动力学暗能量与中微子质量
Dynamical Dark Energy and Neutrino Mass
DOI: 10.12677/aas.2024.123003, PDF, HTML, XML, 下载: 33  浏览: 58  科研立项经费支持
作者: 赵欣悦, 郭瑞芸, 姚天莹:西安工业大学基础学院,陕西 西安
关键词: 动力学暗能量宇宙学模型中微子质量质量排序观测限制Dynamical Dark Energy Cosmological Models Neutrino Mass Mass Ordering Observational Constraints
摘要: 随着天文观测技术的不断发展,暗能量的测量已经达到很高的精度。然而,人们对暗能量的本质属性、描述暗能量演化过程的标准宇宙学模型、以及暗能量模型中相互影响的宇宙学参数背后的物理等问题都亟待进一步的探究。目前,与观测实验结果最符合的暗能量模型是宇宙学常数模型,其他宇宙学模型也并没有被观测所排除。因此,构建不同的暗能量模型,分析模型参数的演化行为非常重要。本文介绍了参数化形式不同的动力学暗能量对中微子质量的影响,首次分析了Barbosa-Alcaniz参数化和Jassal-Bagla-Padmanabhan参数化后的暗能量与中微子质量间的关系。本文联合了三种重要的测量宇宙距离–红移关系的天文观测手段,包括Ia型超新星观测、重子声学振荡观测、宇宙微波背景辐射观测,对中微子宇宙学模型进行整体拟合,分析中微子质量和其他宇宙学参数的限制结果。与一般的Chevallier-Polarski-Linder参数化模型中的结果相比,Barbosa-Alcaniz参数化模型可提供一个较大的中微子质量,Jassal-Bagla-Padmanabhan参数化模型提供的中微子质量较小。暗能量状态方程参数的不同形式影响中微子质量的大小。
Abstract: With the rapid development of astronomical observation technology, the measurement of dark energy has reached a high precision. However, it is urgent to further explore the properties of dark energy, the standard cosmological model that describes the evolution of dark energy, and the physics behind the cosmological parameters that interact with each other in dark energy models. At present, the most consistent dark energy model with observation experiment results is the cosmological constant model, and other cosmological models have not been excluded by observations. Therefore, it is very important to construct different dark energy models and analyze the evolutionary behavior of their model parameters. In this paper, we investigate the influence of different parametrizations of dynamical dark energy on neutrino mass, and analyze the relationship between dynamical dark energy and neutrino mass in the Barbosa-Alcaniz model and the Jassal Bagla-Padmanabhan model for the first time. In this paper, we combine three important astronomical observations that measure the relationship between cosmic distance and redshift, including the type Ia supernova observation, the baryon acoustic oscillations observation, and the cosmic microwave background observation. Overall fitting of neutrino cosmological models and analyze the fitting results of neutrino mass and other cosmological parameters. Compared to the results in the general Chevallier-Polarski-Linder model, the Barbosa-Alcaniz model provides a larger neutrino mass, and the Jassal-Bagla-Padmanabhan parametric model provides a smaller neutrino mass. The different parametrization of the equation of state of dark energy affects the neutrino mass.
文章引用:赵欣悦, 郭瑞芸, 姚天莹. 动力学暗能量与中微子质量[J]. 天文与天体物理, 2024, 12(3): 19-33. https://doi.org/10.12677/aas.2024.123003

1. 引言

爱因斯坦提出的广义相对论加深了人们对复杂宇宙的认知和了解。爱因斯坦最初认为宇宙是静态的,为此,他在引力场方程中引入一个宇宙学常数Λ。但Friedmann方程描述的是一个均匀、各向同性的膨胀宇宙,并得到Hubble星系观测结果的证实。因此,爱因斯坦认为宇宙学常数是他“一生中最大的错误”。直至20世纪90年代末,三位物理学家Saul Perlmutter、Brian Paul Schmidt和Adam Guy Riess分别提出当前的宇宙是加速膨胀的[1]-[4]。这一发现随后被重子声学振荡、弱引力透镜等不同的宇宙学观测所证实[5]-[9]。人们意识到宇宙中很可能存在一种具有负压强的特殊组分,推动宇宙加速膨胀。这种特殊的组分被称为“暗能量”[10]-[21]

至今,人们对暗能量的本质属性仍知之甚少。宇宙学描述暗能量性质的物理量是暗能量状态方程参数w ( w=p/ρ ,其中p是暗能量压强, ρ 是暗能量密度)。宇宙微波背景辐射各向异性功率谱的测量结果最支持的模型是宇宙学常数模型(简称ΛCDM) [22] [23],即宇宙主要由真空能和冷暗物质组成。宇宙学常数(即真空能)被认为是暗能量最佳的候选者,其 w=1 。暗能量也可能有其他的参数化形式或是某种标量场,即能量密度随时空变化的动力学场。根据暗能量状态方程w的不同,暗能量可以大致划分为以下三种情况: 1<w< 1/3 时为精质暗能量[24] w<1 时为幽灵暗能量[25]w穿越−1时为精灵暗能量[26]。ΛCDM模型作为宇宙标准模型的雏形,可以很好地描述宇宙的膨胀历史。但也面临一些难以解释的理论问题,例如“宇宙巧合”问题[27]和“精细调节”问题[28]。近年来,Planck卫星科学工作组基于ΛCDM模型得到的H0拟合值比通过距离阶梯法得到的哈勃常数(H0)直接观测值在约 4σ~6σ 置信度上偏低[29] [30]。排除宇宙微波背景辐射观测和H0直接观测的系统误差产生的影响,人们认为H0不一致问题暗示当前宇宙存在超宇宙学常数模型的新物理。如随时演化的动力学标量场、中微子质量等其他额外的宇宙学参数等[31]-[34]

近年来,利用宇宙学手段称重中微子的课题引起了物理学者们极大的关注。中微子振荡实验表明中微子有质量[35] [36],并给出三代中微子质量间平方差的两个结果,即太阳和反应堆实验测得 Δ m 21 2 7.5× 10 5 eV 2 ,大气和加速器束流实验测得 Δ m 31 2 2.5× 10 3 eV 2 [36]。证明了三代中微子质量间可能的两种质量排序,即质量正排序(简称NH,满足 m 1 < m 2 m 3 )和逆排序(简称IH,满足 m 3 m 1 < m 2 )。当然,有些时候为了讨论的方便,人们也会假设三代中微子质量相等,即三代中微子的质量为简并排序(简称DH,满足 m 1 = m 2 = m 3 )。但三代中微子的绝对质量至今仍然未知。宇宙学观测限制是测量中微子质量的有效方法之一。由于有质量的中微子既能影响宇宙微波背景辐射各向异性的功率谱,又能影响宇宙大尺度结构形成中的物质功率谱[37]-[41]。因此,利用宇宙微波背景辐射观测和宇宙大尺度结构观测结果可以探究三代中微子的总质量 m v

在ΛCDM模型中,考虑三代中微子质量的正排序,宇宙微波背景辐射功率谱数据测得中微子质量大约在0.20 eV ( 2σ )。联合其他背景观测数据(如重子声学振荡和Ia型超新星数据)时,可压低中微子质量和的拟合值至0.11 eV ( 2σ ) [42]。在过去的研究中,人们进行了大量动力学暗能量影响中微子质量的研究[43]-[59]。例如w = 常数的wCDM模型支持比ΛCDM模型中更大的中微子质量上限值[60] w( z )=1/3 ( 2/ 3c ) Ω de ( a ) 的全息暗能量(HDE)模型[61]-[68]中得到的中微子质量与ΛCDM模型中的结果相近[60]。因此,动力学暗能量可改变观测数据对 m v 的拟合结果。与wCDM模型相比,HDE模型可提供一个更低的中微子质量上限。

动力学暗能量最一般的参数化形式是 w( z )= w 0 + w 1 z 1+z (其中w0w1是两个自由参数),即Chevallier-Polarski-Linder(简称CPL)参数化[69]-[71]。当 z1 时, w( z ) 的演化存在分离,使得CPL参数化只适用于描绘宇宙过去的演化历史,不能刻画宇宙未来的演化。尽管如此,宇宙微波背景辐射的温度和极化功率谱数据联合重子声学振荡观测数据以及Ia型超新星观测数据测得CPL模型中,中微子质量和的拟合结果为 m v,NH <0.290 eV( 2σ ) m v,IH <0.305 eV( 2σ ) [60] m v 的上限值均大于单参数化的wCDM模型和HDE模型中的限制结果。类似地,在两参数w0w1拓展的对数(简称Log, w( z )= w 0 + w 1 ( In( 2+z ) 1+z In2 ) )参数化模型和振荡(简称Sin, w( z )= w 0 + w 1 ( sin( 1+z ) 1+z sin( 1 ) ) )参数化模型中,使用上述相同的观测数据,对数参数化暗能量模型给出 m v,NH <0.302 eV( 2σ ) m v,IH <0.317 eV ( 2σ ) [72],振荡参数化暗能量模型给出 m v,NH <0.327 eV ( 2σ ) m v,IH <0.336 eV ( 2σ ) [72]。结果表明暗能量的不同参数化对中微子质量大小的影响不同。

基于此,本文首次探究了动力学暗能量的Barbosa-Alcaniz (简称BA)参数化[73]-[75]

( w( z )= w 0 + w 1 z( 1+z ) 1+ z 2 )和Jassal-Bagla-Padmanabhan (简称JBP)参数化[75]-[78] ( w( z )= w 0 + w 1 z ( 1+z ) 2 )暗能量对中微子质量 m v 大小的影响。很显然,低红移处BA参数化和JBP参数化具有与CPL参数化相似的线性形式。但它们的优势在于可以成功地避免红移 z=1 处存在的发散不稳定性问题,完整地描

述宇宙当前及未来的动力学演化[74] [76]。本文将联合当前主流的一些观测数据,包括宇宙微波背景数据、重子声学振荡数据以及Ia型超新星数据,对w0w1两参数化后的暗能量模型进行整体拟合,分析中微子质量在CPL参数化暗能量模型、对数参数化暗能量模型、振荡参数化暗能量模型、BA参数化暗能量模型、JBP参数化暗能量模型中的拟合结果(包含中微子质量的拟合上限及三代中微子的质量排序问题)。本文的第二部分主要介绍了由w0w1参数化的CPL模型、BA模型和JBP模型的基本情况。第三部分简要介绍了限制暗能量模型使用的观测数据和计算方法。第四部分分别讨论了两个观测数据组(宇宙微波背景辐射观测联合重子声学振荡观测,以及它们再联合Ia型超新星观测)对上述动力学暗能量模型限制的结果。最后,在第五部分我们给出了一些重要总结。

2. 暗能量的参数化

在空间平坦的Friedmann-Robertson-Walker宇宙中,Friedmann方程为

E ( z ) 2 ( H( z ) H 0 ) 2 = Ω m ( 1+z ) 3 +( 1 Ω m )f( z ) ,(1)

H( z ) 表示宇宙的膨胀速率, H 0 为哈勃常数, Ω m 为宇宙当前的暗物质能量密度。函数 f( z ) 定义为

f( z )= ρ de ( z ) ρ de ( 0 ) =exp[ 3 0 z 1+w( z ) 1+ z d z ] ,(2)

其中 ρ de ( z ) 为暗能量密度。

接下来,我们将介绍几个由w0w1参数化(简称双参数化)的动力学暗能量模型及其基本情况。

(a) CPL模型中,暗能量状态方程参数w的形式为

w( z )= w 0 + w 1 z 1+z ,(3)

代入(1)和(2)式,得到其对应的Friedmann方程为

E ( z ) 2 = Ω m ( 1+z ) 3 +( 1 Ω m ) ( 1+z ) 3( 1+ w 0 + w 1 ) exp( 3 w 1 z 1+z ) ,(4)

其中,w0w1是比ΛCDM模型额外多的两个自由参数,即模型参数。

(b) BA参数化的暗能量模型中,暗能量状态方程参数为

w( z )= w 0 + w 1 z( 1+z ) 1+ z 2 ,(5)

z+ 时, w( z ) 趋于明显的线性演化形式。将此暗能量状态方程参数代入(2)式, f( z ) 函数可表示成

f ( z ) BA = ( 1+z ) 3( 1+ w 0 ) ( 1+ z 2 ) 3 2 w 1 ,(6)

对应地,该模型的Friedmann方程可以写为:

E ( z ) 2 = Ω m ( 1+z ) 3 +( 1 Ω m ) ( 1+z ) 3( 1+ w 0 ) ( 1+ z 2 ) 3 w 1 /2 .(7)

(c) JBP参数化的暗能量模型中,暗能量状态方程参数为

w( z )= w 0 + w 1 z ( 1+z ) 2 ,(8)

将(8)式代入(2)式可得为

f ( z ) JBP = ( 1+z ) 3( 1+ w 0 ) exp( 3 w 1 z 2 2 ( 1+z ) 2 ) ,(9)

所以此模型的Friedmann方程可以写为

E ( z ) 2 = Ω m ( 1+z ) 3 +( 1 Ω m ) ( 1+z ) 3( 1+ w 0 ) exp( 3 w 1 z 2 2 ( 1+z ) 2 ) .(10)

可以看到,低红移处BA参数化和JBP参数化具有与CPL参数化等其他参数化相似的线性演化行为。但它们的优势在于可以成功地避免红移 z=1 处时 w( z ) 存在的发散不稳定性问题,完整地描述宇宙当前及未来的动力学演化。

3. 数据和方法

本文使用的宇宙学观测手段有宇宙微波背景辐射观测、重子声学振荡观测、Ia型超新星观测,它们都是当前主流的天文观测手段,可直接测量宇宙学距离——红移关系。宇宙微波背景辐射(Cosmic Microwave Background,简称CMB)是宇宙大爆炸后遗留下来的一种热辐射。随着大爆炸后的时空扩张,宇宙整体温度也快速下降。目前宇宙大爆炸的背景温度已经低至约3K,接近绝对零度。微波背景辐射记录了宇宙的演化过程。在微波背景辐射中,不同温度的斑点代表着宇宙中不同区域的性质和状态。通过对这些斑点的研究,科学家们可以了解宇宙在不同发展阶段的演化过程,从而推断出宇宙的加速膨胀、星系的形成等物理过程。本文使用了2018年Planck卫星工作组公布的CMB各向异性温度功率谱和极化功率谱数据以及透镜功率谱数据。与之前的CMB数据相比,这些数据进一步降低了CMB在低l处极化功率谱的系统误差,得到了精度更高的极化功率谱数据[79] [80]

重子声学振荡(Baryon Acoustic Oscillations,简称BAO)指早期宇宙中,声波传播时形成可见的重子物质的结团。重子声学振荡的物质成团性也可以作为测量宇宙学距离的标准尺,使用天文巡天观测宇宙的大尺度结构来测量[81]。这种方法的准确性远超过传统的测量方法,它可以捕捉到传统方法无法检测到的信号。通过对重子声学振荡的测量,我们可以更多地限制宇宙学参数,从而研究导致宇宙加速膨胀的暗能量的性质。本文使用了SDSS-MGS、6dFGS观测中声学尺度距离比 D V / r drag 的测量值( r drag 是重子拖曳时期结束时的共动声视界,DV是角直径距离) [82] [83],以及12 (DR12)发布的有效红移 z eff =0.38,0.51 和0.61处的三个BAO测量值[84]

Ia型超新星(Type Ia supernoave,简称SNIa)是由白矮星和其伴星组成的一个双星系统形成。质量非常大的白矮星能够从其伴星中吸取物质。随着白矮星质量增大到超过约1.4倍太阳质量时,会发生剧烈的塌缩与爆炸,爆发出Ia型超新星。到目前为止,Ia型超新星观测的样本有“SNLS”数据样本、“Union2.1”数据样本、“Joint Light-curve Analysis (JLA)”数据样本和“Pantheon”数据样本。本文使用“Pantheon”样本[85]进行Ia型超新星探测,其中包含了1048个红移范围为 0.01<z<2.3 的超新星样本。这些数据来自Pan-STARRS1中深巡天( 0.03<z<0.65 )的276颗超新星,加上一些低红移和HST样本构建的。Pantheon数据可以提供比JLA更严格的宇宙学参数限制[86]

本文将使用宇宙微波背景辐射联合重子声学振荡(即CMB + BAO),宇宙微波背景辐射联合重子声学振荡和Ia型超新星观测(即CMB + BAO + SNIa)两个数据组合限制宇宙学模型。我们假设了相应宇宙学参数的先验分布范围。一般情况下,为了不影响参数估计的拟合结果,参数的先验分布范围要比后验分

布范围宽。在空间平坦的宇宙中,重子能量密度wb的先验分布为 [ 0.005,0.100 ] ,冷暗物质能量密度wc的先验分布为 [ 0.001,0.990 ] ,退耦时期声视界与角直径距离比值的100倍 100 θ MC 的先验分布为 [ 0.5,10.0 ] ,再电离光深 τ 的先验分布为 [ 0.01,0.80 ] ,原初功率谱幅度的1010倍的对数 In( 10 10 A s ) 的先验分布为 [ 2,4 ] ,标量谱指数ns的先验分布为 [ 0.8,1.2 ] 。当额外参数被考虑时,也必然需要给出它们的先验分布范围。在CPL模型,其模型参数w0的先验分布为 [ 3.00,1.00 ] w1的先验分布为 [ 10.00,5.00 ] ,在BA模型,其模型参数w0的先验分布为 [ 3.00,1.00 ] w1的先验分布为 [ 8.00,8.00 ] ,在JBP模型,其模型参数w0的先验分布为 [ 3.00,5.00 ] w1的先验分布为 [ 15.00,8.00 ]

m v 作为宇宙学模型中的自由参数时,我们考虑了中微子质量的三种排序,即正排序、逆排序、简并排序。对应地, m v 的先验分布分别为 [ 0.06,3.00 ] eV、 [ 0.10,3.00 ] eV和 [ 0.00,3.00 ] eV。中微子正排序下,自由参数为m1的中微子质量谱可写为

( m 1 , m 2 , m 3 )=( m 1 , m 1 2 +Δ m 21 2 , m 1 2 +| Δ m 31 2 | ) ,(11)

中微子逆排序下,自由参数为m2的中微子质量谱被描述为

( m 1 , m 2 , m 3 )=( m 3 2 +| Δ m 31 2 | , m 3 2 +| Δ m 31 2 |+Δ m 21 2 , m 3 ) ,(12)

中微子简并排序下,自由参数为m3的中微子质量谱被描述为

m 1 = m 2 = m 3 =m .(13)

为了评估这些动力学暗能量模型与当前观测数据的一致性,本文使用了 χ 2 统计。对于每种观测数据, χ 2 函数被定义为

χ ξ 2 = ( ξ obs ξ th ) 2 σ ξ 2 ,(14)

其中, ξ th ξ obs σ ξ 分别表示参数的理论预测值、实验观测值和标准偏差。对于独立的不同观测实验而言,总的 χ 2 值可以写为

χ 2 ( p )= i χ ξ i 2 ( p ) ,(15)

通常,比较具有相同参数个数的不同模型时, χ 2 统计[87]-[89]能够准确地比较出它们与观测数据的符合程度。得到的 χ 2 值越小意味着该宇宙学模型越被观测所支持。本文的限制结果主要是使用集有camb Boltzmann代码的CosmoMC程序包[90]进行计算。通过修改和运行该代码包,我们可以得到参数的后验分布结果, χ min 2 最佳拟合值等结果。

4. 结果与讨论

本文使用不同观测数据组合限制动力学暗能量模型,给出宇宙学参数在 1σ 置信空间的拟合结果。特殊地,对于观测数据无法限制 m v ,下文给出的均为其 2σ 置信空间的拟合值上限。同时,我们给出了各动力学暗能量模型中 χ min 2 的最佳拟合值。

4.1. 数据CMB + BAO对动力学暗能量模型的限制

表1~3分别是考虑三种不同中微子质量排序(NH, IH, DH)时动力学暗能量模型的拟合结果。使用CMB + BAO数据且假设三代中微子质量为正排序时,我们得到CPL模型中 w 0 =0.51±0.30 w 1 =1.7 1 0.86 +1.07 ,BA模型中 w 0 =0. 57 0.29 +0.26 w 1 =0. 86 0.40 +0.57 ,以及JBP模型中 w 0 =0.5 5 0.32 +0.55 w 1 = 2.70 2.70 +1.80 (见表1)。这两个双参数化的动力学暗能量支持 w 0 >1 ,表明当前的观测数据支持暗能量为精质暗能量。在BA模型以及JBP模型中, w 1 <0 表明双参数化的动力学暗能量具有很好的动力学演化行为,区别于单参数化的动力学暗能量(w为常数的情况)。类似地,在三代中微子质量为逆排序和简并排序的情况下,我们可得到相似的结果(表2表3分别为中微子质量为逆排序和简并排序下的结果),即当前的暗能量为精质暗能量,且双参数化的动力学暗能量完全区别于单参数化的动力学暗能量的演化行为。

我们讨论了中微子质量不同排序下三代中微子质量和参数的限制结果。在CPL模型中,

Table 1. In the case of normal hierarchy of neutrino masses, parameter fitting results of three dynamic dark energy under the constraint of CMB + BAO data and CMB + BAO + SNIa data

1. 在中微子质量正排序情况下,三种动力学暗能量在CMB + BAO数据和CMB + BAO + SNIa数据限制下的参数拟合结果

参数

CMB + BAO

CMB + BAO + SNIa

CPL

BA

JBP

CPL

BA

JBP

w 0

0.51±0.30

0. 57 0.29 +0.26

0.5 5 0.32 +0.55

0 .940 0.095 +0.085

0.957±0.073

0. 940 0.130 +0.120

w 1

1.7 1 0.86 +1.07

0. 86 0.40 +0.57

2.70 2.70 +1.80

0 .49 0.33 +0.46

0.25 0.16 +0.23

0.68 0.76 +0.91

m v,NH [ eV ]

<0.316

<0.343

<0.274

<0.285

<0.292

<0.245

Ω m

0.348±0.028

0.34 7 0.030 +0.026

0.334 0.024 +0.036

0.3094 0.0087 +0.0081

0.3092 0.0089 +0.0080

0.3089 0.0088 +0.0081

H 0 [ km/s / Mpc ]

64. 6 2.8 +2.3

64 .7 2.7 +2.4

65. 9 3.7 +1.9

68.27±0.82

68.30±0.83

68.23±0.83

σ 8

0.78 0 0.026 +0.024

0.780±0.025

0.792 0.032 +0.022

0. 812 0.013 +0.014

0.812 0.013 +0.015

0.813 0.012 +0.014

χ min 2

2784.846

2784.376

2786.970

3824.202

3822.858

3824.018

Table 2. In the case of inverted hierarchy of neutrino masses, parameter fitting results of three dynamic dark energy under the constraint of CMB + BAO data and CMB + BAO + SNIa data

2. 在中微子质量逆排序情况下,三种动力学暗能量在CMB + BAO数据和CMB + BAO + SNIa数据限制下的参数拟合结果

参数

CMB + BAO

CMB + BAO + SNIa

CPL

BA

JBP

CPL

BA

JBP

w 0

0.48±0.30

0. 56 0.29 +0.26

0.5 1 0.31 +0.55

0 .929 0.097 +0.083

0. 948 0.076 +0.075

0.920±0.120

w 1

1. 89 0.91 +1.04

0.92 0.40 +0.57

3.00 2.70 +1.80

0 .59 0.32 +0.48

0.30 0.17 +0.24

0.87 0.79 +0.87

m v,NH [ eV ]

<0.332

<0.355

<0.296

<0.304

<0.312

<0.264

Ω m

0.350 0.027 +0.028

0.348 0.030 +0.026

0.336 0.023 +0.036

0.3103 0.0082 +0.0081

0.3102 0.0082 +0.0081

0.3101 0.0081 +0.0082

H 0 [ km/s / Mpc ]

64. 4 2.8 +2.3

64 .6 2.7 +2.4

65. 7 3.6 +1.9

68.27 0.81 +0.83

68.29±0.82

68.19±0.82

σ 8

0.7 76 0.027 +0.023

0.7 77 0.024 +0.025

0.7 88 0.031 +0.021

0. 810 0.012 +0.014

0.809 0.013 +0.015

0.809 0.012 +0.013

χ min 2

2786.550

2786.288

2787.636

3823.516

3824.742

3824.242

Table 3. In the case of degenerate hierarchy of neutrino masses, parameter fitting results of three dynamic dark energy under the constraint of CMB + BAO data and CMB + BAO + SNIa data

3. 在中微子质量简并排序情况下,三种动力学暗能量在CMB + BAO数据和CMB + BAO + SNIa数据限制下的参数拟合结果

参数

CMB + BAO

CMB + BAO + SNIa

CPL

BA

JBP

CPL

BA

JBP

w 0

0.55 0.31 +0.33

0. 610 0.280 +0.250

0. 600 0.340 +0.570

0 .950 0.092 +0.082

0.966±0.071

0.970±0.120

w 1

1.58 0.91 +1.03

0. 76 0.38 +0.56

2 .30 2.70 +1.90

0 .39 0.30 +0.47

0. 19 0.15 +0.23

0. 42 0.77 +0.89

m v,NH [ eV ]

<0.282

<0.328

<0.240

<0.268

<0.264

<0.208

Ω m

0. 295 0.010 +0.013

0.34 4 0.030 +0.026

0.33 1 0.025 +0.036

0.3 077 0.0090 +0.0083

0.3 077 0.0083 +0.0082

0.3 069 0.0082 +0.0083

H 0 [ km/s / Mpc ]

69 .8 1.7 +1.1

64 .9 2.7 +2.4

66 .0 3.8 +2.1

68.32±0.84

68.32±0.83

68. 29 0.83 +0.84

σ 8

0. 830 0.017 +0.015

0.7 85 0.025 +0.026

0.7 98 0.033 +0.023

0. 817 0.013 +0.015

0.8 17 0.013 +0.015

0.8 18 0.012 +0.014

χ min 2

2786.688

2783.642

2785.616

3822.068

3822.124

3822.566

m v,NH <0.316 eV m v,IH <0.332 eV m v,DH <0.282 eV ;在BA模型中, m v,NH <0.343 eV m v,IH <0.355 eV m v,DH <0.328 eV ;在JBP模型中, m v,NH <0.274 eV m v,IH <0.296 eV m v,DH <0.240 eV 。结果表明,同一中微子质量排序下,JBP模型中得到的中微子质量上限值比CPL模型中得到的更小,BA模型中得到的中微子质量比CPL模型中得到中微子质量上限值更大。此外,任一双参数化的动力学暗能量模型中,正排序下中微子质量拟合值的上限都比逆排序下得到的结果更小。

4.2. 数据CMB + BAO + SNIa对动力学暗能量模型的限制

使用CMB + BAO + SNIa数据限制动力学暗能量模型时,假设三代中微子质量为正排序,我们得到CPL模型中 w 0 = 0.940 0.095 +0.085 w 1 = 0.49 0.33 +0.46 ,BA模型中 w 0 =0.957±0.073 w 1 = 0.25 0.16 +0.23 ,以及JBP模型中 w 0 = 0.940 0.130 +0.120 w 1 = 0.68 0.76 +0.91 。在CPL参数化、BA参数化及JBP参数化的暗能量模型中,CMB + BAO + SNIa数据在 1σ 置信空间支持 w 0 =1 的拟合结果,即暗能量被认为是精灵暗能量。在CPL模型和BA模型中,我们得到 w 1 <0 ,在JBP模型中 w 1 =0 的结果仍被观测数据所支持。

当假设三代中微子质量为逆排序时,我们得到CPL模型中 w 0 = 0.929 0.097 +0.083 w 1 = 0.59 0.32 +0.48 ;BA模型中 w 0 = 0.948 0.076 +0.075 w 1 = 0.30 0.17 +0.24 ;以及JBP模型中 w 0 =0.920±0.120 w 1 = 0.87 0.79 +0.87 。与中微子质量为正排序情况不同的是在这三种双参数化模型中 w 0 =1 的拟合结果均被支持。而对于模型参数w1的限制结果与中微子质量为正排序情况得到的结论完全相同,即CMB + BAO + SNIa数据支持CPL模型和BA模型中 w 1 <0 ,JBP模型中 w 1 =0

当假设三代中微子质量为简并排序时,我们得到CPL模型中 w 0 = 0.950 0.092 +0.082 w 1 = 0.39 0.30 +0.47 ;BA模型中 w 0 =0.966±0.071 w 1 = 0.19 0.15 +0.23 ;以及JBP模型中 w 0 =0.970±0.120 w 1 = 0.42 0.77 +0.89 。结果表明在这三种参数化模型中 w 0 =1 w 1 =0 1σ 置信空间被支持。因此,我们得出使用相同观测数据对暗能量模型做整体拟合时,中微子质量的不同排序可影响模型参数的拟合结果。但在同一参数化模型中,CMB + BAO + SNIa数据比CMB+BAO数据对模型参数限制的更好。

我们也讨论了CMB + BAO + SNIa数据下,这些双参数化动力学暗能量模型中中微子质量和 m v 的拟合结果。在CPL模型中 m v,NH <0.285 eV m v,IH <0.304 eV m v,DH <0.268 eV ;在BA模型中, m v,NH <0.292 eV m v,IH <0.312 eV m v,DH <0.264 eV ;在JBP模型中, m v,NH <0.245 eV m v,IH <0.264 eV m v,DH <0.208 eV 。结果表明,在中微子质量的任一排序下,仅JBP参数化模型中 m v 的拟合值比CPL模型中得到的结果小。类似CMB+BAO数据对中微子质量的限制结果,任一双参

数化的动力学暗能量模型中,正排序下中微子质量拟合值的上限总比逆排序下得到的结果更小。但比较CMB + BAO数据和CMB + BAO + SNIa数据对任一模型的限制结果,我们发现SNIa数据具有压低中微子质量拟合值上限的作用。

最后,我们分析了这两种观测数据下不同模型中的 χ min 2 值。在 BA+ m v 模型中,简并排序时的 χ min 2 值最小,逆排序时的 χ min 2 最大。在 JBP+ m v 模型中,简并排序时的 χ min 2 值最小,逆排序时的 χ min 2 最大。但 Δ χ min 2 的最大值都小于2,无法判定当前这两种观测数据更支持中微子质量的哪种排序。在 BA+ m v 模型和 JBP+ m v 模型中,我们发现均有参数w0 m v 正相关,参数w1 m v 反相关,以及参数w0w1反相关(如图1图2所示)。因此,在考虑双参数动力学暗能量模型中,参数w0w1都影响中微子质量的大小。

Figure 1. One-dimensional marginalized distributions and two-dimensional contours at 1σ and 2σ levels for parameters w0, w1, m v , Ω m and H0 of the BA model for various neutrino mass hierarchies under the constraint of CMB + BAO + SNIa data

1. 在考虑中微子质量的三种排序时,CMB + BAO + SNIa数据下,BA模型中参数w0w1 m v Ω m H0的一维分布曲线和二维空间分布图(1σ和2σ)

Figure 2. One-dimensional marginalized distributions and two-dimensional contours at 1σ and 2σ levels for parameters w0, w1, m v , Ω m and H0 of the JBP model for various neutrino mass hierarchies under the constraint of CMB + BAO + SNIa data

2. 在考虑中微子质量的三种排序时,CMB + BAO + SNIa数据下,JBP模型中参数w0w1 m v Ω m H0在1σ置信度和2σ的二维空间分布图

5. 总结

暗能量本质属性的探索是当前宇宙学重要的课题之一。基于暗能量与中微子质量间的宇宙学效应,联合天文观测数据限制含中微子质量参数的暗能量模型是称重中微子的重要手段。本文主要探究两个双参数化的动力学暗能量对中微子质量的影响。我们分别使用了CMB + BAO和CMB + BAO + SNIa两个数据组合,限制考虑中微子质量三种排序的BA参数化动力学暗能量模型和JBP参数化动力学暗能量模型,分析双参数化动力学暗能量对中微子质量的影响。

使用CMB + BAO数据,我们得到BA模型以及JBP模型支持 w 0 >1 w 1 <0 ,即暗能量表现为精质暗能量。联合使用SNIa数据,即使用CMB + BAO + SNIa数据时,考虑中微子质量的正排序,这两个参数化的动力学暗能量模型中 w 0 =1 ,且BA模型中 w 1 <0 ,JBP模型中 w 1 =0 。考虑中微子质量的逆排序时, w 0 =1 。考虑中微子质量的简并排序时,我们得到的结果是 w 0 =1 w 1 =0 1σ 置信空间均被支持。因此,不同的观测数据和中微子质量的不同排序均可影响暗能量模型参数的限制结果。

使用不同的观测数据组合,我们分析了中微子质量不同排序时BA参数化和JBP参数化的动力学暗能量对中微子质量的影响。结果表明使用CMB + BAO + SNIa数据可更好地限制包含中微子质量在内的宇宙学参数,压低中微子质量拟合值的上限。考虑中微子质量的不同排序时,同一参数化暗能量模型中得到的中微子质量不同。中微子质量逆排序时得到的中微子质量最大,中微子质量正排序时次之,中微子质量简并排序时得到的中微子质量最小。此外,不同的参数化暗能量模型中得到的中微子质量不同。本文讨论了BA参数化和JBP参数化对中微子质量的影响,发现与一般的CPL参数化相比,JBP参数化暗能量支持更低的中微子质量上限,BA参数化模型中得到的中微子质量上限更高。

基金项目

本文获得国家自然科学基金(项目号:12103038)资助。

参考文献

[1] Perlmutter, S., et al. (1997) Cosmology from Type Ia Supernovae. Bulletin of the American Astronomical Society, 29, 1351.
[2] Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038.
https://doi.org/10.1086/300499
[3] Bahcall, N.A., Ostriker, J.P., Perlmutter, S. and Steinhardt, P.J. (1999) The Cosmic Triangle: Revealing the State of the Universe. Science, 284, 1481-1488.
https://doi.org/10.1126/science.284.5419.1481
[4] Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., et al. (1999) Measurements of Ω and λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
https://doi.org/10.1086/307221
[5] Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series, 148, 175-194.
https://doi.org/10.1086/377226
[6] Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. The Astrophysical Journal Supplement Series, 148, 1-27.
https://doi.org/10.1086/377253
[7] Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik, H., et al. (2004) Cosmological Parameters from SDSS and WMAP. Physical Review D, 69, Article ID: 103501.
https://doi.org/10.1103/physrevd.69.103501
[8] Abazajian, K., Adelman-McCarthy, J.K., Agüeros, M.A., Allam, S.S., Anderson, K.S.J., Anderson, S.F., et al. (2004) The Second Data Release of the Sloan Digital Sky Survey. The Astronomical Journal, 128, 502-512.
https://doi.org/10.1086/421365
[9] Motta, V., García-Aspeitia, M.A., Hernández-Almada, A., Magaña, J. and Verdugo, T. (2021) Taxonomy of Dark Energy Models. Universe, 7, Article 163.
https://doi.org/10.3390/universe7060163
[10] Hart, L. and Chluba, J. (2022) Using the Cosmological Recombination Radiation to Probe Early Dark Energy and Fundamental Constant Variations. Monthly Notices of the Royal Astronomical Society, 519, 3664-3680.
https://doi.org/10.1093/mnras/stac3697
[11] Padmanabhan, T. (2003) Cosmological Constant—The Weight of the Vacuum. Physics Reports, 380, 235-320.
https://doi.org/10.1016/s0370-1573(03)00120-0
[12] Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559-606.
https://doi.org/10.1103/revmodphys.75.559
[13] Copeland, E.J., Sami, M. and Tsujikawa, S. (2006) Dynamics of Dark Energy. International Journal of Modern Physics D, 15, 1753-1935.
https://doi.org/10.1142/s021827180600942x
[14] Sahni, V. and Starobinsky, A. (2006) Reconstructing Dark Energy. International Journal of Modern Physics D, 15, 2105-2132.
https://doi.org/10.1142/s0218271806009704
[15] Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432.
https://doi.org/10.1146/annurev.astro.46.060407.145243
[16] Li, M., Li, X., Wang, S. and Wang, Y. (2011) Dark Energy. Communications in Theoretical Physics, 56, 525-604.
https://doi.org/10.1088/0253-6102/56/3/24
[17] Bamba, K., Capozziello, S., Nojiri, S. and Odintsov, S.D. (2012) Dark Energy Cosmology: The Equivalent Description via Different Theoretical Models and Cosmography Tests. Astrophysics and Space Science, 342, 155-228.
https://doi.org/10.1007/s10509-012-1181-8
[18] Weinberg, D.H., Mortonson, M.J., Eisenstein, D.J., Hirata, C., Riess, A.G. and Rozo, E. (2013) Observational Probes of Cosmic Acceleration. Physics Reports, 530, 87-255.
https://doi.org/10.1016/j.physrep.2013.05.001
[19] Mortonson, M.J., Weinberg, D.H. and White, M. (2017) Dark Energy: A Short Review. arXiv: 1401.0046.
[20] 张鑫. 暗能量与宇宙加速膨胀之谜[J]. 科学, 2017, 69(1): 57-60.
[21] 柴铮. 暗物质与暗能量研究进展[J]. 科技视界, 2016(26): 345, 350.
[22] Ade, P.A.R., et al. (2014) Planck 2013 Results. XVI. Cosmological Parameters. arXiv: 1303.5076.
[23] Ade, P.A.R., et al. (2016) Planck 2015 Results. XIII. Cosmological Parameters. arXiv: 1502.01589.
[24] Caldwell, R.R., Dave, R. and Steinhardt, P.J. (1998) Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters, 80, 1582-1585.
https://doi.org/10.1103/physrevlett.80.1582
[25] Sean. M. (2003) Can the Dark Energy Equation-of-State Parameter w Be Less than—1? Physical Review D, 68, Article ID: 023509.
[26] Guo, Z., Piao, Y., Zhang, X. and Zhang, Y. (2005) Cosmological Evolution of a Quintom Model of Dark Energy. Physics Letters B, 608, 177-182.
https://doi.org/10.1016/j.physletb.2005.01.017
[27] Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological λ-Term. International Journal of Modern Physics D, 09, 373-443.
https://doi.org/10.1142/s0218271800000542
[28] Bean, R., Carroll, S. and Trodden, M. (2005) Insights into Dark Energy: Interplay between Theory and Observation. arXiv: astro-ph/0510059.
[29] Aghanim, N., et al. (2018) Planck 2018 results. VI. Cosmological Parameters. arXiv: 1807.06209.
[30] Riess, A.G., Casertano, S., Yuan, W., Bowers, J.B., Macri, L., Zinn, J.C., et al. (2021) Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. The Astrophysical Journal Letters, 908, L6.
https://doi.org/10.3847/2041-8213/abdbaf
[31] Battye, R.A. and Moss, A. (2014) Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations. Physical Review Letters, 112, Article ID: 051303.
https://doi.org/10.1103/physrevlett.112.051303
[32] Betoule, M., Kessler, R., Guy, J., Mosher, J., Hardin, D., Biswas, R., et al. (2014) Improved Cosmological Constraints from a Joint Analysis of the SDSS-II and SNLS Supernova Samples. Astronomy & Astrophysics, 568, A22.
https://doi.org/10.1051/0004-6361/201423413
[33] Bernal, J.L., Verde, L. and Riess, A.G. (2016) The Trouble with H0. arXiv: 1607.05617.
https://doi.org/10.1088/1475-7516/2016/10/019
[34] Guo, R., Li, Y., Zhang, J. and Zhang, X. (2017) Weighing Neutrinos in the Scenario of Vacuum Energy Interacting with Cold Dark Matter: Application of the Parameterized Post-Friedmann Approach. arXiv: 1702.04189.
https://doi.org/10.1088/1475-7516/2017/05/040
[35] Lesgourgues, J. and Pastor, S. (2006) Massive Neutrinos and Cosmology. Physics Reports, 429, 307-379.
https://doi.org/10.1016/j.physrep.2006.04.001
[36] Olive, K.A. (2014) Review of Particle Physics. Chinese Physics C, 38, Article ID: 090001.
https://doi.org/10.1088/1674-1137/38/9/090001
[37] Hinshaw, G., Larson, D., Komatsu, E., Spergel, D.N., Bennett, C.L., Dunkley, J., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. The Astrophysical Journal Supplement Series, 208, Article 19.
https://doi.org/10.1088/0067-0049/208/2/19
[38] Sievers, J.L., Hlozek, R.A., Nolta, M.R., Acquaviva, V., Addison, G.E., Ade, P.A.R., et al. (2013) The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data. Journal of Cosmology and Astroparticle Physics, 2013, Article 60.
https://doi.org/10.1088/1475-7516/2013/10/060
[39] Hou, Z., et al. (2014) Constraints on Cosmology from the Cosmic Microwave Background Power Pectrum of the 2500 deg2 SPT-SZ Survey. Astrophys Journal, 782, Article 74.
[40] Ade, P.A.R., et al. (2014) Planck 2013 results. XXIV. Constraints on Primordial on Gaussianity. Astronomy & Astrophysics, 571, A24.
[41] Abazajian, K.N., Arnold, A., Austermann, J., et al. (2015) Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure. Astroparticle Physics, 63, 66-80.
https://doi.org/10.1016/j.astropartphys.2014.05.014
[42] Aghanim, N., et al. (2020) Planck 2018 Results. VI. Cosmological Parameters. Astronomy & Astrophysic, 641, A6.
[43] Zhao, M., Li, Y., Zhang, J. and Zhang, X. (2017) Constraining Neutrino Mass and Extra Relativistic Degrees of Freedom in Dynamical Dark Energy Models Using Planck 2015 Data in Combination with Low-Redshift Cosmological Probes: Basic Extensions to ΛCDM Cosmology. Monthly Notices of the Royal Astronomical Society, 469, 1713-1724.
https://doi.org/10.1093/mnras/stx978
[44] Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos after Planck 2015. Physical Review D, 93, Article ID: 083011.
https://doi.org/10.1103/physrevd.93.083011
[45] Guo, R., Zhang, J. and Zhang, X. (2018) Exploring Neutrino Mass and Mass Hierarchy in the Scenario of Vacuum Energy Interacting with Cold Dark Matter. Chinese Physics C, 42, Article ID: 095103.
https://doi.org/10.1088/1674-1137/42/9/095103
[46] Choudhury, S.R. and Hannestad, S. (2020) Updated Results on Neutrino Mass and Mass Hierarchy from Cosmology with Planck 2018 Likelihoods. Journal of Cosmology and Astroparticle Physics, 2020, Article 37.
https://doi.org/10.1088/1475-7516/2020/07/037
[47] Li, H. and Zhang, X. (2012) Constraining Dynamical Dark Energy with a Divergence-Free Parametrization in the Presence of Spatial Curvature and Massive Neutrinos. Physics Letters B, 713, 160-164.
https://doi.org/10.1016/j.physletb.2012.06.030
[48] Li, Y., Wang, S., Li, X. and Zhang, X. (2013) Holographic Dark Energy in a Universe with Spatial Curvature and Massive Neutrinos: A Full Markov Chain Monte Carlo Exploration. Journal of Cosmology and Astroparticle Physics, 2013, Article 33.
https://doi.org/10.1088/1475-7516/2013/02/033
[49] Zhang, J., Li, Y. and Zhang, X. (2014) Cosmological Constraints on Neutrinos after BICEP2. The European Physical Journal C, 74, Article 2954.
https://doi.org/10.1140/epjc/s10052-014-2954-8
[50] Zhang, J., Zhao, M., Li, Y. and Zhang, X. (2015) Neutrinos in the Holographic Dark Energy Model: Constraints from Latest Measurements of Expansion History and Growth of Structure. Journal of Cosmology and Astroparticle Physics, 2015, Article 38.
https://doi.org/10.1088/1475-7516/2015/04/038
[51] Geng, C., Lee, C., Myrzakulov, R., Sami, M. and Saridakis, E.N. (2016) Observational Constraints on Varying Neutrino-Mass Cosmology. Journal of Cosmology and Astroparticle Physics, 2016, Article 49.
https://doi.org/10.1088/1475-7516/2016/01/049
[52] Chen, Y. and Xu, L. (2016) Galaxy Clustering, CMB and Supernova Data Constraints on Φ CDM Model with Massive Neutrinos. Physics Letters B, 752, 66-75.
https://doi.org/10.1016/j.physletb.2015.11.022
[53] Vagnozzi, S., Dhawan, S., Gerbino, M., Freese, K., Goobar, A. and Mena, O. (2018) Constraints on the Sum of the Neutrino Masses in Dynamical Dark Energy Models with w(z) ≥ −1 Are Tighter than Those Obtained in λCDM. Physical Review D, 98, Article ID: 083501.
https://doi.org/10.1103/physrevd.98.083501
[54] Loureiro, A., Cuceu, A., Abdalla, F.B., Moraes, B., Whiteway, L., McLeod, M., et al. (2019) Upper Bound of Neutrino Masses from Combined Cosmological Observations and Particle Physics Experiments. Physical Review Letters, 123, Article ID: 081301.
https://doi.org/10.1103/physrevlett.123.081301
[55] Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond λCDM. The Astrophysical Journal, 876, Article 85.
https://doi.org/10.3847/1538-4357/ab1422
[56] Wang, L., Zhang, X., Zhang, J. and Zhang, X. (2018) Impacts of Gravitational-Wave Standard Siren Observation of the Einstein Telescope on Weighing Neutrinos in Cosmology. Physics Letters B, 782, 87-93.
https://doi.org/10.1016/j.physletb.2018.05.027
[57] Wang, S., Wang, Y., Xia, D. and Zhang, X. (2016) Impacts of Dark Energy on Weighing Neutrinos: Mass Hierarchies Considered. Physical Review D, 94, Article ID: 083519.
https://doi.org/10.1103/physrevd.94.083519
[58] Yang, W., Nunes, R.C., Pan, S. and Mota, D.F. (2017) Effects of Neutrino Mass Hierarchies on Dynamical Dark Energy Models. Physical Review D, 95, Article ID: 103522.
https://doi.org/10.1103/physrevd.95.103522
[59] Huang, Q., Wang, K. and Wang, S. (2016) Constraints on the Neutrino Mass and Mass Hierarchy from Cosmological Observations. The European Physical Journal C, 76, Article No. 489.
https://doi.org/10.1140/epjc/s10052-016-4334-z
[60] Zhang, M., Zhang, J. and Zhang, X. (2020) Impacts of Dark Energy on Constraining Neutrino Mass after Planck 2018. Communications in Theoretical Physics, 72, Article ID: 125402.
https://doi.org/10.1088/1572-9494/abbb84
[61] Li, M. (2004) A Model of Holographic Dark Energy. Physics Letters B, 603, 1-5.
https://doi.org/10.1016/j.physletb.2004.10.014
[62] Huang, Q. and Li, M. (2004) The Holographic Dark Energy in a Non-Flat Universe. Journal of Cosmology and Astroparticle Physics, 2004, Article 13.
https://doi.org/10.1088/1475-7516/2004/08/013
[63] Zhang, J., Zhao, M., Cui, J. and Zhang, X. (2014) Revisiting the Holographic Dark Energy in a Non-Flat Universe: Alternative Model and Cosmological Parameter Constraints. The European Physical Journal C, 74, Article 3178.
https://doi.org/10.1140/epjc/s10052-014-3178-7
[64] Wang, S., Wang, Y. and Li, M. (2017) Holographic Dark Energy. Physics Reports, 696, 1-57.
https://doi.org/10.1016/j.physrep.2017.06.003
[65] Wang, S., Geng, J., Hu, Y. and Zhang, X. (2014) Revisit of Constraints on Holographic Dark Energy: SNLS3 Dataset with the Effects of Time-Varying Β and Different Light-Curve Fitters. Science China Physics, Mechanics & Astronomy, 58, 1-11.
https://doi.org/10.1007/s11433-014-5628-5
[66] Cui, J., Xu, Y., Zhang, J. and Zhang, X. (2015) Strong Gravitational Lensing Constraints on Holographic Dark Energy. Science China Physics, Mechanics & Astronomy, 58, Article ID: 110402.
https://doi.org/10.1007/s11433-015-5734-z
[67] He, D., Zhang, J. and Zhang, X. (2017) Redshift Drift Constraints on Holographic Dark Energy. Science China Physics, Mechanics & Astronomy, 60, Article ID: 039511.
https://doi.org/10.1007/s11433-016-0472-1
[68] Xu, Y. and Zhang, X. (2016) Comparison of Dark Energy Models After Planck 2015. The European Physical Journal C, 76, Article No. 588.
https://doi.org/10.1140/epjc/s10052-016-4446-5
[69] Chevallier, M. and Polarski, D. (2001) Accelerating Universes with Scaling Dark Matter. International Journal of Modern Physics D, 10, 213-223.
https://doi.org/10.1142/s0218271801000822
[70] Linder, E.V. (2003) Exploring the Expansion History of the Universe. Physical Review Letters, 90, Article ID: 091301.
https://doi.org/10.1103/physrevlett.90.091301
[71] Astier, P. (2001) Can Luminosity Distance Measurements Probe the Equation of State of Dark Energy? Physics Letters B, 500, 8-15.
https://doi.org/10.1016/s0370-2693(01)00072-7
[72] Yao, T., Guo, R. and Zhao, X. (2023) Constraining Neutrino Mass in Dynamical Dark Energy Cosmologies with the Logarithm Parametrization and the Oscillating Parametrization. Journal of High Energy Physics, Gravitation and Cosmology, 9, 1044-1061.
https://doi.org/10.4236/jhepgc.2023.94076
[73] Barboza, E.M. and Alcaniz, J.S. (2008) A Parametric Model for Dark Energy. Physics Letters B, 666, 415-419.
https://doi.org/10.1016/j.physletb.2008.08.012
[74] Valentino, E.D., Gariazzo, S., Mena, O. and Vagnozzi, S. (2020) Soundness of Dark Energy Properties. Journal of Cosmology and Astroparticle Physics, 2020, Article 45.
https://doi.org/10.1088/1475-7516/2020/07/045
[75] Du, M., Yang, W., Xu, L., Pan, S. and Mota, D.F. (2019) Future Constraints on Dynamical Dark-Energy Using Gravitational-Wave Standard Sirens. Physical Review D, 100, Article ID: 043535.
https://doi.org/10.1103/physrevd.100.043535
[76] Pan, S., Yang, W. and Paliathanasis, A. (2020) Imprints of an Extended Chevallier-Polarski-Linder Parametrization on the Large Scale of Our Universe. The European Physical Journal C, 80, Article 274.
https://doi.org/10.1140/epjc/s10052-020-7832-y
[77] Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) WMAP Constraints on Low Redshift Evolution of Dark Energy. Monthly Notices of the Royal Astronomical Society: Letters, 356, L11-L16.
https://doi.org/10.1111/j.1745-3933.2005.08577.x
[78] Denitsa, S. (2022) DE Models with Combined H0⋅rd from BAO and CMB Dataset and Friends. Universe, 8, Article No. 631.
https://doi.org/10.3390/universe8120631
[79] Aghanim, N., Akrami, Y., Ashdown, M., et al. (2018) Planck 2018 Results. III. High Frequency Instrument Data Processing and Frequency Maps. arXiv:1807.06207.
[80] Aghanim, N., Akrami, Y., Ashdown, M., et al. (2020) Planck 2018 Results. VI. Cosmological Parameters. arXiv: 1807.06209.
[81] Gaztañaga, E., Cabré, A. and Hui, L. (2009) Clustering of Luminous Red Galaxies—IV. Baryon Acoustic Peak in the Line-Of-Sight Direction and a Direct Measurement of H(z). Monthly Notices of the Royal Astronomical Society, 399, 1663-1680.
https://doi.org/10.1111/j.1365-2966.2009.15405.x
[82] Perković, D. and Štefančić, H. (2020) Barotropic Fluid Compatible Parametrizations of Dark Energy. The European Physical Journal C, 80, Article No. 629.
https://doi.org/10.1140/epjc/s10052-020-8199-9
[83] Pacif, S.K.J. (2020) Dark Energy Models from a Parametrization of H: A Comprehensive Analysis and Observational Constraints. The European Physical Journal Plus, 135, Article No. 792.
https://doi.org/10.1140/epjp/s13360-020-00769-y
[84] Cárdenas, V.H., Cruz, M., Lepe, S. and Salgado, P. (2021) Reconstructing Mimetic Cosmology. Physics of the Dark Universe, 31, Article ID: 100775.
https://doi.org/10.1016/j.dark.2021.100775
[85] Scolnic, D.M., Jones, D.O., Rest, A., Pan, Y.C., Chornock, R., Foley, R.J., et al. (2018) The Complete Light-Curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. The Astrophysical Journal, 859, Article 101.
https://doi.org/10.3847/1538-4357/aab9bb
[86] Ren, X., Wong, T.H.T., Cai, Y. and Saridakis, E.N. (2021) Data-Driven Reconstruction of the Late-Time Cosmic Acceleration with f(T) Gravity. Physics of the Dark Universe, 32, Article ID: 100812.
https://doi.org/10.1016/j.dark.2021.100812
[87] Rezaei, M. and Peracaula, J.S. (2022) Running Vacuum versus Holographic Dark Energy: A Cosmographic Comparison. The European Physical Journal C, 82, Article No. 765.
https://doi.org/10.1140/epjc/s10052-022-10653-x
[88] Wang, H. and Piao, Y. (2022) Testing Dark Energy after Pre-Recombination Early Dark Energy. Physics Letters B, 832, Article ID: 137244.
https://doi.org/10.1016/j.physletb.2022.137244
[89] Yang, W., Giarè, W., Pan, S., Di Valentino, E., Melchiorri, A. and Silk, J. (2023) Revealing the Effects of Curvature on the Cosmological Models. Physical Review D, 107, Article ID: 063509.
https://doi.org/10.1103/physrevd.107.063509
[90] Jassal, H.K., Bagla, J.S. and Padmanabhan, T. (2005) Observational Constraints on Low Redshift Evolution of Dark Energy: How Consistent Are Different Observations? Physical Review D, 72, Article ID: 103503.
https://doi.org/10.1103/physrevd.72.103503