原发性闭角型青光眼患者外周血血小板参数与视网膜结构损害的相关性研究
Correlation Study between Peripheral Platelet Parameters and Retinal Structural Damage in Patients with Primary Angle Closure Glaucoma
摘要: 目的:分析原发性闭角型青光眼(primary angle closure glaucoma, PACG)患者外周血血小板参数与视网膜结构损害的相关性,探讨血小板在PACG中的变化及意义。方法:本回顾性研究纳入了2018年1月至2024年1月在青岛大学附属医院眼科住院并确诊为PACG的患者143人(共143眼),根据视野的平均缺损(mean deviation, MD)进一步分为早期、中期和晚期。应用CIRRUS HD-OCT对所有受试者进行扫描,并计算视盘周围视网膜神经纤维层(retinal nerve fiber layer, RNFL)厚度、黄斑区神经节细胞–内丛状层(ganglion cell-inner plexiform layer, GC-IPL)厚度,以及视盘结构参数。采用全自动血细胞分析仪检测受试者的外周血血小板参数。Pearson相关性分析用于确定外周血血小板参数与视网膜结构参数的相关性。结果:PACG患者的血小板体积分布宽度(platelet volume distribution width, PDW)与视盘周围RNFL平均厚度(r = −0.174, P = 0.038)间存在显著负相关,与平均杯盘比(r = 0.248, P = 0.003)、垂直杯盘比(r = 0.234, P = 0.005)间存在显著正相关,与黄斑区GC-IPL平均厚度(r = −0.134, P = 0.110)存在负相关趋势,但无统计学意义。早期PACG患者的PDW与黄斑区GC-IPL的平均、上鼻、下鼻、下方、下颞厚度间存在显著负相关,与视盘周围RNFL的平均、下方厚度间存在显著负相关,与平均杯盘比、垂直杯盘比、杯容积之间存在显著正相关;中期PACG患者的PDW与各OCT参数间未发现显著相关性;晚期PACG患者的PDW与黄斑区GC-IPL的平均、下鼻、下方、下颞、上颞厚度间存在显著负相关,与视盘周围RNFL的平均、上方、颞侧厚度间存在显著负相关,与平均杯盘比、垂直杯盘比之间存在显著正相关。多元线性回归分析显示,在调整了性别、年龄、身体质量指数、高血压、糖尿病后,早期和晚期PACG的PDW水平仍与视盘周围RNFL平均厚度、黄斑区GC-IPL平均厚度、平均杯盘比和垂直杯盘比之间存在显著关联。结论:PACG患者的外周血PDW与视网膜结构损害密切相关,提示血小板活化与青光眼性视神经病变有关。
Abstract: Purpose: To analyze the correlation between peripheral platelet parameters and retinal structural damage in patients with primary angle closure glaucoma (PACG), and to explore the significance of platelet alteration in patients with PACG. Methods: This retrospective study enrolled 143 patients diagnosed with PACG (143 eyes) in the Department of Ophthalmology, the Affiliated Hospital of Qingdao University, from January 2018 to January 2024. They were further divided into early, moderate and severe groups according to the visual field mean deviation (MD). CIRRUS HD-OCT was used to scan all participants, and the thickness of peripapillary retinal nerve fiber layer (RNFL), the thickness of macular ganglion cell-inner plexiform layer (GC-IPL), and the structural parameters of the optic disc in each eye were calculated. An automated hematology analyzer was used to analyze the peripheral platelet parameters of each participant. Pearson correlation analysis was used to determine the correlation between peripheral platelet parameters and retinal structural parameters. Results: In PACG patients, the platelet volume distribution width (PDW) had significantly negative correlation with peripapillary RNFL thickness in average (r = −0.174, P = 0.038), significantly positive correlation with average and vertical cup-to-disc ratio (r = 0.248, P = 0.003 and r = 0.234, P = 0.005, respectively), and had the tendency of negative correlation with macular GC-IPL thickness in average (r = −0.134, P = 0.110) but no statistical significance. In early PACG patients, the PDW had significantly negative correlation with macular GC-IPL thickness in average and superior nasal, inferior nasal, inferior, inferior temporal regions, had significantly negative correlation with peripapillary RNFL thickness in average and inferior quadrant, and had significantly positive correlation with cup-to-disc ratio (average and vertical) and cup volume; In moderate PACG patients, there was no significant correlation between PDW and OCT parameters; In severe PACG patients, the PDW had significantly negative correlation with macular GC-IPL thickness in average and inferior nasal, inferior, inferior temporal, superior temporal regions, had significantly negative correlation with peripapillary RNFL thickness in average and superior, temporal quadrant, and had significantly positive correlation with cup-to-disc ratio (average and vertical). Multiple linear regression analysis showed significant associations between PDW and peripapillary RNFL thickness in average, macular GC-IPL thickness in average, cup-to-disc ratio (average and vertical) in early and severe PACG, after adjusting for age, gender, body mass index, hypertension, and diabetes. Conclusion: There is a close correlation between peripheral PDW and retinal structural damage in PACG patients, suggesting that platelet activation may contribute to glaucomatous optic neuropathy.
文章引用:封喆, 姜薇, 唐嘉涵, 姜楠. 原发性闭角型青光眼患者外周血血小板参数与视网膜结构损害的相关性研究[J]. 临床医学进展, 2024, 14(7): 596-604. https://doi.org/10.12677/acm.2024.1472056

1. 引言

青光眼是一组以视觉损害为特征的神经退行性疾病,也是世界上不可逆失明的首要原因[1]。到2020年,全球青光眼病人数量已达到7600万,预计到2040年将超过1.11亿人次[2] [3]。在亚洲,原发性闭角型青光眼(primary angle closure glaucoma, PACG)的发病率远高于其它类型的青光眼[4],如原发性开角型青光眼(primary open angle glaucoma, POAG)。PACG的基本解剖学特征是前房角狭窄和眼前节拥挤[5],导致房水流出受阻,眼压持续升高,进而损害视网膜神经节细胞(retinal ganglion cells, RGCs)及其轴突的结构和功能[6]。血管理论则认为,青光眼性视神经病变是血管功能失调导致眼部血液供应不足的结果[7] [8]

血小板在凝血级联反应和血管的病理生理学中有着至关重要的作用[9],不仅能够堵塞血管伤口,防止过度出血,还可为血液凝固过程中凝血因子的激活提供磷脂表面。先前的许多研究发现,青光眼患者的血液黏度升高,血小板聚集增加[10]-[13]。一些研究证实,PACG患者的血小板计数、平均血小板体积(mean platelet volume, MPV)和血小板体积分布宽度(platelet volume distribution width, PDW)均显著高于正常对照个体,提示在PACG的发生发展过程中可能存在血小板功能的改变[14] [15]

光学相干断层扫描(optical coherence tomography, OCT)技术的快速发展,不仅为青光眼及许多视网膜病变提供了一种无创、可视化的监测手段,还能通过其自动分割功能,测量指定视网膜层的厚度,为定量评估视网膜的神经损伤提供了可能。PACG的特征在于RGCs的进行性丧失,然而,目前尚没有关于PACG患者的血小板参数是否与视网膜结构损害相关的研究。因此,本研究通过分析PACG患者外周血血小板参数与视网膜结构损害的相关性,来探讨血小板在PACG中的变化及意义。

2. 资料与方法

2.1. 研究对象

本研究是一项回顾性研究,收集了2018年1月至2024年1月在山东省青岛市青岛大学附属医院眼科住院并确诊为PACG的患者143人(共143眼)的相关临床资料。若双眼均满足纳入条件,则随机选择一只眼纳入研究。根据视野的平均缺损(mean deviation, MD),将PACG分为早期PACG (MD ≥ −6 dB)、中期PACG (−12 dB ≤ MD < −6 dB)和晚期PACG (MD < −12 dB)三个组。

纳入标准:① 确诊为原发性青光眼;② 前房角镜检查确定房角关闭;③ 眼底检查出现典型的青光眼性视盘凹陷;④ 伴有不同程度的青光眼性视野缺损;⑤ 初诊时眼压 > 21 mmHg;⑥ 年龄 > 18周岁。

排除标准:① 继发性青光眼;② 前房角镜检查房角开放;③ 青光眼急性发作期;④ OCT图像出现明显分割错误或信号强度 < 6;⑤ 伴有眼底疾病,如黄斑水肿,或有内眼手术史;⑥ 合并颅内病变,如鞍区占位,或曾行颅脑手术;⑦ 合并除高血压、糖尿病外的全身系统性疾病。

本研究已通过青岛大学附属医院伦理委员会批准,遵循赫尔辛基宣言。

2.2. 临床资料

收集研究对象的基本信息,包括年龄,性别,是否合并高血压、糖尿病,以及身高、体重,计算得出身体质量指数(body mass index, BMI) = 体重/身高2 (kg/m2)。详细询问参与者的既往病史,包括手术史、家族遗传病史,有无全身系统性疾病等。

所有患者均接受了全面的眼科检查,包括裸眼视力,电脑验光,非接触式眼压计测量眼压,裂隙灯显微镜检查,前房角镜检查,眼科光学生物测量仪检查,OCT检查,以及视野检查。采用CIRRUS HD-OCT (Carl Zeiss Meditec, Inc.)获取视盘和黄斑的扫描图像。在以视盘为中心、直径3.46 mm的圆上,系统自动计算平均及各象限(上方、鼻侧、下方、颞侧)的视网膜神经纤维层(retinal nerve fiber layer, RNFL)厚度[16],并给出视盘结构参数,包括盘沿面积、视盘面积、平均杯盘比、垂直杯盘比和杯容积。黄斑部则基于以黄斑中心凹为中心的椭圆环(垂直内径1 mm、水平内径1.2 mm、垂直外径4 mm、水平外径4.8 mm),采用内置的神经节细胞分析算法[17] [18],计算平均、最小和6个扇形区域(上方、上鼻、下鼻、下方、下颞、上颞)的神经节细胞–内丛状层(ganglion cell-inner plexiform layer, GC-IPL)厚度。

此外,采集了受试者的肘部静脉血液样本,置于含乙二胺四乙酸(ethylene diamine tetraacetic acid, EDTA)的采血管中,通过全自动血细胞分析仪对外周血血小板参数进行检测。

2.3. 统计学方法

应用SPSS 26.0 (IBM SPSS Statistics)进行统计学分析。连续型变量以“平均值 ± 标准差”的形式表示,分类变量用频数表示。Pearson相关性分析用于确定外周血血小板参数与视网膜结构参数的相关性,并采用调整了性别、年龄、BMI、高血压、糖尿病的多元线性回归,以进一步分析其相关性。P < 0.05被认为有统计学意义。

3. 结果

3.1. 一般情况

本研究最终纳入PACG患者共143例(143眼),其中早期PACG 43例(43眼),中期PACG 45例(45眼),晚期PACG 55例(55眼)。三组研究对象的人口统计学资料及眼部生物学参数见表1

Table 1. Demographic and ocular biological parameters of patients with primary angle closure glaucoma

1. 原发性闭角型青光眼患者的人口统计学及眼部生物学参数


早期PACG (n = 43)

中期PACG (n = 45)

晚期PACG (n = 55)

男/女

6/37

13/32

16/39

高血压

17 (39.53%)

14 (31.11%)

24 (43.64%)

糖尿病

1 (2.33%)

5 (11.11%)

8 (14.55%)

年龄

67.05 ± 7.84

68.29 ± 7.10

68.62 ± 8.75

身体质量指数(kg/m2)

24.64 ± 3.58

23.99 ± 3.46

24.34 ± 3.32

眼轴长度(mm)

22.58 ± 0.87

22.78 ± 0.74

22.90 ± 0.84

中央前房深度(mm)

2.29 ± 0.30

2.25 ± 0.28

2.29 ± 0.44

晶状体厚度(mm)

5.02 ± 0.32

5.05 ± 0.67

4.79 ± 0.85

角膜直径(mm)

11.49 ± 0.40

11.43 ± 0.42

11.46 ± 0.51

注:PACG,原发性闭角型青光眼。

3.2. 血小板指标与OCT参数的相关性

PACG患者的外周血血小板指标与OCT参数的相关性见表2

Table 2. Correlation between platelet indicators and OCT parameters in patients with primary angle closure glaucoma

2. 原发性闭角型青光眼患者血小板指标与OCT参数的相关性


血小板计数(×109/L)

血小板压积(%)

平均血小板体积(fL)

血小板体积分布宽度(%)

r

P值

r

P值

r

P值

r

P值

GC-IPL平均厚度(μm)

−0.138

0.100

−0.142

0.090

−0.013

0.874

−0.134

0.110

RNFL平均厚度(μm)

0.058

0.493

0.074

0.383

−0.010

0.909

−0.174

0.038

视盘结构参数









盘沿面积(mm2)

−0.008

0.922

−0.020

0.808

−0.052

0.537

−0.152

0.070

视盘面积(mm2)

0.077

0.359

0.062

0.459

−0.035

0.676

0.083

0.325

平均杯盘比

0.050

0.552

0.054

0.523

0.036

0.672

0.248

0.003

垂直杯盘比

0.002

0.986

0.009

0.914

0.044

0.599

0.234

0.005

杯容积(mm3)

0.118

0.162

0.100

0.235

−0.021

0.799

0.129

0.124

注:GC-IPL,神经节细胞–内丛状层;RNFL,视网膜神经纤维层。

在血小板指标中,血小板计数、血小板压积、MPV与黄斑区GC-IPL平均厚度、视盘周围RNFL平均厚度、视盘结构参数之间均未见显著相关性。PDW与视盘周围RNFL平均厚度间存在显著负相关,与平均杯盘比、垂直杯盘比存在显著正相关;PDW与黄斑区GC-IPL平均厚度存在负相关趋势,但无统计学意义(r = −0.134, P = 0.110)。

不同分期PACG患者的外周血PDW与OCT参数的相关性见表3

Table 3. Correlation between PDW and OCT parameters in patients with early, moderate and severe primary angle closure glaucoma

3. 早期、中期和晚期原发性闭角型青光眼患者血小板体积分布宽度与OCT参数的相关性


早期PACG

中期PACG

晚期PACG

r

P值

r

P值

r

P值

GC-IPL厚度(μm)







平均

−0.407

0.007

−0.015

0.921

−0.317

0.018

最小

−0.202

0.193

0.090

0.557

−0.201

0.141

上方

−0.140

0.371

0.005

0.975

−0.236

0.083

上鼻

−0.365

0.016

−0.015

0.920

−0.237

0.081

下鼻

−0.425

0.005

−0.049

0.750

−0.305

0.024

下方

−0.387

0.010

0.025

0.868

−0.343

0.010

下颞

−0.356

0.019

−0.072

0.640

−0.285

0.035

上颞

−0.133

0.396

0.043

0.777

−0.310

0.021

RNFL厚度(μm)







平均

−0.411

0.006

0.016

0.918

−0.308

0.022

上方

−0.211

0.174

0.061

0.692

−0.315

0.019

鼻侧

−0.164

0.294

0.188

0.216

−0.111

0.420

下方

−0.420

0.005

−0.089

0.563

−0.228

0.094

颞侧

−0.288

0.061

0.049

0.747

−0.364

0.006

视盘结构参数







盘沿面积(mm2)

−0.285

0.064

−0.066

0.668

−0.228

0.095

视盘面积(mm2)

0.179

0.251

−0.137

0.370

0.198

0.148

平均杯盘比

0.418

0.005

0.094

0.539

0.346

0.010

垂直杯盘比

0.394

0.009

0.044

0.777

0.375

0.005

杯容积(mm3)

0.346

0.023

0.057

0.711

0.187

0.172

注:PACG,原发性闭角型青光眼;GC-IPL,神经节细胞–内丛状层;RNFL,视网膜神经纤维层。

早期PACG患者的PDW与黄斑区GC-IPL的平均、上鼻、下鼻、下方、下颞厚度间存在显著负相关,与视盘周围RNFL的平均、下方厚度间存在显著负相关,与平均杯盘比、垂直杯盘比、杯容积之间存在显著正相关。中期PACG患者的PDW与各OCT参数间未发现显著相关性。晚期PACG患者的PDW与黄斑区GC-IPL的平均、下鼻、下方、下颞、上颞厚度间存在显著负相关,与视盘周围RNFL的平均、上方、颞侧厚度间存在显著负相关,与平均杯盘比、垂直杯盘比之间存在显著正相关。

3.3. 血小板体积分布宽度与OCT参数的回归分析

在早期PACG和晚期PACG患者中,以黄斑区GC-IPL平均厚度、视盘周围RNFL平均厚度、平均杯盘比和垂直杯盘比分别作因变量,做调整人口统计学基本信息的多元线性回归,以进一步分析外周血PDW与上述OCT参数之间的关联性,见表4

Table 4. Regression analysis of PDW and OCT parameters in patients with early and severe primary angle closure glaucoma

4. 早期和晚期原发性闭角型青光眼患者血小板体积分布宽度与OCT参数的回归分析


早期PACG

晚期PACG

b

β

t值

P值

b

β

t值

P值

GC-IPL平均厚度(μm)

−0.830

−0.349

−2.415

0.021

−1.589

−0.319

−2.353

0.023

RNFL平均厚度(μm)

−1.634

−0.364

−2.504

0.017

−2.497

−0.319

−2.481

0.017

视盘结构参数









平均杯盘比

0.023

0.393

2.860

0.007

0.032

0.382

3.116

0.003

垂直杯盘比

0.021

0.363

2.607

0.013

0.037

0.403

3.283

0.002

注:调整性别、年龄、身体质量指数、高血压、糖尿病的多元线性回归;PACG,原发性闭角型青光眼;GC-IPL,神经节细胞–内丛状层;RNFL,视网膜神经纤维层。

结果显示,在调整了性别、年龄、BMI、高血压、糖尿病后,PDW仍与早期PACG和晚期PACG的黄斑区GC-IPL平均厚度、视盘周围RNFL平均厚度、平均杯盘比和垂直杯盘比之间存在显著关联。

4. 讨论

先前的研究表明,与健康对照个体相比,PACG患者存在血小板功能状态的改变,血小板计数、MPV和PDW显著升高[14] [15]。我们的研究进一步证实,PACG患者的外周血PDW与黄斑区GC-IPL厚度、视盘周围RNFL厚度存在显著负相关,与平均杯盘比、垂直杯盘比存在显著正相关,提示PACG患者的外周血血小板参数和视网膜结构损害之间存在密切相关性。

许多动物模型和临床证据表明,血小板参与了青光眼的病理生理过程。Williams等在小鼠青光眼模型中发现,青光眼局部组织存在单核细胞–血小板相互作用,抑制血小板黏附到血管壁从而对小鼠青光眼有神经保护作用[19]。Nishijima等在大鼠视网膜缺血–再灌注损伤模型中证实,血小板通过视网膜内皮细胞上表达的P-选择素与视网膜内皮细胞积极相互作用[20]。一些临床研究发现,青光眼患者的血小板聚集率显著高于正常对照组[21]-[24]。Ma等人的研究结果显示,POAG患者的PDW和MPV显著升高[25],并证实POAG患者的PDW、MPV水平与RNFL厚度、神经节细胞复合体厚度存在显著负相关,与杯盘比存在显著正相关[26],提示血小板活化参与了青光眼的视神经病变。

PDW是反映血小板功能的一个重要指标,代表血小板大小的变异程度,已经作为血小板活化的标志物用于许多内科疾病的研究[27] [28]。本研究发现,PACG的视盘周围RNFL厚度随着PDW升高而显著变薄,平均杯盘比和垂直杯盘比随着PDW升高而显著变大,表明血小板活化可能有助于PACG的RGCs损失和视盘结构改变。然而,PACG的血小板计数与视网膜结构参数间未发现显著相关性。我们推测,血小板的功能,而不是血小板的数量,与PACG的病理生理过程更密切。

为了进一步探究PACG患者的PDW与视网膜结构损害的相关性,我们根据视野MD将PACG分为早期、中期和晚期三个组,分析每个组PDW与黄斑部各扇区的GC-IPL厚度、视盘周围各象限的RNFL厚度、视盘结构参数的相关性。结果发现,早期和晚期PACG患者的PDW与黄斑区GC-IPL厚度、视盘周围RNFL厚度、平均杯盘比、垂直杯盘比之间均存在显著相关性,并且早期相关性更强,而中期PACG患者的PDW与OCT参数间未发现显著相关性。张春鸣等人的研究证实[15],PACG患者的血小板参数与对照组存在显著差异,但在PACG的不同分期之间差异却没有统计学意义,这就解释了PDW与视网膜结构参数在PACG早期相关性最强的原因。在PACG的病程中,早期PDW显著增大,RGCs损伤,PDW与视网膜结构参数呈现中度相关性;中期PDW较早期无明显变化,而RNFL和GC-IPL持续变薄,这在一定程度上影响了PDW与视网膜结构参数的相关性;晚期PDW亦不再显著变化,而视盘周围RNFL厚度和黄斑区GC-IPL厚度已经达到“低谷”,视网膜中残留的非神经组织限制了厚度指标的明显变化,故PDW与视网膜结构参数间又出现轻度相关性。

已知年龄越大RNFL厚度和GC-IPL厚度越薄[29],糖尿病也与GC-IPL的变薄有关[30],因此将患者的人口统计学参数引入回归模型视为协变量。多元线性回归分析进一步证实,在调整了性别、年龄、BMI、高血压和糖尿病后,早期和晚期PACG患者的PDW仍与视盘周围RNFL厚度、黄斑区GC-IPL厚度、杯盘比显著关联。这为PACG的病理生理机制研究提供了新的思路,提示PACG的发生存在血管调节异常。大量基于OCT血管成像的研究发现[31] [32],青光眼的视网膜血管密度降低,血流灌注减少,从另一方面印证了我们的猜想。然而,大多数PACG患者的血小板参数值仍在参考范围内,因此我们认为,血小板功能的变化可能只是参与PACG的疾病发展,而不是主要病因。

我们的研究存在一些局限性。首先,这项研究是在单中心进行的,样本量相对较小,这在一定程度上使结果不太具有普遍性。其次,鉴于本研究是一项回顾性研究,对血小板功能改变与青光眼性神经损害相关性的解释能力受限。因此,今后需要开展更大样本量的前瞻性研究,并通过动物模型进一步探讨血小板活化在青光眼性视神经病变中发挥的作用。

5. 结论

综上所述,PACG患者的外周血PDW水平与视盘周围RNFL厚度、黄斑区GC-IPL厚度呈显著负相关,与平均杯盘比、垂直杯盘比呈显著正相关,提示血小板活化有助于青光眼性视神经病变的进展,从而为PACG神经损害的病理生理机制提供了新的研究方向。

NOTES

*通讯作者。

参考文献

[1] Lee, S.S. and Mackey, D.A. (2022) Glaucoma-Risk Factors and Current Challenges in the Diagnosis of a Leading Cause of Visual Impairment. Maturitas, 163, 15-22.
https://doi.org/10.1016/j.maturitas.2022.05.002
[2] Allison, K., Patel, D. and Alabi, O. (2020) Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus, 12, e11686.
https://doi.org/10.7759/cureus.11686
[3] Tham, Y.C., Li, X., Wong, T.Y., et al. (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology, 121, 2081-2090.
https://doi.org/10.1016/j.ophtha.2014.05.013
[4] Zhang, N., Wang, J., Chen, B., et al. (2020) Prevalence of Primary Angle Closure Glaucoma in the Last 20 Years: A Meta-Analysis and Systematic Review. Frontiers in Medicine, 7, Article 624179.
https://doi.org/10.3389/fmed.2020.624179
[5] Sun, X., Dai, Y., Chen, Y., et al. (2017) Primary Angle Closure Glaucoma: What We Know and What We Don’t Know. Progress in Retinal and Eye Research, 57, 26-45.
https://doi.org/10.1016/j.preteyeres.2016.12.003
[6] Weinreb, R.N., Aung, T. and Medeiros, F.A. (2014) The Pathophysiology and Treatment of Glaucoma: A Review. Journal of the American Medical Association, 311, 1901-1911.
https://doi.org/10.1001/jama.2014.3192
[7] Cherecheanu, A.P., Garhofer, G., Schmidl, D., et al. (2013) Ocular Perfusion Pressure and Ocular Blood Flow in Glaucoma. Current Opinion in Pharmacology, 13, 36-42.
https://doi.org/10.1016/j.coph.2012.09.003
[8] Flammer, J., Orgul, S., Costa, V.P., et al. (2002) The Impact of Ocular Blood Flow in Glaucoma. Progress in Retinal and Eye Research, 21, 359-393.
https://doi.org/10.1016/S1350-9462(02)00008-3
[9] George, J.N. (2000) Platelets. The Lancet, 355, 1531-1539.
https://doi.org/10.1016/S0140-6736(00)02175-9
[10] Cheng, H.C., Chan, C.M., Yeh, S.I., et al. (2011) The Hemorheological Mechanisms in Normal Tension Glaucoma. Current Eye Research, 36, 647-653.
https://doi.org/10.3109/02713683.2010.521876
[11] Plange, N., Kaup, M., Arend, O., et al. (2006) Asymmetric Visual Field Loss and Retrobulbar Haemodynamics in Primary Open-Angle Glaucoma. Graefe’s Archive for Clinical and Experimental Ophthalmology, 244, 978-983.
https://doi.org/10.1007/s00417-005-0227-9
[12] Satilmis, M., Orgul, S., Doubler, B., et al. (2003) Rate of Progression of Glaucoma Correlates with Retrobulbar Circulation and Intraocular Pressure. American Journal of Ophthalmology, 135, 664-669.
https://doi.org/10.1016/S0002-9394(02)02156-6
[13] Yamazaki, Y. and Drance, S.M. (1997) The Relationship Between Progression of Visual Field Defects and Retrobulbar Circulation in Patients with Glaucoma. American Journal of Ophthalmology, 124, 287-295.
https://doi.org/10.1016/S0002-9394(14)70820-7
[14] Li, S., Gao, Y., Shao, M., et al. (2017) Association Between Coagulation Function and Patients with Primary Angle Closure Glaucoma: A 5-Year Retrospective Case-Control Study. BMJ Open, 7, e016719.
https://doi.org/10.1136/bmjopen-2017-016719
[15] 张春鸣, 黄亮, 李圣杰, 等. 术前外周血血小板参数与原发性闭角型青光眼的相关性研究[J]. 中国眼耳鼻喉科杂志, 2018, 18(3): 206-210.
[16] Savini, G., Carbonelli, M. and Barboni, P. (2011) Spectral-Domain Optical Coherence Tomography for the Diagnosis and Follow-Up of Glaucoma. Current Opinion in Ophthalmology, 22, 115-123.
https://doi.org/10.1097/ICU.0b013e3283437222
[17] Chhablani, J., Rao, H.B., Begum, V.U., et al. (2015) Retinal Ganglion Cells Thinning in Eyes with Nonproliferative Idiopathic Macular Telangiectasia Type 2A. Investigative Ophthalmology & Visual Science, 56, 1416-1422.
https://doi.org/10.1167/iovs.14-15672
[18] Takayama, K., Hangai, M., Durbin, M., et al. (2012) A Novel Method to Detect Local Ganglion Cell Loss in Early Glaucoma Using Spectral-Domain Optical Coherence Tomography. Investigative Ophthalmology & Visual Science, 53, 6904-6913.
https://doi.org/10.1167/iovs.12-10210
[19] Williams, P.A., Braine, C.E., Kizhatil, K., et al. (2019) Inhibition of Monocyte-Like Cell Extravasation Protects from Neurodegeneration in DBA/2J Glaucoma. Molecular Neurodegeneration, 14, Article 6.
https://doi.org/10.1186/s13024-018-0303-3
[20] Nishijima, K., Kiryu, J., Tsujikawa, A., et al. (2001) In Vivo Evaluation of Platelet-Endothelial Interactions after Transient Retinal Ischemia. Investigative Ophthalmology & Visual Science, 42, 2102-2109.
[21] Bojić, L. and Skare-Librenjak, L. (1998) Circulating Platelet Aggregates in Glaucoma. International Ophthalmology, 22, 151-154.
https://doi.org/10.1023/A:1006279606494
[22] Hoyng, P.F., De Jong, N., Oosting, H., et al. (1992) Platelet Aggregation, Disc Haemorrhage and Progressive Loss of Visual Fields in Glaucoma. A Seven Year Follow-Up Study on Glaucoma. International Ophthalmology, 16, 65-73.
https://doi.org/10.1007/BF00918934
[23] Hoyng, P.F., Greve, E.L., Frederikse, K., et al. (1985) Platelet Aggregation and Glaucoma. Documenta Ophthalmologica, 61, 167-173.
https://doi.org/10.1007/BF00170723
[24] Matsumoto, M., Matsuhashi, H. and Nakazawa, M. (2001) Normal Tension Glaucoma and Primary Open Angle Glaucoma Associated with Increased Platelet Aggregation. The Tohoku Journal of Experimental Medicine, 193, 293-299.
https://doi.org/10.1620/tjem.193.293
[25] Ma, Y., Han, J., Li, S., et al. (2019) Association between Platelet Parameters and Glaucoma Severity in Primary Open-Angle Glaucoma. Journal of Ophthalmology, 2019, Article 3425023.
https://doi.org/10.1155/2019/3425023
[26] Ma, Y., Li, S., Shao, M., et al. (2022) Platelet Parameters and Their Relationships with the Thickness of the Retinal Nerve Fiber Layer and Ganglion Cell Complex in Primary Open-Angle Glaucoma. Frontiers in Neurology, 13, Article 867465.
https://doi.org/10.3389/fneur.2022.867465
[27] De Luca, G., Venegoni, L., Iorio, S., et al. (2010) Platelet Distribution Width and the Extent of Coronary Artery Disease: Results from a Large Prospective Study. Platelets, 21, 508-514.
https://doi.org/10.3109/09537104.2010.494743
[28] Jindal, S., Gupta, S., Gupta, R., et al. (2011) Platelet Indices in Diabetes Mellitus: Indicators of Diabetic Microvascular Complications. Hematology, 16, 86-89.
https://doi.org/10.1179/102453311X12902908412110
[29] Demirkaya, N., van Dijk, H.W., Van Schuppen, S.M., et al. (2013) Effect of Age on Individual Retinal Layer Thickness in Normal Eyes as Measured with Spectral-Domain Optical Coherence Tomography. Investigative Ophthalmology & Visual Science, 54, 4934-4940.
https://doi.org/10.1167/iovs.13-11913
[30] Zheng, Z., Yan, M., Zhang, D., et al. (2023) Quantitatively Evaluating the Relationships between Insulin Resistance and Retinal Neurodegeneration with Optical Coherence Tomography in Early Type 2 Diabetes Mellitus. Ophthalmic Research, 66, 968-977.
https://doi.org/10.1159/000530904
[31] Hou, T.Y., Kuang, T.M., Ko, Y.C., et al. (2020) Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma. Scientific Reports, 10, Article No. 5608.
https://doi.org/10.1038/s41598-020-62633-4
[32] Werner, A.C. and Shen, L.Q. (2019) A Review of OCT Angiography in Glaucoma. Seminars in Ophthalmology, 34, 279-286.
https://doi.org/10.1080/08820538.2019.1620807