m6A甲基转移酶ZC3H13在肿瘤中的研究进展
Research Progress of m6A Methyltransferase ZC3H13 in Tumor
DOI: 10.12677/acm.2024.1472063, PDF, HTML, XML, 下载: 8  浏览: 12 
作者: 陈 丹, 鄢 文*:暨南大学附属广东省第二人民医院肿瘤防治中心,广东 广州
关键词: m6AZC3H13肿瘤m6A ZC3H13 Tumor
摘要: N6-甲基腺苷(m6A) RNA修饰在肿瘤的发生发展中起着非常重要的作用。m6A的写入器、擦除器和读取器在m6A修饰中发挥重要的生物学作用。越来越多的研究证实m6A基因的异常跟癌症的发生发展密切相关。ZC3H13在多种系统肿瘤中异常表达,且与肿瘤的恶性程度密切相关。本研究就m6A甲基转移酶ZC3H13在各系统肿瘤中的研究进展进行综述。
Abstract: RNA modification of N6-methyladenosine (m6A) plays a very important role in the occurrence and development of tumors. The writer, eraser and reader of m6A play an important biological role in M6A modification. More and more studies have confirmed that the abnormality of m6A gene is closely related to the occurrence and development of cancer. ZC3H13 is abnormally expressed in a variety of systemic tumors, and is closely related to the malignant degree of tumors. In this study, the research progress of m6A methyltransferase ZC3H13 in tumors of various systems was reviewed.
文章引用:陈丹, 鄢文. m6A甲基转移酶ZC3H13在肿瘤中的研究进展[J]. 临床医学进展, 2024, 14(7): 647-652. https://doi.org/10.12677/acm.2024.1472063

1. 前言

N6-甲基腺苷(m6A) RNA甲基化被确定为是目前发现最常见、丰富和可逆的RNA表观遗传修饰,尤其是在真核信使RNA中,并且证实m6A修饰是通过调节RNA剪接、定位、翻译、稳定和衰变在肿瘤的发生和发展中起关键作用[1] [2]。m6A写入器、擦除器和读取器是可以分别在mRNA或非编码RNA上安装、移除或识别m6A的蛋白质。这些蛋白质在m6A修饰中发挥重要的生物学作用。m6A被m6A甲基转移酶又称为“写入器”、去甲基化酶又称为“擦除器”和甲基化阅读蛋白又称为“读取器”这三种主要的调节器来催化,越来越多的研究证实m6A基因的异常跟癌症发生发展密切相关[3]。ZC3H13是一种m6A甲基转移酶,在乳腺癌、宫颈癌、甲状腺癌、前列腺癌、肝细胞癌等多种癌中异常表达,且跟肿瘤预后相关。ZC3H13调控m6A甲基化,调控RNA的代谢,也在诱导肿瘤化疗产生抵抗作用及提高抗肿瘤的免疫反应中起作用,为肿瘤患者治疗提供新的治疗方向。

2. m6A甲基转移酶ZC3H13

锌指含CCCH结构域蛋白13 (ZC3H13)位于人类染色体13q14.13,由1729个氨基酸组成,是一种在哺乳动物中高度保守的C3H型锌指蛋白,绝大多数存在于细胞质中。研究发现,C3H型锌指蛋白是一种转录因子,广泛存在于人类及动植物中,并且每个C3H锌指蛋白的C端的KTEL (V)的残基,影响细胞周期和细胞凋亡[4]。ZC3H13是m6A的写入器,是m6A甲基转移酶复合体中的新型调控蛋白。ZC3H13是一种发育蛋白,是一种介导RNA的m6A甲基化的复合体,也是WMM复合体的相关成分,这种修饰在mRNA剪接和mRNA加工的效率中发挥作用。ZC3H13是通过促进3'-UTR处mRNA的m6A甲基化发挥关键调节作用和控制胚胎干细胞(ESCs)的多能性的[5]。在WMM复合体中,MACOM亚复合体的成分锚定在核中。越来越多的研究证明ZC3H13在各系统肿瘤中异常表达,包括头颈部肿瘤、胸部肿瘤、消化系统肿瘤、妇科肿瘤、泌尿系肿瘤等,其可能成为预测肿瘤预后的生物标志物。研究证实ZC3H13对于相关肿瘤通过不同的作用机制来影响相关肿瘤的发生发展的。研究证实ZC3H13诱导肿瘤化疗产生抵抗作用,降低化疗药物对肿瘤的敏感性,导致化疗效果降低[6]。研究发现ZC3H13能提高抗肿瘤的免疫反应,为抗肿瘤免疫治疗反应中起作用,为肿瘤患者免疫治疗提供新的治疗方向[7]

3. ZC3H13在头颈部肿瘤中的研究进展

Chow R D等人研究ZC3H13突变的改变了Rb1突变体的基因表达谱,并使它们对替莫唑胺更具抵抗力,并提供了体内胶质瘤抑制因子的功能景观[6]。Hou J等人通过生信分析ZC3H13在甲状腺乳头状癌下调[8]。Xie R等人研究ZC3H13在甲状腺乳头状癌细胞系中表达降低。研究发现过表达ZC3H13后抑制甲状腺乳头状癌细胞的增殖、侵袭和迁移,而干扰ZC3H13后促进甲状腺乳头状癌细胞的增殖、侵袭和迁移。另外研究发现过表达ZC3H13后抑制GTPase激活蛋白1 (IQGAP1)的表达,而干扰ZC3H13后增强IQGAP1的表达。本研究是ZC3H13通过促进IQGAP1 mRNA的m6A修饰介导IQGAP1 mRNA降解,为甲状腺乳头状癌提供了一个新的治疗靶点[9]。Paramasivam A等人研究发现其他m6A调控基因如ZC3H13在头颈鳞状细胞癌样本中显著上调[10]。Lili H等人研究发现双氧化酶1 (DUOX1)在喉鳞状细胞癌细胞中低表达,DUOX1低表达促进喉鳞状细胞癌细胞增殖,ZC3H13低表达抑制喉鳞状细胞癌细胞增殖;发现DUOX1和ZC3H13之间存在相互作用。研究得出ZC3H13通过m6A依赖性修饰减少喉鳞状细胞癌细胞中DUOX1介导的铁死亡[11]

4. ZC3H13在胸部肿瘤中的研究进展

Li F等人通过生信分析ZC3H13在肺腺癌中的表达水平显着下调[12]。Wang S等人研究在三阴性乳腺癌组织中,m6A调节子基因明显失调,其中ZC3H13大幅下调[13]。Gong P-J等人研究ZC3H13是乳腺癌中下调的m6A甲基转移酶,其作为乳腺癌的抑癌基因,其异常低表达可预测四种乳腺癌亚型的不良预后,其下调与ER、PR和三阴性乳腺癌患者以及肿瘤的进展有关,也研究其与Wnt信号通路的拮抗剂APC呈显著正相关,提示可能在调节肿瘤细胞的增殖、侵袭和转移中发挥协同作用。研究发现乳腺癌组织中ZC3H13、APC的表达水平与CD4+T细胞、CD8+T细胞、中性粒细胞、巨噬细胞、树突状细胞的浸润水平呈显著正相关,与Treg细胞呈负相关[7]。Zhang B等人研究发现高表达ZC3H13的乳腺癌患者的生存率较低,另外研究发现较低表达的ZC3H13具有较差的无复发生存期,还发现ZC3H13表达水平与ER、PR表达呈正相关;在HER-2阳性乳腺癌患者中,ZC3H13的表达均低于HER-2阴性组。这为ZC3H13在乳腺癌中提供了潜在治疗价值[14]

5. ZC3H13在消化系统肿瘤中的研究进展

Fang K等人研究得出ZC3H13 (11%)在m6A调节因子中经常发生突变,且大多数调节剂在胰腺癌中明显失调[15]。Huang C等人研究ZC3H13是PBAF染色质重塑复合物的一个亚基,被确定为受非瑟酮处理影响的主要分子。敲低ZC3H13后下调了PHF10的m6A甲基化,并以YTHDF1依赖性方式降低了PHF10的翻译,非瑟酮通过ZC3Hl3介导的m6A修饰PHF10增强DSB,为胰腺导管腺癌的治疗提供新的见解[16]。Li L等人研究发现ZC3H13在食管癌组织中失调[17]。Huang Y等人通过生信分析ZC3H13作为肝细胞癌独立的预后指标之一[18]。Kong F等人研究ZC3H13的下调与肝细胞癌的不良预后相关[19]。Shi Y等人研究发现大多数m6A调控基因在肝癌组织中均有ZC3H13基因的高表达[20]。Li D等人研究通过风险模型发现过表达ZC3H13基因会导致肝细胞癌患者预后不良[21]。Kim Y R等人研究发现ZC3H13 (3.3%胃癌,15.2%结直肠癌)发生体细胞框架突变,并研究该突变可能通过细胞周期的失调和DNA损伤信号转导/修复来促进微卫星不稳定性导致胃癌和结直肠癌的发展[22]。Yang J等人研究ZC3H13在胃腺癌的表达显著降低,并得出胃腺癌的发生和发展与M6A基因有关[23]。Zhu D等人研究发现ZC3H13在结直肠癌中发生体细胞移码突变,在结直肠癌细胞中起着抑癌作用,研究发现ZC3H13可能是Ras-ERK信号通路的上游调节剂,并抑制了结直肠癌的增殖和侵袭,最后研究发现ZC3H13基因表达的降低与肿瘤的临床分期、区域淋巴结转移阳性有关[24]

6. ZC3H13在妇科肿瘤中的研究进展

Kang J等人研究模型中风险比高及预后差的ZC3H13在宫颈癌细胞系和组织中高表达,并基于血管生成相关特征的基因建立的模型来有效评估宫颈癌的预后[25]。Zhang Y等人研究证实ZC3H13和细胞骨架相关蛋白2 (CKAP2)的高表达跟宫颈癌预后不良相关,而ZC3H13抑制宫颈癌细胞的增殖、侵袭和迁移,从而促进宫颈癌细胞的恶性转化。ZC3H13介导m6A修饰CKAP2增强宫颈癌细胞中CKAP2的表达,另外过表达CKAP2部分恢复了过表达ZC3H13对宫颈癌细胞恶性表型的促进作用,本研究ZC3H13介导的N6-甲基腺苷修饰稳定CKAP2表达对宫颈癌进展的影响[26]。Pan J等人研究开发了ZC3H13作为宫颈鳞状细胞癌预后标志物之一,其可以作为独立的预后指标,并发现高危组和低危组之间的生存率和临床病理特征存在显着差异[27]。Ma J等人研究发现m6A RNA甲基化调节因子的变化与子宫内膜癌的临床病理分期及预后是密切相关。ZC3H13被确定为子宫内膜癌诊断和预后的潜在标记物。免疫细胞浸润与ZC3H13表达的变化有关。ZC3H13基因敲除促进了子宫内膜癌细胞的增殖和侵袭[28]。Fan L等人研究ZC3H13是三个m6A RNA甲基化调节剂其中之一,并研究其可能是卵巢癌的独立预后标志物,其中ZC3H13预后得分最高,并证明这三个m6A RNA甲基化调节剂均与癌症通路和WNT信号通路相关,并最终得出ZC3H13 mRNA水平是预测预后和制定治疗策略的重要因素[29]

7. ZC3H13在泌尿系肿瘤中的研究进展

Liu Z等人研究m6A修饰与前列腺癌和肿瘤免疫微环境之间的相关性,并确定适合免疫检查点抑制剂治疗的三种m6A调节模式,其中预后最好的m6A调节因子簇显着增加了ZC3H13的表达,并确定免疫疗法对m6A低得分的前列腺癌患者预后较差可能更有效[30]。Trilla-Fuertes L等人研究说明ZC3H13作为七个m6A甲基化相关基因其中之一,已经被鉴定为前列腺癌和牙周炎之间的串扰基因[31]。Dechao F等人研究发现前列腺癌患者的有害和有益亚型,发现ZC3H13是有害和有益衰老相关分泌表型组之间的突变基因之一,结果具有统计学意义[32]。Zhi Y等人研究发现到外泌体衍生的长编码RNA的A1BG-AS1和m6A甲基转移酶ZC3H13在前列腺癌中的表达受到限制;上调A1BG-AS1或与上调A1BG-AS1的共培养可抑制前列腺癌细胞的增殖、迁移和侵袭能力;ZC3H13还通过调节A1BG-AS1的m6A水平促进了A1BG-AS1的稳定表达,从而防止前列腺癌细胞的恶性转化[33]。Chen J等人通过生分析得出ZC3H13在肾透明细胞癌中显著下调,并可能作肾透明细胞癌患者预后的潜在生物标志物[34]。Guo T等人研究发现在不考虑总体生存期、无进展生存期和癌症特异性生存期的情况下,在肾透明细胞癌中ZC3H13的表达谱和预后意义是一致的,且ZC3H13的表达与肾透明细胞癌的临床病理因素相关。另外发现ZC3H13可能形成肾透明细胞癌的非炎性表型,还能预测免疫检查点阻断的预后、临床疗效及对肾透明细胞癌靶向治疗的敏感性[35]。Trilla-Fuertes L等人研究确定BRCA2中的遗传变异,证实ZC3H13与肛门鳞状细胞癌中无病生存率有关,其可能有助于患者的预后,提供潜在的干预措施[36]

8. ZC3H13在其他肿瘤中的研究进展

近几年有学者研究ZC3H13在血液肿瘤及软组织肉瘤中情况。Parameswaran S等人研究混合谱系白血病(MLL1)基因和ZC3H13融合作为模拟系统,得出MLL1-ZC3H13融合诱导染色体不稳定,不但影响有丝分裂进程,也增强肿瘤球形成;另外MLL1-ZC3H13嵌合体持续增加癌症干细胞标志物(CD44)的表达[37]。Hou M等人通过生信分析m6A调节因子的改变最普遍,并且ZC3H13的丢失频率最高[38]

9. 小结与展望

近年来,随着医学基因表观遗传学的发展,及各大基因数据库的应用,ZC3H13在不同系统肿瘤中研究的越来越多,其在肿瘤中的作用在不同肿瘤中的表达也更明确。ZC3H13诱导肿瘤化疗产生抵抗作用及提高抗肿瘤的免疫反应,为抗肿瘤免疫治疗反应中起作用,为肿瘤患者免疫治疗提供新的治疗方向。越来越多的研究证明ZC3H13是作为抑癌基因或促癌基因来影响不同肿瘤的生物学行为,各系统肿瘤通过潜在的分子机制来影响肿瘤的发生发展,具体的分子机制需要进一步探索。ZC3H13在头颈部肿瘤、胸部肿瘤、消化系统肿瘤、妇科肿瘤、泌尿系肿瘤等肿瘤中异常表达,并与肿瘤的恶性程度密切相关,研究ZC3H13可为临床抗肿瘤治疗提供新的预测及预后的生物标志物。

NOTES

*通讯作者。

参考文献

[1] Lan, T., Li, H., Zhang, D., Xu, L., Liu, H., Hao, X., et al. (2019) KIAA1429 Contributes to Liver Cancer Progression through N6-Methyladenosine-Dependent Post-Transcriptional Modification of GATA3. Molecular Cancer, 18, Article No. 186.
https://doi.org/10.1186/s12943-019-1106-z
[2] He, P.C. and He, C. (2021) m6A RNA Methylation: From Mechanisms to Therapeutic Potential. The EMBO Journal, 40, e105977.
https://doi.org/10.15252/embj.2020105977
[3] Chen, X., Zhang, J. and Zhu, J. (2019) The Role of m6A RNA Methylation in Human Cancer. Molecular Cancer, 18, Article No. 103.
https://doi.org/10.1186/s12943-019-1033-z
[4] Ouna, B.A., Stewart, M., Helbig, C. and Clayton, C. (2012) The Trypanosoma Brucei CCCH Zinc Finger Proteins ZC3H12 and ZC3H13. Molecular and Biochemical Parasitology, 183, 184-188.
https://doi.org/10.1016/j.molbiopara.2012.02.006
[5] Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., et al. (2018) ZC3H13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Molecular Cell, 69, 1028-1038.e6.
https://doi.org/10.1016/j.molcel.2018.02.015
[6] Chow, R.D., Guzman, C.D., Wang, G., Schmidt, F., Youngblood, M.W., Ye, L., et al. (2017) AAV-Mediated Direct in Vivo CRISPR Screen Identifies Functional Suppressors in Glioblastoma. Nature Neuroscience, 20, 1329-1341.
https://doi.org/10.1038/nn.4620
[7] Gong, P., Shao, Y., Yang, Y., Song, W., He, X., Zeng, Y., et al. (2020) Analysis of N6-Methyladenosine Methyltransferase Reveals METTL14 and ZC3H13 as Tumor Suppressor Genes in Breast Cancer. Frontiers in Oncology, 10, Article 578963.
https://doi.org/10.3389/fonc.2020.578963
[8] Hou, J., Shan, H., Zhang, Y., Fan, Y. and Wu, B. (2020) m6A RNA Methylation Regulators Have Prognostic Value in Papillary Thyroid Carcinoma. American Journal of Otolaryngology, 41, Article ID: 102547.
https://doi.org/10.1016/j.amjoto.2020.102547
[9] Xie, R., Chen, W., Lv, Y., Xu, D., Huang, D., Zhou, T., et al. (2023) Overexpressed ZC3H13 Suppresses Papillary Thyroid Carcinoma Growth through m6A Modification-Mediated IQGAP1 Degradation. Journal of the Formosan Medical Association, 122, 738-746.
https://doi.org/10.1016/j.jfma.2022.12.019
[10] Paramasivam, A., George, R. and Priyadharsini, J.V. (2021) Genomic and Transcriptomic Alterations in m6A Regulatory Genes Are Associated with Tumorigenesis and Poor Prognosis in Head and Neck Squamous Cell Carcinoma. American Journal of Cancer Research, 11, 3688-3697.
[11] Huang, L., Chen, G., He, J. and Wang, P. (2023) ZC3H13 Reduced Duox1-Mediated Ferroptosis in Laryngeal Squamous Cell Carcinoma Cells through m6A-Dependent Modification. Tissue and Cell, 84, Article ID: 102187.
https://doi.org/10.1016/j.tice.2023.102187
[12] Li, F., Wang, H., Huang, H., Zhang, L., Wang, D. and Wan, Y. (2020) m6A RNA Methylation Regulators Participate in the Malignant Progression and Have Clinical Prognostic Value in Lung Adenocarcinoma. Frontiers in Genetics, 11, Article 994.
https://doi.org/10.3389/fgene.2020.00994
[13] Wang, S., Zou, X., Chen, Y., Cho, W.C. and Zhou, X. (2021) Effect of N6-Methyladenosine Regulators on Progression and Prognosis of Triple-Negative Breast Cancer. Frontiers in Genetics, 11, Article 580036.
https://doi.org/10.3389/fgene.2020.580036
[14] Zhang, B., Gu, Y. and Jiang, G. (2020) Expression and Prognostic Characteristics of M6 a RNA Methylation Regulators in Breast Cancer. Frontiers in Genetics, 11, Article 604597.
https://doi.org/10.3389/fgene.2020.604597
[15] Fang, K., Qu, H., Wang, J., Tang, D., Yan, C., Ma, J., et al. (2021) Characterization of Modification Patterns, Biological Function, Clinical Implication, and Immune Microenvironment Association of m6A Regulators in Pancreatic Cancer. Frontiers in Genetics, 12, Article 702072.
https://doi.org/10.3389/fgene.2021.702072
[16] Huang, C., Zhou, S., Zhang, C., Jin, Y., Xu, G., Zhou, L., et al. (2022) Zc3h13-mediated N6-Methyladenosine Modification of PHF10 Is Impaired by Fisetin Which Inhibits the DNA Damage Response in Pancreatic Cancer. Cancer Letters, 530, 16-28.
https://doi.org/10.1016/j.canlet.2022.01.013
[17] Li, L., Xie, R. and Wei, Q. (2021) Network Analysis of Mirna Targeting m6A-Related Genes in Patients with Esophageal Cancer. PeerJ, 9, e11893.
https://doi.org/10.7717/peerj.11893
[18] Huang, Y., Chen, S., Qin, W., Wang, Y., Li, L., Li, Q., et al. (2020) A Novel RNA Binding Protein-Related Prognostic Signature for Hepatocellular Carcinoma. Frontiers in Oncology, 10, Article 580513.
https://doi.org/10.3389/fonc.2020.580513
[19] Kong, F., Wang, K. and Wang, L. (2022) Systematic Analysis of the Expression Profile and Prognostic Significance of m6A Regulators and PD-L1 in Hepatocellular Carcinoma. Discover Oncology, 13, Article No. 131.
https://doi.org/10.1007/s12672-022-00595-x
[20] Shi, Y., Wang, Y., Zhang, W., Niu, K., Mao, X., Feng, K., et al. (2023) N6-methyladenosine with Immune Infiltration and PD-L1 in Hepatocellular Carcinoma: Novel Perspective to Personalized Diagnosis and Treatment. Frontiers in Endocrinology, 14, Article 1153802.
https://doi.org/10.3389/fendo.2023.1153802
[21] Li, D., Li, K., Zhang, W., Yang, K., Mu, D., Jiang, G., et al. (2022) The m6A/m5C/m1A Regulated Gene Signature Predicts the Prognosis and Correlates with the Immune Status of Hepatocellular Carcinoma. Frontiers in Immunology, 13, Article 918140.
https://doi.org/10.3389/fimmu.2022.918140
[22] Kim, Y.R., Chung, N.G., Kang, M.R., et al. (2010) Novel Somatic Frameshift Mutations of Genes Related to Cell Cycle and DNA Damage Response in Gastric and Colorectal Cancers with Microsatellite Instability. Tumori Journal, 96, 1004-1009.
[23] Yang, J., Wu, Z., Wu, X., Chen, S., Xia, X. and Zeng, J. (2022) Constructing and Validating of m6a-Related Genes Prognostic Signature for Stomach Adenocarcinoma and Immune Infiltration: Potential Biomarkers for Predicting the Overall Survival. Frontiers in Oncology, 12, Article 1050288.
https://doi.org/10.3389/fonc.2022.1050288
[24] Zhu, D., Zhou, J., Zhao, J., Jiang, G., Zhang, X., Zhang, Y., et al. (2018) ZC3H13 Suppresses Colorectal Cancer Proliferation and Invasion via Inactivating Ra-ERK Signaling. Journal of Cellular Physiology, 234, 8899-8907.
https://doi.org/10.1002/jcp.27551
[25] Kang, J., Xiang, X., Chen, X., Jiang, J., Zhang, Y., Li, L., et al. (2023) Angiogenesis-Related Gene Signatures Reveal the Prognosis of Cervical Cancer Based on Single Cell Sequencing and Co-Expression Network Analysis. Frontiers in Cell and Developmental Biology, 10, Article 1086835.
https://doi.org/10.3389/fcell.2022.1086835
[26] Zhang, Y., Chen, X., Chen, H. and Zhang, Y. (2023) ZC3H13 Enhances the Malignancy of Cervical Cancer by Regulating m6A Modification of CKAP2. Critical Reviews in Immunology, 43, 1-13.
https://doi.org/10.1615/critrevimmunol.2023049342
[27] Pan, J., Xu, L. and Pan, H. (2020) Development and Validation of an m6A RNA Methylation Regulator-Based Signature for Prognostic Prediction in Cervical Squamous Cell Carcinoma. Frontiers in Oncology, 10, Article 1444.
https://doi.org/10.3389/fonc.2020.01444
[28] Ma, J., Yang, D. and Ma, X. (2021) Immune Infiltration-Related N6-Methyladenosine RNA Methylation Regulators Influence the Malignancy and Prognosis of Endometrial Cancer. Aging, 13, 16287-16315.
https://doi.org/10.18632/aging.203157
[29] Fan, L., Lin, Y., Lei, H., Shu, G., He, L., Yan, Z., et al. (2020) A Newly Defined Risk Signature, Consisting of Three m6A RNA Methylation Regulators, Predicts the Prognosis of Ovarian Cancer. Aging, 12, 18453-18475.
https://doi.org/10.18632/aging.103811
[30] Liu, Z., Zhong, J., Zeng, J., Duan, X., Lu, J., Sun, X., et al. (2021) Characterization of the m6A-Associated Tumor Immune Microenvironment in Prostate Cancer to Aid Immunotherapy. Frontiers in Immunology, 12, Article 735170.
https://doi.org/10.3389/fimmu.2021.735170
[31] Ding, D., Liu, G., Gao, J. and Cao, M. (2022) Unveiling the m6A Methylation Regulator Links between Prostate Cancer and Periodontitis by Transcriptomic Analysis. Disease Markers, 2022, Article ID: 4030046.
https://doi.org/10.1155/2022/4030046
[32] Feng, D., Wang, J., Li, D., Wu, R., Wei, W. and Zhang, C. (2023) Senescence-Associated Secretory Phenotype Constructed Detrimental and Beneficial Subtypes and Prognostic Index for Prostate Cancer Patients Undergoing Radical Prostatectomy. Discover Oncology, 14, Article No. 155.
https://doi.org/10.1007/s12672-023-00777-1
[33] Yang, Z., Luo, Y., Zhang, F. and Ma, L. (2024) Exosome-Derived IncRNA A1BG-AS1 Attenuates the Progression of Prostate Cancer Depending on ZC3H13-Mediated m6A Modification. Cell Division, 19, Article No. 5.
https://doi.org/10.1186/s13008-024-00110-4
[34] Chen, J., Yu, K., Zhong, G. and Shen, W. (2020) Identification of a m6A RNA Methylation Regulators-Based Signature for Predicting the Prognosis of Clear Cell Renal Carcinoma. Cancer Cell International, 20, Article No. 157.
https://doi.org/10.1186/s12935-020-01238-3
[35] Guo, T., Duan, H., Chen, J., Liu, J., Othmane, B., Hu, J., et al. (2021) N6-Methyladenosine Writer Gene ZC3H13 Predicts Immune Phenotype and Therapeutic Opportunities in Kidney Renal Clear Cell Carcinoma. Frontiers in Oncology, 11, Article 718644.
https://doi.org/10.3389/fonc.2021.718644
[36] Trilla-Fuertes, L., Ghanem, I., Maurel, J., G-Pastrián, L., Mendiola, M., Peña, C., et al. (2020) Comprehensive Characterization of the Mutational Landscape in Localized Anal Squamous Cell Carcinoma. Translational Oncology, 13, Article ID: 100778.
https://doi.org/10.1016/j.tranon.2020.100778
[37] Parameswaran, S., Vizeacoumar, F.S., Kalyanasundaram Bhanumathy, K., Qin, F., Islam, M.F., Toosi, B.M., et al. (2018) Molecular Characterization of an MLL1 Fusion and Its Role in Chromosomal Instability. Molecular Oncology, 13, 422-440.
https://doi.org/10.1002/1878-0261.12423
[38] Hou, M., Guo, X., Chen, Y., Cong, L. and Pan, C. (2020) A Prognostic Molecular Signature of N⁶-Methyladenosine Methylation Regulators for Soft-Tissue Sarcoma from the Cancer Genome Atlas Database. Medical Science Monitor, 26, e928400.
https://doi.org/10.12659/msm.928400