贫血程度预测感染性疾病预后的研究进展
Research Progress of Anemia Degree in Predicting the Prognosis of Infectious Diseases
DOI: 10.12677/acm.2024.1472067, PDF, HTML, XML, 下载: 3  浏览: 6 
作者: 韩 林*, 刘恩梅#, 臧 娜#:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 贫血血红蛋白感染Anemia Hemoglobin Infection
摘要: 贫血是一种常见的临床症状,表现为头晕、乏力、气促、面色苍白等,血红蛋白水平是定义贫血及其程度最常用的指标。感染是贫血常见的病因,且感染越重,贫血程度越重,血红蛋白水平越低,贫血程度反之也可影响感染性疾病的严重程度和结局,甚至导致死亡。贫血程度有望成为预测重症感染的指标,为早期识别重症感染提供新思路。本文就贫血程度与感染性疾病关系的研究进展进行综述。
Abstract: Anemia is a common clinical condition characterized by dizziness, weakness, shortness of breath and pale complexion. Hemoglobin level is the most commonly used indicator to define anemia and anemia degree. Infection is a common cause of anemia, and the more severe the infection, the more severe the anemia, the lower the hemoglobin level. The degree of anemia in turn can affect the severity and outcome of infectious diseases and even lead to death. The degree of anemia is expected to be a predictor of severe infection and provide new ideas for early identification of severe infection. This paper reviews the progress of research on the relationship between anemia and anemia degree and infectious diseases.
文章引用:韩林, 刘恩梅, 臧娜. 贫血程度预测感染性疾病预后的研究进展[J]. 临床医学进展, 2024, 14(7): 682-688. https://doi.org/10.12677/acm.2024.1472067

1. 引言

贫血是一种常见的临床症状,表现为头晕、乏力、气促、面色苍白等,贫血在定量上定义为循环红细胞数量减少,或在功能上定义为红细胞(氧气载体)数量不足以满足代谢需求的情况。在临床实践中,血红蛋白水平被广泛运用于贫血的定义,根据世界卫生组织,成人贫血的标准是男性血红蛋白水平低于13 g/dL,女性血红蛋白水平低于12 g/dL,根据血红蛋白水平,可将贫血分为轻度(男性10 g/dL ≤ Hb水平 < 13 g/dL,女性10 g/dL ≤ Hb水平 < 12 g/dL)、中度(8 g/dL ≤ Hb水平 < 10 g/dL)和重度(Hb水平 < 8 g/dL)。在儿童中,贫血诊断标准随着年龄的不同存在差异[1]

贫血是由于红细胞的生成和破坏不平衡所致,根据病因学分类,贫血可分为多种类型:包括营养物质缺乏所致的营养性贫血,遗传性血红蛋白病如镰刀型细胞贫血症、地中海贫血等,以及感染和炎症所致的炎症性贫血[2]。近年来随着分子生物学技术的发展,人们越来越关注细菌、病毒等病原体感染后所致的贫血。一项回顾性研究显示在COVID-19患者中,59.8%的患者患有贫血,这项研究还对比了贫血组和非贫血组的临床结局,发现贫血组的死亡率(33.6% vs. 24.4%, p = 0.017)和严重结局(63.0% vs. 54.6%, p = 0.038)更高,在比较不同的贫血严重程度时,发现长期住院、低血压和血液透析等不良事件发生率随着贫血严重程度的增加而显著增加[3]。另一项长达12年的队列研究,旨在调查贫血病史与感染所致死亡率的相关性,发现有贫血基础的人群发生感染而死亡的风险比没有贫血史的人群高出1.77倍[4]。以上两项研究说明对于感染性疾病来说,无论是感染所致的贫血,还是有贫血基础,均会加剧感染的严重程度,甚至导致死亡。因此,对于感染性疾病的治疗和结局而言,进行贫血的筛查和诊断,能够提供有益的帮助。本文旨在综述贫血程度与感染性疾病之间关系的研究进展,以期提升临床医生对感染后贫血的重视。

2. 流行病学

研究发现,在不同类型感染,比如呼吸道感染、外科手术感染、脓毒症等,以及各种病原体感染,包括细菌感染、真菌感染、病毒感染、特殊病原体感染的患者中,贫血患病率不容小觑,表1列举了感染部分病原体后贫血患病率及其程度。有研究对孟加拉国5岁以下肺炎和重症肺炎住院患者贫血的流行率进行调查,发现49.4%的患者患有贫血,且贫血患病率的变化趋势与年龄的增长呈负相关[5]。在脓毒症住院患者中,贫血的患病率高达93.6%,血红蛋白下降是脓毒症患者出院时最常见的血细胞计数异常[6]。一项meta分析报道了非洲结核病患者贫血的总患病率为69%,其中轻度、中度和重度贫血的比例分别为34%,29%和10%,以正细胞正色素贫血和小细胞低色素贫血为主,分别占比32%和26% [7]。另一项探究人类免疫缺陷病毒感染患者贫血患病率的meta分析中,儿童、成人、孕妇艾滋病患者贫血的患病率分别为39.7%、46.6%、48.6% [8],这项研究同时还发现,南非艾滋病患者贫血患病率高于东非(b = 22.22, 95% CI: 1.93~42.51),说明地理区域与HIV感染后贫血患病率有关。一项国外的回顾性研究报道了新型冠状病毒感染的患者中,有59.8%患者有贫血,14.3%为轻度,45.5%为中重度贫血[3]。有研究还发现感染恶性疟原虫的患者中,17.8%为中度贫血,而没有重度贫血,感染血吸虫的儿童中有21.7%为中度贫血,4.3%为严重贫血[9]。除此之外,在其他病原体感染中,如幽门螺旋杆菌[10]、肝炎病毒感染[11]等,贫血的患病率也不容忽视。

Table 1. Prevalence and extent of anemia after infection with different pathogens

1. 感染不同病原体后贫血患病率及其程度

年份

人群

病原体

贫血患病率

贫血程度

文献

轻度

中度

重度

2023

未分组

结核分枝杆菌

69%

34%

29%

10%

Yeshewas等[7]

2022

儿童

人类免疫缺陷病毒

39.7%

-

-

-


成人

46.6%

21.6%

22.6%

6.2%

Guiying等[8]

孕妇

48.6%

-

-

-


2021

成人

新型冠状病毒

59.8%

14.3%

54.5%

Seung等[3]

2021

成人

幽门螺杆菌

29.2%

69.2%

30.8%

-

Kassahun等[10]

3. 感染所致贫血的机制

在感染性疾病中,由于感染的病原体和性质不同,贫血的发病机制也不尽相同。感染所致贫血发生的机制主要包括炎症性贫血、缺铁性贫血、再生障碍性贫血等红细胞生成减少性贫血,和溶血性贫血所致的红细胞破坏增加以及失血性贫血。

3.1. 炎症性贫血

炎症性贫血是最常见的形式,见于多种病原体感染中,包括结核分枝杆菌[12]、HIV[8]等导致的慢性感染,以及新型冠状病毒[13]、脓毒症[14] [15]等急性感染中。炎症性贫血的发生主要是在各种炎症因子的影响下导致的,如IL-6、IL-1β、IFN-γ和巨噬细胞迁移抑制因子等,其中,IL-6发挥重要作用。IL-6是一种多效性细胞因子,通过JAK2-STAT3信号通路,从而驱动肝细胞中铁调素转录的增加[16],铁调素是铁稳态重要的调节因子,通过内化或降解十二指肠肠细胞以及肝脾中巨噬细胞上的铁转运蛋白来减少铁输出至血浆中[17] [18]。铁调素水平升高会导致铁在肠细胞和巨噬细胞内蓄积,因此血清铁含量降低,从而导致机体内铁相对性缺乏、血红蛋白合成障碍。在很多感染性疾病中,可以观察到患者体内IL-6、铁调素水平异常增高,且铁调素与IL-6水平呈正相关。比如在脓毒症患者中,血红蛋白与血清IL-6、铁调素呈负相关,且铁调素在预测ICU脓毒症患28天死亡率具有较高的价值[14]。在重症COVID-19 患者中,血清铁调素升高、血红蛋白水平降低和循环IL-6 升高与死亡风险增加有关[19]

3.2. 缺铁性贫血

缺铁性贫血也是感染所致贫血的另一种机制,最常见于幽门螺杆菌感染后。一项横断面前瞻性研究[20]发现,在112名幽门螺杆菌感染患者中,发现42例(37.5%)患者患有缺铁性贫血,有研究认为幽门螺旋杆菌感染是引起缺铁性贫血重要原因之一[21]。一种可能的解释是幽门螺旋菌通过降低胃酸和抗坏血酸的浓度来抑制铁的吸收,另一种可能的机制是幽门螺旋杆菌从宿主体内隔离铁[22]。在结核分枝杆菌[7]、HIV [23]、新型冠状病毒[13]等感染所致贫血中也见同时伴有缺铁性贫血。

3.3. 溶血性贫血

感染所致的溶血性贫血,特别是自身免疫性溶血性贫血也很常见,主要见于疟疾。疟疾是由疟原虫感染引起的,疟原虫是一种真核寄生虫,主要感染红细胞,但这并不是疟疾性贫血的主要原因。在疟原虫感染患者血液中,红细胞膜上暴露的膜脂质磷脂酰丝氨酸与针对膜脂质磷脂酰丝氨酸的自身免疫抗体结合,可诱导未感染的红细胞的清除,从而导致的溶血性贫血[24],才是疟疾性贫血发生的根本原因。除此之外,也有新型冠状病毒感染[25]、急性戊型肝炎病毒感染[26]导致自身免疫性溶血性贫血的病例报道。

总的来说,在不同的病原体感染中,导致贫血的机制有所不同,对于同一种感染性疾病而言,也可能伴有多种类型的贫血。

4. 贫血与感染性疾病的关系

在最近的几年中,已有大量研究揭示贫血与感染性疾病之间的复杂的联系。贫血是感染性疾病常见的并发症,贫血程度与感染性疾病的严重程度密切相关,感染越重,贫血程度越重,血红蛋白水平越低,贫血也可进一步加剧感染性疾病的严重性,从而对患者的预后和最终结局产生不良影响,这为贫血程度作为预测重症感染的重要指标提供了科学依据。

4.1. 贫血程度与感染严重程度的相互关系

近年多项研究发现贫血程度与感染程度相关,感染程度越重,贫血程度越重,血红蛋白水平越低。表2展示了不同程度感染患者血红蛋白水平的比较,在呼吸道感染患者中,重症腺病毒感染患者较轻症患者贫血程度更为严重,血红蛋白水平降低更明显[27],重症流感病毒感染患者也存在同样现象,且死亡患者与存活患者之间差异更为显著(60 g/L vs. 132 g/L p < 0.001) [28],重症肺炎支原体感染患者与轻微患者之间血红蛋白存在轻微差异[29],重症新型冠状病毒感染患者与轻症患者存在显著差异[30],一项孟德尔随机化分析[31]也验证了贫血程度与新冠严重程度呈正相关。一项回顾性研究探究了贫血与肺结核严重性之间的关系[12],发现与轻度结核患相比,中重度结核患者的贫血状况更为严重,并以临床结核评分来表示感染的严重度,进一步的相关性分析指出临床结核评分与血红蛋白水平之间有着明显的负相关关系(r = −0.41)。以上研究证明了贫血程度有望成为感染性疾病严重程度的生物标记物。

Table 2. Comparison of hemoglobin levels in patients with different degrees of infection

2. 不同程度感染患者血红蛋白水平比较

年份

人群

病原体

血红蛋白水平(g/L)

文献

轻症

重症

p值

2021

儿童

腺病毒

117 (88~245)

102 (87~168)

p = 0.003

Luo等[27]

2022

儿童

流感病毒

126 (103~148)

119 (8~156)

p < 0.001

Shi等[28]

2022

儿童

支原体

127.2 ± 12.54

123.1 ± 9.17

p = 0.004

Chang等[29]

2021

成人

新型冠状病毒

137 (129~147)

96 (79~115)

p < 0.001

Cyprian等[30]

2022

成人

结核分枝杆菌

137

126

p < 0.001

Ashenafi等[12]

2020

成人

曼氏血吸虫

120.4 ± 17.3

83 ± 10.4

p < 0.001

Nega等[32]

同时有研究也发现,贫血及其程度可影响疾病的预后。一项研究发现,贫血的肺炎患儿更容易出现呼吸衰竭(OR: 1.63, 95% CI: 1.24~2.15, p < 0.001)和死亡(OR: 1.70, 95% CI: 1.28~2.26, p < 0.001) [5]。一项荟萃分析表明与接受全关节置换术的非贫血患者相比,贫血患者伤口并发症、心脏并发症、呼吸系统并发症、泌尿系统并发症、败血症更高,同时贫血也会增加死亡和再入院的发生率[33]。一项评估贫血对艾滋病患者死亡风险的回顾性队列研究[34]表明,艾滋病患者中贫血患者死亡率高于非贫血患者,与非贫血者相比,轻度和中重度贫血患者的死亡OR值分别为1.60和1.86,且随着每标准差血红蛋白水平的降低,死亡风险平均增加85%。一项回顾性研究对比了COVID-19患者中贫血组和非贫血组的临床结局,发现贫血组出现严重结局和发生死亡的风险更高,在比较不同的贫血严重程度时,发现长期住院、低血压和血液透析等不良事件发生率随着贫血严重程度的增加而显著增加[3]

4.2. 贫血程度和患病率的危险因素

目前研究表明,病原的种类和载量、感染者的免疫功能是感染后贫血程度和患病率的重要危险因素。研究发现[35],在贫血的呼吸道合胞病毒感染患者中,病毒载量与血红蛋白水平之间存在显著负相关(r = −0.18, p = 0.024)。同样的结论在结核分枝杆菌感染、HIV感染患者也有发现。在贫血的肺结核患者中血红蛋白水平随着抗酸杆菌涂片分级增高呈明显的下降趋势[36],且贫血患者外周血CD4+和CD8+ T细胞计数显著下降[12],说明病原载量和患者免疫功能与贫血感染患者血红蛋白水平密切相关。艾滋病贫血患者比非贫血患者显示出更高的HIV病毒载量和更低的CD4+ T细胞计数[37]。一项研究[38]发现CD4计数为>350、200~350、50~199和<50 cell/µl的艾滋病患者的贫血患病率分别为17.21%、20.30%、25.81%和33.75%,提示随着CD4计数的降低,贫血的患病率增加。同时,这项研究[38]还表明合并不同机会感染的患者贫血患病率有所不同,其中合并马尔尼菲青霉菌感染的患者贫血患病率最为显著,合并结核的患者的贫血患病率高于未合并结核的患者[39],合并丙型肝炎病毒感染的患者贫血患病率略高于未感染此病毒的患者,说明病原体种类与贫血患病率有关。在寄生虫感染[40]中也发现,感染钩虫(92.3%)、兰氏寄生虫(78.9%)、曼氏寄生虫(75.0%)、溶组织寄生虫(50.0%)、地龙寄生虫(40.2%)的贫血患病率不尽相同。

4.3. 贫血程度在感染进展中的动态变化

在感染性疾病进展的过程中,贫血程度和患病率也发生了动态变化。有学者对结核患者进行纵向评估,发现在8周的强化期治疗期间,尽管贫血患者的结核病严重程度仍然高于非贫血患者,但有效化疗使贫血患者血红蛋白水平升高,贫血的患病率也迅速下降[12]。值得注意的是,在疾病进展中贫血的表型也发生了变化,从开始的炎症性贫血为主转变为缺铁性贫血为主[41]。同时炎症因子水平也发生了变化,这或许是导致血红蛋白水平和贫血表型变化的原因之一[41]

5. 小结与展望

贫血作为感染性疾病的一种常见并发症,其程度与感染严重程度密切相关,因此需要更多证据来证明贫血程度是否能作为预测重症感染的有效标志物,以及是否可以通过纠正贫血来作为治疗重症感染的科学依据。同时,仍需要进一步的研究来阐明贫血与感染性疾病进展的具体机制,以期为更好地临床工作提供可靠的指标及指导感染性疾病的治疗。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Gallagher, P.G. (2022) Anemia in the Pediatric Patient. Blood, 140, 571-593.
https://doi.org/10.1182/blood.2020006479
[2] Chaparro, C.M. and Suchdev, P.S. (2019) Anemia Epidemiology, Pathophysiology, and Etiology in Low‐ and Middle‐Income Countries. Annals of the New York Academy of Sciences, 1450, 15-31.
https://doi.org/10.1111/nyas.14092
[3] Oh, S.M., Skendelas, J.P., Macdonald, E., Bergamini, M., Goel, S., Choi, J., et al. (2021) On-Admission Anemia Predicts Mortality in COVID-19 Patients: A Single Center, Retrospective Cohort Study. The American Journal of Emergency Medicine, 48, 140-147.
https://doi.org/10.1016/j.ajem.2021.03.083
[4] Oh, T.K., Song, K. and Song, I. (2021) History of Anemia and Long-Term Mortality Due to Infection: A Cohort Study with 12 Years Follow-up in South Korea. BMC Infectious Diseases, 21, Article No. 674.
https://doi.org/10.1186/s12879-021-06377-0
[5] Chisti, M.J., Kawser, C.A., Md Hasibur Rahman, A.S.M., Afroze, F., Shahunja, K.M., et al. (2022) Prevalence and Outcome of Anemia among Children Hospitalized for Pneumonia and Their Risk of Mortality in a Developing Country. Scientific Reports, 12, Article No. 10741.
https://doi.org/10.1038/s41598-022-14818-2
[6] Denstaedt, S.J., Cano, J., Wang, X.Q., Donnelly, J.P., Seelye, S. and Prescott, H.C. (2023) Blood Count Derangements after Sepsis and Association with Post-Hospital Outcomes. Frontiers in Immunology, 14, Article 1133351.
https://doi.org/10.3389/fimmu.2023.1133351
[7] Abaynew, Y., Ali, A., Taye, G. and Shenkut, M. (2023) Prevalence and Types of Anemia among People with Tuberculosis in Africa: A Systematic Review and Meta-Analysis. Scientific Reports, 13, Article No. 5385.
https://doi.org/10.1038/s41598-023-32609-1
[8] Cao, G., Wang, Y., Wu, Y., Jing, W., Liu, J. and Liu, M. (2022) Prevalence of Anemia among People Living with HIV: A Systematic Review and Meta-Analysis. eClinicalMedicine, 44, Article 101283.
https://doi.org/10.1016/j.eclinm.2022.101283
[9] Dassah, S., Asiamah, G.K., Harun, V., Appiah-Kubi, K., Oduro, A., Asoala, V., et al. (2022) Urogenital Schistosomiasis Transmission, Malaria and Anemia among School-Age Children in Northern Ghana. Heliyon, 8, e10440.
https://doi.org/10.1016/j.heliyon.2022.e10440
[10] Haile, K., Yemane, T., Tesfaye, G., Wolde, D., Timerga, A. and Haile, A. (2021) Anemia and Its Association with Helicobacter pylori Infection among Adult Dyspeptic Patients Attending Wachemo University Nigist Eleni Mohammad Memorial Referral Hospital, Southwest Ethiopia: A Cross-Sectional Study. PLOS ONE, 16, e0245168.
https://doi.org/10.1371/journal.pone.0245168
[11] Fousekis, F.S., Mitselos, I.V. and Christodoulou, D.K. (2020) Extrahepatic Manifestations of Hepatitis E Virus: An Overview. Clinical and Molecular Hepatology, 26, 16-23.
https://doi.org/10.3350/cmh.2019.0082
[12] Ashenafi, S., Bekele, A., Aseffa, G., Amogne, W., Kassa, E., Aderaye, G., et al. (2022) Anemia Is a Strong Predictor of Wasting, Disease Severity, and Progression, in Clinical Tuberculosis (TB). Nutrients, 14, Article 3318.
https://doi.org/10.3390/nu14163318
[13] Lanser, L., Burkert, F.R., Bellmann-Weiler, R., Schroll, A., Wildner, S., Fritsche, G., et al. (2021) Dynamics in Anemia Development and Dysregulation of Iron Homeostasis in Hospitalized Patients with COVID-19. Metabolites, 11, Article 653.
https://doi.org/10.3390/metabo11100653
[14] Jiang, Y., Jiang, F., Kong, F., An, M., Jin, B., Cao, D., et al. (2019) Inflammatory Anemia-Associated Parameters Are Related to 28-Day Mortality in Patients with Sepsis Admitted to the ICU: A Preliminary Observational Study. Annals of Intensive Care, 9, Article No. 67.
https://doi.org/10.1186/s13613-019-0542-7
[15] Loftus, T.J., Mira, J.C., Stortz, J.A., Ozrazgat-Baslanti, T., Ghita, G.L., Wang, Z., et al. (2019) Persistent Inflammation and Anemia among Critically Ill Septic Patients. Journal of Trauma and Acute Care Surgery, 86, 260-267.
https://doi.org/10.1097/ta.0000000000002147
[16] Wrighting, D.M. and Andrews, N.C. (2006) Interleukin-6 Induces Hepcidin Expression through STAT3. Blood, 108, 3204-3209.
https://doi.org/10.1182/blood-2006-06-027631
[17] Weiss, G., Ganz, T. and Goodnough, L.T. (2019) Anemia of Inflammation. Blood, 133, 40-50.
https://doi.org/10.1182/blood-2018-06-856500
[18] Pagani, A., Nai, A., Silvestri, L. and Camaschella, C. (2019) Hepcidin and Anemia: A Tight Relationship. Frontiers in Physiology, 10, Article 1294.
https://doi.org/10.3389/fphys.2019.01294
[19] Bellmann-Weiler, R., Lanser, L., Barket, R., Rangger, L., Schapfl, A., Schaber, M., et al. (2020) Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection. Journal of Clinical Medicine, 9, Article 2429.
https://doi.org/10.3390/jcm9082429
[20] Rahat, A. and Kamani, L. (2021) Frequency of Iron Deficiency Anemia (IDA) among Patients with Helicobacter Pylori Infection. Pakistan Journal of Medical Sciences, 37, 776-781.
https://doi.org/10.12669/pjms.37.3.3944
[21] Sağlam, N. and Civan, H.A. (2023) Impact of Chronic Helicobacter pylori Infection on Inflammatory Markers and Hematological Parameters. European Review for Medical and Pharmacological Sciences, 27, 969-979.
https://doi.org/10.26355/eurrev_202302_31190
[22] Robinson, K. and Atherton, J.C. (2021) The Spectrum of Helicobacter-Mediated Diseases. Annual Review of Pathology: Mechanisms of Disease, 16, 123-144.
https://doi.org/10.1146/annurev-pathol-032520-024949
[23] Abioye, A.I., Andersen, C.T., Sudfeld, C.R. and Fawzi, W.W. (2020) Anemia, Iron Status, and HIV: A Systematic Review of the Evidence. Advances in Nutrition, 11, 1334-1363.
https://doi.org/10.1093/advances/nmaa037
[24] Rivera-Correa, J. and Rodriguez, A. (2020) Autoimmune Anemia in Malaria. Trends in Parasitology, 36, 91-97.
https://doi.org/10.1016/j.pt.2019.12.002
[25] Zama, D., Pancaldi, L., Baccelli, F., Guida, F., Gottardi, F., Dentale, N., et al. (2021) Autoimmune Hemolytic Anemia in Children with COVID‐19. Pediatric Blood & Cancer, 69, e29330.
https://doi.org/10.1002/pbc.29330
[26] Leaf, R.K., O’Brien, K.L., Leaf, D.E. and Drews, R.E. (2017) Autoimmune Hemolytic Anemia in a Young Man with Acute Hepatitis E Infection. American Journal of Hematology, 92, E77-E79.
https://doi.org/10.1002/ajh.24699
[27] Lou, Q., Zhang, S. and Yuan, L. (2021) Clinical Analysis of Adenovirus Pneumonia with Pulmonary Consolidation and Atelectasis in Children. Journal of International Medical Research, 49, 1-8.
https://doi.org/10.1177/0300060521990244
[28] Shi, Y., Chen, W., Zeng, M., Shen, G., Sun, C., Liu, G., et al. (2021) Clinical Features and Risk Factors for Severe Influenza in Children: A Study from Multiple Hospitals in Shanghai. Pediatrics & Neonatology, 62, 428-436.
https://doi.org/10.1016/j.pedneo.2021.05.002
[29] Chang, Q., Chen, H., Wu, N., Gao, Y., Yu, R. and Zhu, W. (2022) Prediction Model for Severe Mycoplasma pneumoniae Pneumonia in Pediatric Patients by Admission Laboratory Indicators. Journal of Tropical Pediatrics, 68, fmac059.
https://doi.org/10.1093/tropej/fmac059
[30] Cyprian, F.S., Suleman, M., Abdelhafez, I., Doudin, A., Masud Danjuma, I.M., Mir, F.A., et al. (2021) Complement C5a and Clinical Markers as Predictors of COVID-19 Disease Severity and Mortality in a Multi-Ethnic Population. Frontiers in Immunology, 12, Article 707159.
https://doi.org/10.3389/fimmu.2021.707159
[31] Yao, Y., Song, H., Zhang, F., Liu, J., Wang, D., Feng, Q., et al. (2022) Genetic Predisposition to Blood Cell Indices in Relation to Severe COVID‐19. Journal of Medical Virology, 95, e28104.
https://doi.org/10.1002/jmv.28104
[32] Dessie, N., Lema, W. and Aemero, M. (2020) Hematological and Biochemical Profile of Patients Infected with Schistosoma mansoni in Comparison with Apparently Healthy Individuals at Sanja Town, Northwest Ethiopia: A Cross-Sectional Study. Journal of Tropical Medicine, 2020, Article 4083252.
https://doi.org/10.1155/2020/4083252
[33] Zhang, H.C., Zhang, Y., Dai, H.B., et al. (2022) Preoperative Anemia and Complications after Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. European Review for Medical and Pharmacological Sciences, 26, 7420-7430.
https://doi.org/10.26355/eurrev_202210_30011
[34] Jin, M., Wang, Y., Li, J., Wu, Z., Liu, X., Wang, H., et al. (2023) Anemia Is Independently Associated with Mortality in People Living with Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome: A Propensity Score Matching-Based Retrospective Cohort Study in China. Frontiers in Medicine, 10, Article 1055115.
https://doi.org/10.3389/fmed.2023.1055115
[35] Scagnolari, C., Midulla, F., Selvaggi, C., Monteleone, K., Bonci, E., Papoff, P., et al. (2012) Evaluation of Viral Load in Infants Hospitalized with Bronchiolitis Caused by Respiratory Syncytial Virus. Medical Microbiology and Immunology, 201, 311-317.
https://doi.org/10.1007/s00430-012-0233-6
[36] Gil-Santana, L., Cruz, L.A.B., Arriaga, M.B., Miranda, P.F.C., Fukutani, K.F., Silveira-Mattos, P.S., et al. (2019) Tuberculosis-Associated Anemia Is Linked to a Distinct Inflammatory Profile That Persists after Initiation of Antitubercular Therapy. Scientific Reports, 9, Article No. 1381.
https://doi.org/10.1038/s41598-018-37860-5
[37] Demitto, F.O., Araújo-Pereira, M., Schmaltz, C.A., Sant’Anna, F.M., Arriaga, M.B., Andrade, B.B., et al. (2020) Impact of Persistent Anemia on Systemic Inflammation and Tuberculosis Outcomes in Persons Living with HIV. Frontiers in Immunology, 11, Article 588405.
https://doi.org/10.3389/fimmu.2020.588405
[38] Xie, B., Huang, W., Hu, Y., Dou, Y., Xie, L., Zhang, Y., et al. (2022) Anemia and Opportunistic Infections in Hospitalized People Living with HIV: A Retrospective Study. BMC Infectious Diseases, 22, Article No. 912.
https://doi.org/10.1186/s12879-022-07910-5
[39] Araújo-Pereira, M., Barreto-Duarte, B., Arriaga, M.B., Musselwhite, L.W., Vinhaes, C.L., Belaunzaran-Zamudio, P.F., et al. (2022) Relationship between Anemia and Systemic Inflammation in People Living with HIV and Tuberculosis: A Sub-Analysis of the CADIRIS Clinical Trial. Frontiers in Immunology, 13, Article 916216.
https://doi.org/10.3389/fimmu.2022.916216
[40] Bolka, A. and Gebremedhin, S. (2019) Prevalence of Intestinal Parasitic Infection and Its Association with Anemia among Pregnant Women in Wondo Genet District, Southern Ethiopia: A Cross-Sectional Study. BMC Infectious Diseases, 19, Article No. 483.
https://doi.org/10.1186/s12879-019-4135-8
[41] Sonnweber, T., Grubwieser, P., Sahanic, S., Böhm, A.K., Pizzini, A., Luger, A., et al. (2022) The Impact of Iron Dyshomeostasis and Anaemia on Long-Term Pulmonary Recovery and Persisting Symptom Burden after COVID-19: A Prospective Observational Cohort Study. Metabolites, 12, Article 546.
https://doi.org/10.3390/metabo12060546