如微动脉瘤、静脉珠状和静脉袢以及视网膜内微血管异常。OCTA的深度分辨特性可以更为全面地评估这些已知的DR临床症状,并且在评估新生血管的存在方面非常有用[24]。除了定性异常外,OCTA的一个主要优势是它可以提供定量的血管指标来评估和评价DR。这些指标包括定量的FAZ参数[25]和与非灌注和毛细血管密度相关的指标[26],这些指标在DR中的预后意义都在研究中。研究者已经能够在没有临床可见的DR的情况下检测到眼睛的微循环变化,这改变了我们对DR或糖尿病视网膜疾病早期阶段的理解,甚至可以评估早期疾病的预防性治疗[27]。有研究表明,OCTA显示患有DR和DME的眼睛中眼底FAZ面积大,深毛细血管丛血管密度低,糖尿病视网膜病变进展的风险较高[28]。此外,OCTA显示黄斑血管密度的进行性下降与糖尿病视网膜病变的恶化有关[29]

3. 年龄相关性黄斑变性

3.1. 背景

年龄相关性黄斑变性(AMD)影响着全世界数百万人,是全球失明的主要原因之一。全球约有8.7%的人患有此病,预计2040年患病人口约为2.88亿人[30]。AMD主要分为新生血管性AMD和非新生血管性AMD两种类型,可根据疾病的具体特征进一步分类。非新生血管性AMD (干性AMD)约占所有病例的80%至85%,通常具有较好的视觉预后。新血管性AMD (湿性AMD)影响剩余的15%至20%,约占AMD导致的严重视力丧失的80% [31]

3.2. AMD在OCT和OCTA中的应用

Drusen通常位于RPE和Bruch膜之间,是AMD的生物标志物。AMD患者在疾病早期往往无明显临床症状,一般都是在眼底疾病筛查中发现。有研究发现,OCT显示的高反射率结晶沉积与视网膜下RPE层中胆固醇结晶的组织学发现一致,并且与AMD高度相关。这些高反射性胆固醇晶体可以在视网膜下空间分层成平行的高反射结构,也被称为“洋葱征”,是SD-OCT观察到的新生血管性AMD的特征[32]。相反,它在非新生血管性AMD中的存在被用作晚期AMD进行性并发症的成像生物标志物。值得注意的是,这种结构的高反射率会产生特殊的反射伪影,用SD-OCT和OCTA都可以看到[33]

采用多种成像方式组合检测早期AMD。OCT b扫描检测到Drusen的存在,然后将其分类为AMD或正常病例。眼底照相可以进一步分析b片上感兴趣的区域[34]。因此,OCT适用于的发现Drusen和AMD的早期筛查。OCTA主要用于研究老年黄斑病变(即早期或中期AMD)患者。这些研究表明,早/中期AMD患者的脉络膜毛细血管受损[35]

视网膜的光感受器、RPE、Bruch膜和脉络膜毛细血管组成的复杂结构的功能障碍可能最终导致脉络膜或视网膜内新生血管。形成异常的血管在“湿”性AMD的纤维组织增生中生长[36]。随着疾病的进展,这些异常血管开始渗漏,可能会导致视网膜内和(或)视网膜下积液和(或) RPE下积液,最终导致视力下降和视物变形等。因为SD-OCT能够很好的显示出新生血管和RPE升高,所以OCT已被用于精确分析视网膜内和视网膜下积液和视网膜厚度,使OCT成为诊断AMD和管理AMD的关键成像工具[37]。AMD的视网膜内和视网膜下积液是新生血管的产物[38]。OCTA可以很好的评估血管结构变化,并区分脉络膜新生血管的“活动性”和“无症状”渗漏。此外,OCTA体积成像显示伴有渗出性AMD的3型黄斑新生血管形成起源于视网膜内(而不是脉络膜) [29]。这证明了视网膜深层组织的OCTA可视化。

在非新生血管性AMD中,也可能出现视网膜内液和(或)视网膜下液。SS-OCTA和密集b扫描OCTA能够在非新生血管渗出的情况下显示液体的存在。这种非新生血管渗漏的视网膜内积液并不是主动渗漏的明确指标[39]。同样,萎缩性AMD的假性囊肿也是没有渗出的情况下内核层存在囊样间隙。OCT和OCTA发现的细微差别有助于我们了解AMD的每个亚型。此外,OCT还提供了抗血管内皮生长因子(VEGF)治疗渗出性和非渗出性AMD及其潜在结局的预测价值[40]。OCTA可以通过直接观察异常的血管流动,为区分渗出性、非新生血管病例和非渗出性新生血管病例提供更有用的价值。

4. 视网膜静脉阻塞

4.1. 背景

视网膜静脉闭塞(RVO)是仅次于糖尿病视网膜病变的第二常见的视网膜血管疾病。RVO分为视网膜中央静脉阻塞(CRVO)和视网膜分支静脉阻塞(BRVO)。黄斑水肿、视网膜和虹膜新生血管形成以及玻璃体出血等并发症可导致严重的视力丧失。近年来,OCT和OCTA已被用于后极部可视化,并被证明在RVO的评估和治疗中是有用的。

4.2. RVO在OCT和OCTA中的应用

RVO是血栓形成对视网膜静脉系统的阻塞,该病的发病机制之一是在A-V交叉处静脉的机械阻塞导致静脉瘀血、血流紊乱、内皮损伤、中膜增厚和血管血栓形成。一项使用CRVO患者死后组织的组织学研究[41]报告了血管壁增厚和静脉管腔变窄。此外,先前使用OCT的研究也表明,BRVO眼的静脉腔在A-V交叉处变窄[42]。在之前的组织学研究中已经报道了毛细血管内皮细胞和周细胞的损失[43]。视网膜血管内皮损伤,导致血视网膜屏障破坏,导致血管通透性增高,而引起视网膜水肿。

OCT最常用于评估黄斑水肿(ME)。中央视网膜厚度(central subfield thickness, CST),定义为以中央凹为中心的直径1毫米圆的平均厚度,是评价ME最常用的参数。CST参数在标准临床护理中用于评估疾病活动性,在随机临床试验中作为纳入和再治疗标准和形态学终点[44]。OCT图像通常表现为囊样ME、海绵样视网膜肿胀和浆液性视网膜脱离(RD) [45]。特别是,微小的浆液性RD只能在OCT图像上检测到。此外,最近先进的OCT技术提供了高分辨率图像,例如组织学成像,可以对每一层视网膜进行解剖分析。因此,几种形态学特征,如视网膜内液、视网膜下液和高反射灶,以及视网膜层鉴别分析,可以区分这些层在感光层中是否增厚、变薄或被破坏[46]

RVO眼的玻璃体或玻璃体视网膜界面状态也与ME有关。高分辨率OCT,尤其是SS-OCT,可以可视化玻璃体或玻璃体黄斑界面的状态。非玻璃体后脱离(PVD)或部分PVD的患者发生ME的几率明显高于完全PVD的患者。此外,非PVD合并非缺血性CRVO的患者发生ME的发生率明显高于全PVD患者。然而,对于缺血性CRVO,玻璃体状态与ME之间没有相互作用。即使后玻璃体分离,缺血性CRVO眼仍可出现ME [47]

研究了黄斑缺血与ME和视力的关系。FAZ边界的破坏与黄斑缺血密切相关。OCTA可以清晰地看到受损的FAZ边界。与非缺血性ME相比,伴有BRVO的缺血性ME自发消退的比例更高[48]。此外,OCTA显示黄斑血管数量大幅减少的患者,其复发率和静脉注射雷珠单抗的频率也较低[49]。对于RVO中缺血性ME的视力结果,Finkelstein报道了有利的结果,而其他人报道了不利的结果[50]

OCTA能够显示视网膜深毛细血管丛的无灌注区(NPA)大于视网膜浅毛细血管丛,这可能是因为深毛细血管丛的毛细血管密度高于浅毛细血管丛[51]。OCTA测量的黄斑血管减少量和黄斑血管减少量较大的患者ME复发较少[49],即严重缺血可能不会产生VEGF,从而导致ME复发。

与RVO相关的新生血管(NV)有后段NV和前段NV两种类型。前者包括视网膜NVD和视网膜其他部位NV (NVE);后一种NV包括虹膜NV (NVI)和角度NV (NVA)。两者的发展都是由于眼内VEGF水平升高,而VEGF通常与视网膜非灌注面积有关[52]。OCTA可以检测后段NVs。OCTA的优点是由于缺乏荧光素染料,NV网络清晰可见,B扫描图像显示NV位于视网膜或视盘表面,这也有助于区分NV与微动脉瘤或侧支血管。对于前节NVs,OCTA已被用于观察不同眼部疾病的虹膜血管[53],这可能成为检测虹膜NVs的另一种选择。

5. 视网膜动脉阻塞

视网膜动脉闭塞是由于视网膜中央动脉(central Retinal artery occlusion, CRAO)或其分支(branch Retinal artery occlusion, BRAO)阻塞而导致急性视网膜缺血和视力丧失[54]。对于RAO的诊断,OCTA不是必需的,它是根据OCT成像做出的。然而,它确实有助于揭示RAOs的病理生理学和视网膜缺血和非灌注情况。在OCTA上更容易识别视网膜毛细血管非灌注[55]。与正常对照相比,RAO眼的SCP和DCP血管密度参数降低。虽然RAO眼的FAZ大小未被发现扩大,但循环指数(AI) (衡量FAZ不规则性的指标)在RAO眼中更大[56]。在RAO中使用OCTA有一些限制。在急性RAO中,由于信号衰减或投影伪影,视网膜内水肿可能影响对深层神经丛灌注的解释。在慢性RAO中,由于视网膜结构破坏、视网膜内层之间的清晰度丧失和视网膜明显萎缩,可能存在分割失败。视网膜萎缩也可能是RAO眼的一个问题,因为由此导致的视力丧失通常是显著的[55]。因此,在RAO的OCTA研究中,图像质量一直是一个值得注意的问题[57]

6. 讨论

OCT和OCTA是近年来发展最迅速和讨论最热烈的成像技术,目前在临床上广泛应用,以提高视网膜疾病的诊断和观察疗效。此外,这些成像技术拥有极好的分辨率,这能够增强我们对疾病过程和形态变化的理解。OCT和OCTA在检测病理性微血管改变、新血管并发症方面可能具有互补作用,并为晚期并发症提供预测和预后见解。许多OCT和OCTA生物标志物已经被识别和表征,有助于改进人工智能算法和深度学习模型。尽管成像存在固有的伪影,但了解伪影的机制,与人工智能算法合作,以及整合经验丰富的临床医生的判断,都可能提高多模态成像技术的应用。

NOTES

*通讯作者。

参考文献

[1] Drexler, W. and Fujimoto, J. (2008) State-of-the-Art Retinal Optical Coherence Tomography. Progress in Retinal and Eye Research, 27, 45-88.
https://doi.org/10.1016/j.preteyeres.2007.07.005
[2] Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., et al. (1991) Optical Coherence Tomography. Science, 254, 1178-1181.
https://doi.org/10.1126/science.1957169
[3] Gao, S.S., Jia, Y., Zhang, M., Su, J.P., Liu, G., Hwang, T.S., et al. (2016) Optical Coherence Tomography Angiography. Investigative Opthalmology & Visual Science, 57, OCT27.
https://doi.org/10.1167/iovs.15-19043
[4] Ang, M., Tan, A.C.S., Cheung, C.M.G., Keane, P.A., Dolz-Marco, R., Sng, C.C.A., et al. (2018) Optical Coherence Tomography Angiography: A Review of Current and Future Clinical Applications. Graefes Archive for Clinical and Experimental Ophthalmology, 256, 237-245.
https://doi.org/10.1007/s00417-017-3896-2
[5] Matsunaga, D.R., Yi, J.J., De Koo, L.O., Ameri, H., Puliafito, C.A. and Kashani, A.H. (2015) Optical Coherence Tomography Angiography of Diabetic Retinopathy in Human Subjects. Ophthalmic Surgery, Lasers and Imaging Retina, 46, 796-805.
https://doi.org/10.3928/23258160-20150909-03
[6] van velthoven, M.E.J., Verbraak, F.D., Yannuzzi, L.A., Rosen, R.B., Podoleanu, A.G.H. and de Smet, M.D. (2006) Imaging the Retina by En Face Optical Coherence Tomography. Retina, 26, 129-136.
https://doi.org/10.1097/00006982-200602000-00001
[7] Maloca, P.M., Feu-Basilio, S., Schottenhamml, J., Valmaggia, P., Scholl, H.P.N., Rosinés-Fonoll, J., et al. (2022) Reference Database of Total Retinal Vessel Surface Area Derived from Volume-Rendered Optical Coherence Tomography Angiography. Scientific Reports, 12, Article No. 3695.
https://doi.org/10.1038/s41598-022-07439-2
[8] Kaizu, Y., Nakao, S., Wada, I., Arima, M., Yamaguchi, M., Ishikawa, K., et al. (2020) Microaneurysm Imaging Using Multiple En Face OCT Angiography Image Averaging. Ophthalmology Retina, 4, 175-186.
https://doi.org/10.1016/j.oret.2019.09.010
[9] Guimarães, E.S., Gomes, M.T.R., Campos, P.C., Mansur, D.S., dos Santos, A.A., Harms, J., et al. (2019) Brucella abortus Cyclic Dinucleotides Trigger Sting-Dependent Unfolded Protein Response That Favors Bacterial Replication. The Journal of Immunology, 202, 2671-2681.
https://doi.org/10.4049/jimmunol.1801233
[10] Congdon, N.G. (2003) Important Causes of Visual Impairment in the World Today. JAMA, 290, 2057-2060.
https://doi.org/10.1001/jama.290.15.2057
[11] Ferris, F.L., Davis, M.D. and Aiello, L.M. (1999) Treatment of Diabetic Retinopathy. New England Journal of Medicine, 341, 667-678.
https://doi.org/10.1056/nejm199908263410907
[12] Barth, T. and Helbig, H. (2021) Diabetische Retinopathie. Klinische Monatsblätter für Augenheilkunde, 238, 1143-1159.
https://doi.org/10.1055/a-1545-9927
[13] Scharf, J., Freund, K.B., Sadda, S. and Sarraf, D. (2021) Paracentral Acute Middle Maculopathy and the Organization of the Retinal Capillary Plexuses. Progress in Retinal and Eye Research, 81, Article ID: 100884.
https://doi.org/10.1016/j.preteyeres.2020.100884
[14] Sun, J.K., Lin, M.M., Lammer, J., Prager, S., Sarangi, R., Silva, P.S., et al. (2014) Disorganization of the Retinal Inner Layers as a Predictor of Visual Acuity in Eyes with Center-Involved Diabetic Macular Edema. JAMA Ophthalmology, 132, 1309-1316.
https://doi.org/10.1001/jamaophthalmol.2014.2350
[15] Gowd, V. (2016) Glycosaminoglycan Remodeling during Diabetes and the Role of Dietary Factors in Their Modulation. World Journal of Diabetes, 7, 67-73.
https://doi.org/10.4239/wjd.v7.i4.67
[16] Abadia, B., Bartol-Puyal, F.D.A., Calvo, P., Verdes, G., Isanta, C. and Pablo, L.E. (2020) Mapping Choroidal Thickness in Patients with Type 2 Diabetes. Canadian Journal of Ophthalmology, 55, 45-51.
https://doi.org/10.1016/j.jcjo.2019.06.009
[17] Shen, Z.J., Yang, X.F., Xu, J., She, C.Y., Wei, W.W., Zhu, W.L. and Liu, N.P. (2017) Association of Choroidal Thickness with Early Stages of Diabetic Retinopathy in Type 2 Diabetes. International Journal of Ophthalmology, 10, 613-618.
[18] Wang, W., Liu, S., Qiu, Z., He, M., Wang, L., Li, Y., et al. (2020) Choroidal Thickness in Diabetes and Diabetic Retinopathy: A Swept Source OCT Study. Investigative Opthalmology & Visual Science, 61, Article 29.
https://doi.org/10.1167/iovs.61.4.29
[19] Romero-Aroca, P., Baget-Bernaldiz, M., Pareja-Rios, A., Lopez-Galvez, M., Navarro-Gil, R. and Verges, R. (2016) Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory. Journal of Diabetes Research, 2016, Article ID: 2156273.
https://doi.org/10.1155/2016/2156273
[20] Stewart, M., Browning, D. and Lee, C. (2018) Diabetic Macular Edema: Evidence-Based Management. Indian Journal of Ophthalmology, 66, 1736-1750.
https://doi.org/10.4103/ijo.ijo_1240_18
[21] Tan, G.S., Cheung, N., Simó, R., Cheung, G.C.M. and Wong, T.Y. (2017) Diabetic Macular Oedema. The Lancet Diabetes & Endocrinology, 5, 143-155.
https://doi.org/10.1016/s2213-8587(16)30052-3
[22] Chung, Y., Kim, Y.H., Ha, S.J., Byeon, H., Cho, C., Kim, J.H., et al. (2019) Role of Inflammation in Classification of Diabetic Macular Edema by Optical Coherence Tomography. Journal of Diabetes Research, 2019, Article ID: 8164250.
https://doi.org/10.1155/2019/8164250
[23] Bandello, F., Battaglia Parodi, M., Lanzetta, P., Loewenstein, A., Massin, P., Menchini, F., et al. (2017) Diabetic Macular Edema. In: Coscas, G., Cunha-Vaz, J., Loewenstein, A. and Soubrane, G., Eds., Macular Edema, Karger, 102-138.
https://doi.org/10.1159/000455277
[24] Sun, Z., Yang, D., Tang, Z., Ng, D.S. and Cheung, C.Y. (2020) Optical Coherence Tomography Angiography in Diabetic Retinopathy: An Updated Review. Eye, 35, 149-161.
https://doi.org/10.1038/s41433-020-01233-y
[25] Shiihara, H., Terasaki, H., Sonoda, S., Kakiuchi, N., Shinohara, Y., Tomita, M., et al. (2018) Objective Evaluation of Size and Shape of Superficial Foveal Avascular Zone in Normal Subjects by Optical Coherence Tomography Angiography. Scientific Reports, 8, Article No. 10143.
https://doi.org/10.1038/s41598-018-28530-7
[26] Ashraf, M., Sampani, K., Clermont, A., Abu-Qamar, O., Rhee, J., Silva, P.S., et al. (2020) Vascular Density of Deep, Intermediate and Superficial Vascular Plexuses Are Differentially Affected by Diabetic Retinopathy Severity. Investigative Opthalmology & Visual Science, 61, Article 53.
https://doi.org/10.1167/iovs.61.10.53
[27] Park, Y.G., Kim, M. and Roh, Y.J. (2020) Evaluation of Foveal and Parafoveal Microvascular Changes Using Optical Coherence Tomography Angiography in Type 2 Diabetes Patients without Clinical Diabetic Retinopathy in South Korea. Journal of Diabetes Research, 2020, Article ID: 6210865.
https://doi.org/10.1155/2020/6210865
[28] Suciu, C., Suciu, V. and Nicoara, S. (2020) Optical Coherence Tomography (Angiography) Biomarkers in the Assessment and Monitoring of Diabetic Macular Edema. Journal of Diabetes Research, 2020, Article ID: 6655021.
https://doi.org/10.1155/2020/6655021
[29] Bontzos, G., Kabanarou, S.A., Gkizis, I., Ragkousis, A., Xirou, T. and Peto, T. (2021) Retinal Neurodegeneration, Macular Circulation and Morphology of the Foveal Avascular Zone in Diabetic Patients: Quantitative Cross‐Sectional Study Using OCT‐A. Acta Ophthalmologica, 99, e1135-e1140.
https://doi.org/10.1111/aos.14754
[30] Wong, W.L., Su, X., Li, X., Cheung, C.M.G., Klein, R., Cheng, C., et al. (2014) Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. The Lancet Global Health, 2, e106-e116.
https://doi.org/10.1016/s2214-109x(13)70145-1
[31] Ferris, F.L., Fine, S.L. and Hyman, L. (1984) Age-Related Macular Degeneration and Blindness Due to Neovascular Maculopathy. Archives of Ophthalmology, 102, 1640-1642.
https://doi.org/10.1001/archopht.1984.01040031330019
[32] Pang, C.E., Messinger, J.D., Zanzottera, E.C., Freund, K.B. and Curcio, C.A. (2015) The Onion Sign in Neovascular Age-Related Macular Degeneration Represents Cholesterol Crystals. Ophthalmology, 122, 2316-2326.
https://doi.org/10.1016/j.ophtha.2015.07.008
[33] Fragiotta, S., Fernández-Avellaneda, P., Breazzano, M.P., Yannuzzi, L.A., Curcio, C.A. and Freund, K.B. (2019) Linear and Planar Reflection Artifacts on Swept-Source and Spectral-Domain Optical Coherence Tomography Due to Hyperreflective Crystalline Deposits. Graefes Archive for Clinical and Experimental Ophthalmology, 258, 491-501.
https://doi.org/10.1007/s00417-019-04565-y
[34] Khalid, S., Akram, M.U., Hassan, T., Jameel, A. and Khalil, T. (2017) Automated Segmentation and Quantification of Drusen in Fundus and Optical Coherence Tomography Images for Detection of ARMD. Journal of Digital Imaging, 31, 464-476.
https://doi.org/10.1007/s10278-017-0038-7
[35] Borrelli, E., Shi, Y., Uji, A., Balasubramanian, S., Nassisi, M., Sarraf, D., et al. (2018) Topographic Analysis of the Choriocapillaris in Intermediate Age-Related Macular Degeneration. American Journal of Ophthalmology, 196, 34-43.
https://doi.org/10.1016/j.ajo.2018.08.014
[36] Apte, R.S. (2021) Age-Related Macular Degeneration. New England Journal of Medicine, 385, 539-547.
https://doi.org/10.1056/nejmcp2102061
[37] Coscas, G., Coscas, F., Vismara, S., Souied, E. and Soubrane, G. (2008) Spectral Domain OCT in Age-Related Macular Degeneration: Preliminary rEsults with SPECTRALIS HRA-OCT. Journal Français dOphtalmologie, 31, 353-361.
[38] Cohen, S.Y., Dubois, L., Nghiem-Buffet, S., Ayrault, S., Fajnkuchen, F., Guiberteau, B., et al. (2010) Retinal Pseudocysts in Age-Related Geographic Atrophy. American Journal of Ophthalmology, 150, 211-217.e1.
https://doi.org/10.1016/j.ajo.2010.02.019
[39] Hilely, A., Au, A., Freund, K.B., Loewenstein, A., Souied, E.H., Zur, D., et al. (2020) Non-Neovascular Age-Related Macular Degeneration with Subretinal Fluid. British Journal of Ophthalmology, 105, 1415-1420.
https://doi.org/10.1136/bjophthalmol-2020-317326
[40] Tomi, A. (2011) Correlations of Fluorescein Angiography and Optical Coherence Tomography (OCT) in the Diagnosis of Age-Related Macular Degeneration. Oftalmologia, 55, 60-69.
[41] Powner, M.B., Sim, D.A., Zhu, M., Nobre-Cardoso, J., Jones, R., Syed, A., et al. (2016) Evaluation of Nonperfused Retinal Vessels in Ischemic Retinopathy. Investigative Opthalmology & Visual Science, 57, 5031-5037.
https://doi.org/10.1167/iovs.16-20007
[42] Muraoka, Y., Tsujikawa, A., Murakami, T., Ogino, K., Kumagai, K., Miyamoto, K., et al. (2013) Morphologic and Functional Changes in Retinal Vessels Associated with Branch Retinal Vein Occlusion. Ophthalmology, 120, 91-99.
https://doi.org/10.1016/j.ophtha.2012.06.054
[43] Frangieh, G.T., Green, W.R., Barraquer-Somers, E. and Finkelstein, D. (1982) Histopathologic Study of Nine Branch Retinal Vein Occlusions. Archives of Ophthalmology, 100, 1132-1140.
https://doi.org/10.1001/archopht.1982.01030040110020
[44] Brown, D.M., Campochiaro, P.A., Singh, R.P., Li, Z., Gray, S., Saroj, N., et al. (2010) Ranibizumab for Macular Edema Following Central Retinal Vein Occlusion: Six-Month Primary End Point Results of a Phase III Study. Ophthalmology, 117, 1124-1133.e1.
https://doi.org/10.1016/j.ophtha.2010.02.022
[45] Otani, T., Kishi, S. and Maruyama, Y. (1999) Patterns of Diabetic Macular Edema with Optical Coherence Tomography. American Journal of Ophthalmology, 127, 688-693.
https://doi.org/10.1016/s0002-9394(99)00033-1
[46] Schmidt-Erfurth, U., Garcia-Arumi, J., Gerendas, B.S., Midena, E., Sivaprasad, S., Tadayoni, R., et al. (2019) Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (Euretina). Ophthalmologica, 242, 123-162.
https://doi.org/10.1159/000502041
[47] Hikichi, T., Konno, S. and Trempe, C.L. (1995) Role of the Vitreous in Central Retinal Vein Occlusion. Retina, 15, 29-33.
https://doi.org/10.1097/00006982-199515010-00006
[48] Finkelstein, D. (1992) Ischemic Macular Edema Recognition and Favorable Natural History in Branch Vein Occlusion. Archives of Ophthalmology, 110, 1427-1434.
https://doi.org/10.1001/archopht.1992.01080220089028
[49] Hasegawa, T., Takahashi, Y., Maruko, I., Kogure, A. and Iida, T. (2018) Macular Vessel Reduction as Predictor for Recurrence of Macular Oedema Requiring Repeat Intravitreal Ranibizumab Injection in Eyes with Branch Retinal Vein Occlusion. British Journal of Ophthalmology, 103, 1367-1372.
https://doi.org/10.1136/bjophthalmol-2018-312769
[50] Clemett, R.S., Kohner, E.M. and Hamilton, A.M. (1973) The Visual Prognosis in Retinal Branch Vein Occlusion. Transactions of the Ophthalmological Societies, 93, 523-535.
[51] Tan, P.E.Z., Yu, P.K., Balaratnasingam, C., Cringle, S.J., Morgan, W.H., McAllister, I.L., et al. (2012) Quantitative Confocal Imaging of the Retinal Microvasculature in the Human Retina. Investigative Opthalmology & Visual Science, 53, 5728-5736.
https://doi.org/10.1167/iovs.12-10017
[52] Noma, H., Funatsu, H., Yamasaki, M., Tsukamoto, H., Mimura, T., Sone, T., et al. (2005) Pathogenesis of Macular Edema with Branch Retinal Vein Occlusion and Intraocular Levels of Vascular Endothelial Growth Factor and Interleukin-6. American Journal of Ophthalmology, 140, 256.e1-256.e7.
https://doi.org/10.1016/j.ajo.2005.03.003
[53] Velez, F.G., Davila, J.P., Diaz, A., Corradetti, G., Sarraf, D. and Pineles, S.L. (2018) Association of Change in Iris Vessel Density in Optical Coherence Tomography Angiography with Anterior Segment Ischemia after Strabismus Surgery. JAMA Ophthalmology, 136, 1041-1045.
https://doi.org/10.1001/jamaophthalmol.2018.2766
[54] Mehta, N., Marco, R.D., Goldhardt, R. and Modi, Y. (2017) Central Retinal Artery Occlusion: Acute Management and Treatment. Current Ophthalmology Reports, 5, 149-159.
https://doi.org/10.1007/s40135-017-0135-2
[55] Baumal, C.R. (2016) Optical Coherence Tomography Angiography of Retinal Artery Occlusion. In: Bandello, F., Souied, E.H. and Querques, G., Eds., Eds., Developments in Ophthalmology, Karger, 122-131.
https://doi.org/10.1159/000442803
[56] Yang, S., Liu, X., Li, H., Xu, J. and Wang, F. (2019) Optical Coherence Tomography Angiography Characteristics of Acute Retinal Arterial Occlusion. BMC Ophthalmology, 19, Article No. 147.
https://doi.org/10.1186/s12886-019-1152-8
[57] Abdellah, M.M. (2019) Multimodal Imaging of Acute Central Retinal Artery Occlusion. Medical Hypothesis Discovery and Innovation in Ophthalmology, 8, 283-290.