慢性阻塞性肺疾病并发骨质疏松症的研究进展
Research Progress on the Mechanism of Chronic Obstructive Pulmonary Disease Complicated with Osteoporosis
DOI: 10.12677/acm.2024.1472048, PDF, HTML, XML, 下载: 12  浏览: 17  科研立项经费支持
作者: 杨星星:甘肃中医药大学研究生院,甘肃 兰州;沈明霞*:甘肃中医药大学附属医院老年病科,甘肃 兰州
关键词: 慢性阻塞性肺疾病骨质疏松症发病机制研究进展Chronic Obstructive Pulmonary Disease Osteoporosis Pathogenesis Research Progress
摘要: 慢性阻塞性肺疾病(COPD)是一种异质性的气道疾病并且常伴全身炎症反应、恶病质、肌肉功能障碍和骨质疏松症等显著的肺外表现,大部分患者就诊时伴有骨质疏松或骨量减少,COPD患者中存在的低氧血症、炎症反应、吸烟、衰弱、维生素D缺乏及糖皮质激素的长期使用等危险因素都可以导致骨质疏松症的发生;而骨质疏松症引起的骨折不仅导致COPD患者的生活质量明显下降,原发肺部疾病加重。基于此,本文从其发病的危险因素及发病机制的研究进展进行阐述,以期为其预防与治疗提供思路。
Abstract: Chronic obstructive pulmonary disease (COPD) is a heterogeneous airway disease often accompanied by significant extrapulmonary manifestations such as systemic inflammation, cachexia, muscle dysfunction, and osteoporosis. Approximately 50%~70% of COPD patients are diagnosed with osteoporosis or reduced bone mass. Risk factors such as hypoxemia, inflammation, smoking, frailty, vitamin D deficiency, and long-term use of glucocorticoids in COPD patients can all lead to the occurrence of osteoporosis; The fractures caused by osteoporosis not only lead to a significant decrease in the quality of life of COPD patients, but also worsen the primary lung disease. Based on this, this article elaborates on the research progress of its risk factors and pathogenesis, in order to provide ideas for its prevention and treatment.
文章引用:杨星星, 沈明霞. 慢性阻塞性肺疾病并发骨质疏松症的研究进展[J]. 临床医学进展, 2024, 14(7): 544-549. https://doi.org/10.12677/acm.2024.1472048

1. 慢性阻塞性肺疾病并发骨质疏松症的危险因素

1.1. 炎症反应

慢性阻塞性肺疾病是一种以气道炎症为核心且常伴有全身慢性炎症反应的疾病。气道炎症主要是由中性粒、巨噬细胞、淋巴细胞等炎症细胞的聚集以及白介素-6 (interleukin-6, IL-6)、肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)、白介素-1β (interleukin, IL-1β)等炎性因子的大量释放而引起,炎性因子通过血液循环溢出肺外而引起全身炎症反应[1];TNF-α、IL-6等炎性因子的刺激可促使基质金属蛋白酶(matrix metalloprotein-9, MMP-9)的合成,MMP-9参与气道重塑形成不可逆的气流受限,同时也加剧骨流失,诱导骨质疏松症的发生[2];此外,TNF-α、IL-6等炎性因子可以通过调控骨保护素(osteoprotegerin, OPG)/核因子-κB受体活化因子配体(Receptor Activator of Nuclear Factor-κB Ligand, RANKL)/核因子-κB受体活化因子(Receptor Activator of Nuclear Factor-κB, RANK)信号通路来调控破骨细胞的功能,炎性因子使RANKL与破骨细胞膜上RANK结合增强来激活下游标靶基因的转录,从而增强了破骨细胞的活性[3];陈灿等[4]通过临床研究发现COPD引起OP患者中RANKL/OPG比值及TNF-α、RANKL水平明显升高,且血清TNF-α水平与RANKL水平及RANKL/OPG比值呈正相关,由此推测TNF-α等促炎细胞因子可诱导RANKL表达升高,使破骨细胞活性增强,从而促进破骨细胞分化。长期慢性炎症反应可以影响COPD患者的免疫应答,COPD患者长期的气道炎症及全身炎症反应使得COPD患者的气管及肺中CD4+、CD8+、B淋巴细胞数量呈明显增加[5],CD8+、CD4+T细胞及辅助性T细胞17 (T helper cell 17, Th17)可增强破骨细胞活性;B淋巴细胞可通过调节RANK/RANKL/OPG信号轴来影响破骨细胞的活性,从而引起骨质疏松[6]

1.2. 吸烟

吸烟是COPD患者最常见的危险因素,香烟中的有害物质导致呼吸道上皮屏障功能障碍,受损的上皮细胞释放TNF-α等促炎因子促进大量炎症细胞的黏附聚集,炎症细胞释放大量蛋白酶和活性氧(ROS),以增强肺部的氧化应激反应,炎症反应及氧化应激不仅是COPD的重要发病机制,同样参与骨质疏松症的发病。ROS是参与破坏骨重建的主要类型的自由基,吸烟可通过内源性及外源性途径产生大量活性氧,大量活性氧的释放通过抑制Runt相关转录因子2 (Runx 2)和成骨细胞特异性转录因子(Osterix)表达来降低成骨活性[7];H2O2是细胞实验中常用的氧化应激模型,通过抑制核因子红细胞系2相关因子2 (Nrf2)和哺乳动物雷帕霉素靶(mTOR)信号通路抑制自噬,从而促进RANKL介导的破骨细胞分化[8];已有研究证明吸烟可显著降低OPG水平,从而导致RANKL/OPG比率增加,以此来增强破骨细胞功能,从而形成骨质疏松的微环境[9];氧化应激可导致线粒体功能障碍参与了成骨细胞内在凋亡途径的激活[10]。临床研究表明,吸烟者的骨密度(BMD)明显低于不吸烟者,累积的骨丢失可以使他们一生中患髋部骨折的风险增加50% [11]。吸烟也是骨质疏松症的独立危险因素,研究表明尼古丁不仅对成骨细胞有直接的毒性作用,而且还与破骨细胞的增加有关[12];尼古丁也可以抑制芳香化酶活性并发挥抗雌激素作用,性腺激素水平的降低引起成骨细胞活性和增殖的降低[13]

1.3. 低氧血症

随着COPD的进展,肺通气功能进行性下降,导致低氧血症形成;1999年首次提出缺氧与骨质疏松的关系,将Wistar大鼠成对喂养且运动受限时,与对照组相比,在缺氧空气中放置4周的组显示出BMD降低,这表明低氧血症可导致骨质流失[14];国外一项研究表明,产前缺氧不仅延缓了胎儿骨骼生长,而且能通过下调胰岛素样生长因子1 (IGF1)信号传导和抑制细胞外基质(ECM)合成,增加了卵巢切除术诱导的老年骨质疏松症的风险[15];低氧诱导缺氧诱导因子1α (HIF-1α)的表达,HIF与腺苷A2B受体的相互作用可以增强破骨细胞的糖酵解和线粒体代谢,从而促进骨吸收的增加;有研究用MLO-Y4作为骨细胞模型,选用小鼠巨噬细胞RAW264.7作为破骨细胞前体模型,用化学方法(CoCl2)模拟体外缺氧环境刺激MLO-Y4细胞稳定表达HIF-1α,HIF通过激活酪氨酸蛋白激酶2及转录激活因子3 (JAK2/STAT3)信号通路,从而上调RANKL表达,促使RANKL与RANK结合,促进破骨细胞分化成熟,HIF还促进RAW264.7细胞在体外分化为破骨细胞[16];HIF-1α还可以通过减少破骨细胞血管内皮生长因子(VEGF)和血管生成素样蛋白4 (ANGPTLs4)的分泌,从而刺激破骨细胞分化和吸收活动;因此,低氧血症是慢阻肺合并骨质疏松症的重要因素,HIF-1α是调控破骨细胞激活的重要靶标分子[17]

1.4. 糖皮质激素的使用

糖皮质激素在慢性阻塞性肺疾病急性治疗起重要作用,但糖皮质激素诱导的骨质疏松症(GIOP)是常见的继发性骨质疏松之一,糖皮质激素通过多个途径引起骨质疏松。首先糖皮质激素可增强破骨细胞活性并且抑制破骨细胞凋亡,大量糖皮质激素通过上调RANK的表达及抑制OPG的表达,使得RANKL/OPG的比值升高,使得RANKL与RANK结合增强从而促进破骨细胞分化,增强骨吸收;其次糖皮质激素通过增加M-CSF的产生,并与RANKL协同促进破骨细胞的分化成熟,M-CSF也可通过蛋白激酶B (PKB)的介导来抑制破骨细胞的凋亡[18]。糖皮质激素还通过抑制细胞内有丝分裂原生蛋白激酶(MAPK)通路从而导致细胞外信号调节(ERK)、p38和c-Jun N末端激酶(JNK)的去磷酸化,抑制成骨细胞前体的增殖并促进破骨细胞分化,最终导致骨质疏松发生[19]。过量糖皮质激素不仅减少成骨细胞生成,糖皮质激素还可通过上调PPARγ2基因的活性水平来减少Runt相关转录因子2的表达,从而减少骨髓间质细胞向成骨细胞转化[20];此外糖皮质激素不仅可以通过BMP/Smads、Notch、PI3K/Akt、Wnt等信号通路抑制成骨细胞前体分化为成熟成骨细胞,还可以通过影响细胞自噬、铁死亡等调控成骨细胞及破骨细胞分化[21]。Weinstein等在糖皮质激素治疗的小鼠中进行的一项研究表明:糖皮质激素会减少骨血管、骨血流量和骨骼中的水量,从而导致骨强度下降[22]。糖皮质激素可以通过抑制甲状旁腺激素–维生素D轴间接诱导骨质疏松,其机制还包括性腺功能减退,体力活动减少,肾脏和肠道钙丢失等[23]

1.5. 维生素D缺乏

在一项对600名COPD患者的研究中发现[24],三分之一的患者有维生素D不足的情况(25(OH)D低于50 nmol/L),6% COPD患者有维生素D缺乏症(25(OH)D低于25 nmol/L),男性患者更容易出现维生素D缺乏。慢阻肺患者维生素D缺乏可能与活动受限导致的日晒减少,以及糖皮质激素使用导致的维生素D的代谢增加有关;维生素D在肾线粒体1α-羟化酶的作用下转化为俱有活性的1,25(OH)2D3;1,25(OH)2D3是促进肠道和肾脏对钙的吸收的重要物质,对于维持钙稳态至关重要;维生素D缺乏,血液离子钙浓度降低,导致继发性甲状旁腺功能亢进症,破骨细胞活性增加,骨吸收增加、骨基质丢失导致骨质疏松[25];1,25(OH)2D3通过激活骨髓基质细胞的维生素D受体促使RANKL的表达增加,使其与破骨细胞前体上的RANK结合,增强破骨细胞活性。同时,激活的维生素D受体抑制Wnt和TGF-β信号通路来抑制破骨细胞的生成[26]

1.6. 衰弱

有研究认为慢性阻塞性肺疾病合并衰弱的关键发病机制为慢性炎症反应和氧化应激反应[27]。一项系统综述和荟萃分析显示,慢性阻塞性肺病患者合并衰弱的机率增加了两倍,56%的慢性阻塞性肺病患者伴有衰弱的临床表现[28]。衰弱与骨质疏松症有共同的病因机制,炎症标志物C反应蛋白(CRP)和IL-6与衰弱和骨质疏松症均有关系,另外还有年龄、体重及体能减低和营养缺乏、认知功能减退、激素水平下降、户外活动和运动量减少等原因[29]。以体能和体重降低为主要表现的衰弱加速度了骨质疏松的发生,并增加了骨折的可能性。骨质疏松患者大都伴有疲乏感和低体重,容易加速衰弱的进展,二者相互促进[30]

2. 慢性阻塞性肺疾病并发骨质疏松症的发病机制

2.1. OPG/RANKL/RANK信号通路

慢性阻塞性肺疾病引起的炎症反应、低氧血症、糖皮质激素的使用等因素均可通过调控OPG/RANKL/RANK通路引起骨质疏松;OPG是由成骨细胞和骨髓基质细胞分泌的糖蛋白,是RANKL激活剂的抑制剂,OPG与RANK可竞争性的和RANKL相结合[31];当RANKL与破骨细胞膜上RANK相结合时,使得衔接蛋白肿瘤坏死因子受体相关因子6 (TRAF6)和因子转换生长β激活激酶1 (TAK1)激活[32],进一步激活下游丝裂原活化蛋白激酶(MAPK)和核因子κB (NF-κB)信号通路,促进激活蛋白1 (AP-1)的二聚体c-Fos和c-Jun复合物的形成,从而激活AP-1的靶标基因活化T细胞的核因子c1 (NFATc1)的转录,进一步促进破骨细胞分化成熟和骨吸收增强[33]

2.2. MMPS

基质金属蛋白酶(MMPS)是可降解细胞外基质的蛋白酶,不仅可以参与肺气肿的形成,还可以损害支气管上皮,减少纤毛摆动,刺激黏液腺分泌粘液;同时MMPS还可降解有机骨,诱导骨质疏松症的发生[34]。张培芳等发现在稳定期间COPD患者中,骨密度与血清MMP-9水平及MMP-9/TIMP-1值有关,MMPS可能是COPD并发骨质疏松症的重要影响因素[35]

3. 小结与展望

骨质疏松症及其相关骨折在COPD患者中很常见,并且给老年人的健康和生活带来很大影响,COPD患者在炎症反应、低氧血症、氧化应激、糖皮质激素使用等危险因素的影响下通过OPG/RANK/RANKL等通路并发骨质疏松症,慢性阻塞性肺疾病合并骨质疏松缺乏临床诊疗指南,导致临床医生及患者识别率低,治疗不足。因此临床工作必须加强对慢阻肺患者骨密度的筛查,并指导患者加强对骨质疏松的预防,尽可能降低骨质疏松症发生。

基金项目

OPG/RANKL/RANK信号通路在老年肾阳虚型慢性阻塞性肺疾病合并骨质疏松症大鼠的动态表达及固本培元法的干预研究。项目编号:20JR10RA342。

NOTES

*通讯作者。

参考文献

[1] 林宇挺, 李伟坚, 黄培楷. LFA-1在慢性阻塞性肺疾病中性粒细胞性炎症反应的作用探讨[J]. 河北医学, 2021, 27(12): 1974-1979.
[2] 汪洋, 竺义亮, 席金涛, 等. 血清炎症因子与老年慢性阻塞性肺疾病病人并发骨质疏松症的相关性分析[J]. 临床外科杂志, 2023, 31(5): 466-469.
[3] Yao, Z., Getting, S.J. and Locke, I.C. (2021) Regulation of TNF-Induced Osteoclast Differentiation. Cells, 11, Article 132.
https://doi.org/10.3390/cells11010132
[4] 陈灿, 郑林鑫, 麦玉梅, 等. 慢性阻塞性肺疾病并骨质疏松患者血清IL-6、TNF-α水平的变化及其对OPG、RANKL表达的影响[J]. 临床肺科杂志, 2023, 28(1): 35-38.
[5] 李亚昙. 阿尔泰金莲花总黄酮对慢性阻塞性肺疾病的干预作用及机制研究[D]: [博士学位论文]. 乌鲁木齐: 新疆医科大学, 2022.
[6] Liu, H., Luo, T., Tan, J., Li, M. and Guo, J. (2018) ‘Osteoimmunology’ Offers New Perspectives for the Treatment of Pathological Bone Loss. Current Pharmaceutical Design, 23, 6272-6278.
https://doi.org/10.2174/1381612823666170511124459
[7] Kettawan, A., Ruangklai, S., Rungruang, T., Thongam, J., Kettawan, A.K., Nirmal, N., et al. (2024) Rice Bran Oil Improves Emphysema in Cigarette Smoke Extract-Induced Mice through Anti-Inflammatory and Antioxidative Effects. Nutrients, 16, Article 433.
https://doi.org/10.3390/nu16030433
[8] Gong, W., Liu, M., Zhang, Q., Zhang, Q., Wang, Y., Zhao, Q., et al. (2022) Orcinol Glucoside Improves Senile Osteoporosis through Attenuating Oxidative Stress and Autophagy of Osteoclast via Activating Nrf2/keap1 and mTOR Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5410377.
https://doi.org/10.1155/2022/5410377
[9] Zhu, S., Häussling, V., Aspera-Werz, R.H., Chen, T., Braun, B., Weng, W., et al. (2020) Bisphosphonates Reduce Smoking-Induced Osteoporotic-Like Alterations by Regulating RANKL/OPG in an Osteoblast and Osteoclast Co-Culture Model. International Journal of Molecular Sciences, 22, Article 53.
https://doi.org/10.3390/ijms22010053
[10] 谢芋涛, 王想福, 叶丙霖, 等. 靶向线粒体质量控制防治骨质疏松症及其中药的治疗进展[J]. 中草药, 2024, 55(5): 1770-1778.
[11] Weng, W., Li, H. and Zhu, S. (2022) An Overlooked Bone Metabolic Disorder: Cigarette Smoking-Induced Osteoporosis. Genes, 13, Article 806.
https://doi.org/10.3390/genes13050806
[12] Agarwal, S., Germosen, C., Kil, N., Bucovsky, M., Colon, I., Williams, J., et al. (2021) Smoking Is Associated with Sex-Specific Effects on Bone Microstructure in Older Men and Women. Journal of Clinical Densitometry, 24, 341-350.
https://doi.org/10.1016/j.jocd.2020.07.002
[13] Hou, W., Chen, S., Zhu, C., Gu, Y., Zhu, L. and Zhou, Z. (2023) Associations between Smoke Exposure and Osteoporosis or Osteopenia in a US NHANES Population of Elderly Individuals. Frontiers in Endocrinology, 14, Article 1074574.
https://doi.org/10.3389/fendo.2023.1074574
[14] Fujimoto, H., Fujimoto, K., Ueda, A. and Ohata, M. (1999) Hypoxemia Is a Risk Factor for Bone Mass Loss. Journal of Bone and Mineral Metabolism, 17, 211-216.
https://doi.org/10.1007/s007740050087
[15] Yang, Y., Fan, X., Tao, J., Xu, T., Zhang, Y., Zhang, W., et al. (2018) Impact of Prenatal Hypoxia on Fetal Bone Growth and Osteoporosis in Ovariectomized Offspring Rats. Reproductive Toxicology, 78, 1-8.
https://doi.org/10.1016/j.reprotox.2018.02.010
[16] Song, X., Tang, Y., Zhu, J., Tian, Y., Song, Z., Hu, X., et al. (2020) HIF-1α Induces Hypoxic Apoptosis of MLO-Y4 Osteocytes via JNK/Caspase-3 Pathway and the Apoptotic-Osteocyte-Mediated Osteoclastogenesis in Vitro. Tissue and Cell, 67, Article ID: 101402.
https://doi.org/10.1016/j.tice.2020.101402
[17] Knowles, H. and Athanasou, N. (2008) Hypoxia-Inducible Factor Is Expressed in Giant Cell Tumour of Bone and Mediates Paracrine Effects of Hypoxia on Monocyte-Osteoclast Differentiation via Induction of VEGF. The Journal of Pathology, 215, 56-66.
https://doi.org/10.1002/path.2319
[18] 张惜燕, 胡勇, 邢玉瑞. 自噬在糖皮质激素性骨质疏松症中的作用机制[J]. 中国骨质疏松杂志, 2022, 28(6): 927-930.
[19] He, X., Zhao, W., Yao, L., Sun, P., Cheng, G., Liu, Y., et al. (2023) Orcinol Glucoside Targeted P38 as an Agonist to Promote Osteogenesis and Protect Glucocorticoid-Induced Osteoporosis. Phytomedicine, 119, Article ID: 154953.
https://doi.org/10.1016/j.phymed.2023.154953
[20] Han, L., Wang, B., Wang, R., Gong, S., Chen, G. and Xu, W. (2019) The Shift in the Balance between Osteoblastogenesis and Adipogenesis of Mesenchymal Stem Cells Mediated by Glucocorticoid Receptor. Stem Cell Research & Therapy, 10, Article No. 377.
https://doi.org/10.1186/s13287-019-1498-0
[21] 周于琳, 冯正平. 糖皮质激素诱导骨质疏松发病机制的研究进展[J]. 中国骨质疏松杂志, 2023, 29(2): 288-291.
[22] Mohan, G., Lay, E.Y., Berka, H., Ringwood, L., Kot, A., Chen, H., et al. (2016) A Novel Hybrid Compound LLP2A-Ale Both Prevented and Rescued the Osteoporotic Phenotype in a Mouse Model of Glucocorticoid-Induced Osteoporosis. Calcified Tissue International, 100, 67-79.
https://doi.org/10.1007/s00223-016-0195-6
[23] Patel, M.G., Shah, U., Jane, A., Sapcota, S., Verma, A. and Shankar, S. (2023) Understanding the Long-Term Interplay between Glucocorticoids, Parathyroid Hormone Levels, and Osteoporosis in Patients. Georgian Medical News, 342, 21-25.
[24] Minter, M., Augustin, H., van Odijk, J. and Vanfleteren, L.E.G.W. (2023) Gender Differences in Vitamin D Status and Determinants of Vitamin D Insufficiency in Patients with Chronic Obstructive Pulmonary Disease. Nutrients, 15, Article 426.
https://doi.org/10.3390/nu15020426
[25] 马述仕. 骨质疏松症与维生素D缺乏[C]//2001年全国骨质疏松与骨关节病学术研讨会论文汇编. 北京: 中国保健科学技术学会, 2001: 13-24.
[26] 席月. Wnt和TGF-β信号通路在1, 25(OH)2D3调控骨稳态中的作用及机制[D]: [博士学位论文]. 杭州: 浙江大学, 2021.
[27] Álvarez-Satta, M., Berna-Erro, A., Carrasco-Garcia, E., Alberro, A., Saenz-Antoñanzas, A., Vergara, I., et al. (2020) Relevance of Oxidative Stress and Inflammation in Frailty Based on Human Studies and Mouse Models. Aging, 12, 9982-9999.
https://doi.org/10.18632/aging.103295
[28] Marengoni, A., Vetrano, D.L., Manes-Gravina, E., Bernabei, R., Onder, G. and Palmer, K. (2018) The Relationship between COPD and Frailty: A Systematic Review and Meta-Analysis of Observational Studies. Chest, 154, 21-40.
https://doi.org/10.1016/j.chest.2018.02.014
[29] 覃海兵, 邹爱元, 陈荣彬, 等. 老年骨质疏松患者衰弱的现状及与健康素养的相关性[J]. 中国临床研究, 2020, 33(9): 1260-1263.
[30] 奚婧, 等. 社区老年人衰弱与骨质疏松的关系研究[J]. 实用老学, 2021, 35(3): 250-253.
[31] Okamoto, K., Nakashima, T., Shinohara, M., Negishi-Koga, T., Komatsu, N., Terashima, A., et al. (2017) Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews, 97, 1295-1349.
https://doi.org/10.1152/physrev.00036.2016
[32] Pietschmann, P., Mechtcheriakova, D., Meshcheryakova, A., Föger-Samwald, U. and Ellinger, I. (2015) Immunology of Osteoporosis: A Mini-Review. Gerontology, 62, 128-137.
https://doi.org/10.1159/000431091
[33] Tsukasaki, M. and Takayanagi, H. (2019) Osteoimmunology: Evolving Concepts in Bone-Immune Interactions in Health and Disease. Nature Reviews Immunology, 19, 626-642.
https://doi.org/10.1038/s41577-019-0178-8
[34] Hao, W., Li, M., Zhang, Y., Zhang, C. and Wang, P. (2019) Severity of Chronic Obstructive Pulmonary Disease with ‘exacerbator with Emphysema Phenotype’ Is Associated with Potential Biomarkers. Postgraduate Medical Journal, 96, 28-32.
https://doi.org/10.1136/postgradmedj-2019-136599
[35] 张培芳, 罗志扬, 冯彦林, 等. 慢性阻塞性肺疾病合并骨质疏松患者血清基质金属蛋白酶9和肿瘤坏死因子α与骨密度的关系[J]. 中国全科医学, 2014, 17(9): 1009-1012.