髋关节术后异位骨化的研究进展
Research Progress of Ectopic Ossification after Hip Joint Operation
DOI: 10.12677/acm.2024.1472032, PDF, HTML, XML, 下载: 12  浏览: 18 
作者: 饶 康:延安大学医学院,陕西 延安;李长红*:延安大学附属医院创伤骨科,陕西 延安
关键词: 异位骨化髋关节术后危险因素预防治疗Ectopic Ossification Hip Joint Surgery Risk Factors Prevention Treatment
摘要: 异位骨化(Heterotopic Ossification, HO)是指在正常情况下没有骨组织的软组织内,出现了成骨细胞,并形成了骨组织。HO是髋关节骨折术后常见的并发症之一,一旦发生可能会引起较严重的后果,且由于髋关节骨折术后HO的高发病率及其发病机制的复杂性,其预防与治疗一直受到人们的关注。但学术界目前对HO发病机制的认识、最有效的预防方案、手术时机的选择、物理治疗的必要性以及基因靶向治疗的临床应用等问题尚不明确。本文通过对HO最新研究的文献进行系统评价,为髋部骨折术后HO的发病机制的研究与治疗提出专业意见。
Abstract: Heterotopic Ossification (HO) is the emergence of osteoblasts and the formation of bone tissue in soft tissues that normally do not have bone tissue. HO is one of the common complications after hip fracture, which may cause serious consequences once it occurs. Due to the high incidence and complexity of the pathogenesis of HO after hip fracture, its prevention and treatment have been concerned by people. However, the understanding of the pathogenesis of HO, the most effective preventive program, the selection of surgical timing, the necessity of physical therapy and the clinical application of gene targeted therapy are still unclear. Through a systematic review of the latest literature on HO, this paper provides professional suggestions for the study and treatment of the pathogenesis of HO after hip fracture.
文章引用:饶康, 李长红. 髋关节术后异位骨化的研究进展[J]. 临床医学进展, 2024, 14(7): 427-434. https://doi.org/10.12677/acm.2024.1472032

1. 引言

HO是指在骨骼之外的骨形成,可分为遗传性异位骨化和获得性异位骨化。获得性HO通常由爆炸损伤、神经损伤、烧伤或骨科术后形成,大多数获得性HO是由肌肉骨骼或神经源性损伤所造成[1]。获得性HO是髋关节术后较常见的并发症之一,经研究发现,异位骨化总体百分比为58.63% [2],其中,全髋关节置换术后异位骨形成的发生率为43%,髋臼骨折修复后为51%。严重异位骨形成的发生率分别为9%和19% [3]。严重的HO可导致疼痛、神经卡压、关节僵硬等。到目前为止,获得性HO的发生机制尚不明确,但关于其的预防、治疗等有一定进展。

2. 危险因素

影响髋关节骨折术后OH发生率的危险因素包括肌肉损伤、神经损伤、手术相关因素和个人因素等[4]。其中,HO危险因素显著增加的是男性、骨水泥植入、双侧手术、强直性脊柱炎和强直性髋关节,类风湿性关节炎对HO的发生具有保护作用[5]

3. 发生机制

获得性HO的发生机制至今尚不能完全阐明,但目前已确认的和以下因素有关:炎症、信号通路、组织环境[6]等。

3.1. 炎症和HO

在简单的概念化中,炎症是HO发展的关键“生态位因素”,也是许多易导致HO形成的条件的共性。使用非甾体抗炎药预防创伤性HO和类固醇治疗FOP的理论基础是减少术后炎症同样会减少HO的形成[7]。动物研究已经开始阐明免疫系统在HO发生和繁殖中的复杂和多方面的作用。

3.1.1. 巨噬细胞

巨噬细胞在软骨内骨化和骨折修复中起重要作用。现有研究表明,巨噬细胞参与几种HO的形成。如研究证明巨噬细胞参与小鼠模型BMP4过表达模型中HO的形成[8],同时巨噬细胞耗竭会减少HO的形成[9]。同样,在使用脊髓损伤结合肌肉损伤的神经源性HO小鼠模型中,研究人员鉴定了HO组织中的巨噬细胞,并确定巨噬细胞的消耗显着减少了HO的形成[9]

3.1.2. 肥大细胞

肥大细胞在HO的发病机制也可能非常重要。在获得性HO病例中,有研究证明肥大细胞的适量大量增加,在不同部位的HO活检中,异位骨形成部位附近可检测出大量肥大细胞[10]。一些证据表明,肥大细胞和巨噬细胞在某些情况下可能协同诱导HO的形成[11]。例如,在Acvr1 R206H敲入小鼠模型中,可以通过消耗巨噬细胞和肥大细胞的方法减少HO的形成,这种方法大于单独消耗任一细胞群[11]

3.1.3. 适应性免疫

有研究表明,适应性免疫系统似乎和先天性免疫系统一样,在HO的发生和/或繁殖中发挥作用。确切的机制尚不清楚。淋巴细胞炎症被描述为HO的常见组织学特征,一些临床或实验证据表明,调节淋巴细胞炎症可能会减少HO的发生[12]。例如,免疫功能低下的Rag1小鼠(缺乏B和T淋巴细胞)在创伤后表现出HO形成减少[13]。还有证据表明,患者在髋关节置换术前接受术前放疗可以改变炎症环境,从而减少HO的形成[14]。一项对接受全髋关节置换术的患者的血液的研究发现,接受术前放疗作为HO预防的患者T调节细胞数量减少,细胞毒性T细胞频率增加,以及B细胞成熟的改变[14]

3.1.4. 炎性细胞因子

许多研究表明,炎症因子水平的变化可能影响HO的形成。无论是在伤口部位还是在全身[15]。大多数数据表明随着炎症细胞因子的增加,HO的发病率也会随之增加。这些数据将炎症反应的程度与HO发生的可能性相关联。例如,在将皮肤烧伤与跟腱切开术相结合的小鼠模型中,血清TNFα、IL-1β、IL-6和MCP-1水平升高与HO形成相关[16]。在局部和全身水平的人类创伤性HO中也观察到炎症标志物增加。例如,具有穿透性、高能量肢体战伤的患者表现出与HO发生相关的几种细胞因子和趋化因子的水平升高[15]。一项类似的研究发现,在与战斗相关的高能创伤中,HO形成的发生率与血清和伤口流出物IL-3的增加有关[17]。相反,这些患者的血清IL-12p70和伤口流出物IL-13与HO的可能性降低相关。还应该注意的是,这些临床研究使用了一组24种炎症细胞因子和趋化因子,其中大多数与HO发病率无关[17]

在创伤性HO的发生发展过程中,炎症所起到的作用是非常复杂的,在髋关节术后的患者中,患者通常伴有多系统创伤,接受复杂的复苏、内科和手术干预。正如对同一患者的纵向评估所表明的那样,炎症细胞因子含量可能随时间变化很大。甚至在同一时间来自同一患者,这些指标并不总是一致的。考虑到这些局限性,研究表明,局部和全身炎症的增加与HO有关。外伤、烧伤和爆炸伤是全身炎症增加和HO形成的诱发因素的明确特征。这些关联已通过实验得到证实。

3.2. 信号通路与HO

信号通路与HO的发生尚无明确定论,下面讨论的是几种被确认的可能相互作用的途径。

3.2.1. 肿瘤生长因子(TGF)-β超家族和下游信号传导

BMP是在细胞外骨基质中发现了一种物质,当植入软组织时,该物质具有诱导异位骨的能力[18]。从那时起,BMP被认为在骨形成、骨修复和HO中起着核心作用。BMP是TGF-Beta超家族的进化保守成员[19],可以通过一些生理过程,影响人体的生理和发育功能。在这一家族中,BMP-2和BMP-7被认为具有特别的骨诱导性,其重组合成越来越多地用于促进骨科手术后的骨生长[20]。当二聚化并结合到由1型和2型丝氨酸/苏氨酸激酶组成的细胞表面多聚体受体复合物时,促成骨BMP激活SMAD1/5信号转导蛋白的磷酸化,以及随后促软骨生成和成骨基因的转录[21]。近些年来,Hino等人的研究标志着对导致FOP的ALK2多动症的理解发生了转变R206H突变不驱动受体的组成型激活,而是赋予突变受体与激活素-A的混杂结合,激活素-A是TGF-β超家族的另一个成员,在生理条件下与下游BMP通路拮抗[22]。尽管细胞对BMP信号转导的特异性反应存在这种差异,但这些发现强调了HO病理学的一个显着驱动因素:BMP-SMAD1/5轴的不平衡激活导致间充质组织的异位和病理分化[19]

3.2.2. 合成代谢细胞信号传导:mTOR/AKT通路

mTOR (哺乳动物雷帕素靶标)信号通路调节许多细胞过程,包括软骨分化[23]。磷脂酰肌醇-3-激酶(PI3K)和下游mTOR/AKT信号转导轴整合了来自周围微环境的生长和增殖信号,以介导细胞对稳态扰动的适当反应[24]。mTOR/AKT通路的下游效应是细胞特异性的,但控制着大量的细胞功能,包括自噬、T细胞群的炎症极化以及成纤维细胞和软骨细胞的增殖[23]。在创伤和遗传HO模型中,许多研究都记录了mTOR拮抗作用,以减轻使用雷帕霉素的HO形成。尽管mTOR抑制的多因素效应可能会阻碍我们对PI3K-mTOR-AKT轴如何导致骨形成的理解,但在初步研究中,雷帕霉素仍然是一种有效且耐受性良好的治疗方法。

3.2.3. 视黄酸受体(RAR)的信号传导

类视黄醇是有效的形态原,影响成骨和软骨生成,影响骨骼发育[25]。维生素A及其活性形式可与位于细胞核中的类视黄醇家族相结合,在与密切相关的核受体RXR家族进行异源二聚化后,类视黄醇可进行广泛的转录激活[26]。有研究表明,过量的类视黄醇通过激活破骨细胞介导皮质骨质流失,以及增加RANKL mRNA和蛋白质表达[27]。由于这些原因,类视黄醇激动剂已成为遗传性和创伤性HO的可行预防性治疗[28]

3.3. 组织环境

组织环境对肌肉中HO的发生有至关重要的作用。肌有优秀的再生能力,并有充足的祖细胞(m祖细胞)存在,它们可能位于肌纤维周围或间质组织中,科学家推测他们可能具有肌发生或血管生成的作用,肌源性祖细胞,俗称卫星细胞,负责肌肉再生[29]。肌肉来源的间充质干细胞,可以在体外诱导肌源性分化,并有助于体内骨骼肌再生。有研究者将脱矿质骨基质形式的骨形态发生蛋白(BMP)植入肌肉并诱导骨化,从而证明肌源性祖细胞依靠BMP-2的存在体外进行稳健的成骨分化和体内的骨形成[30] [31]。在骨折愈合过程中,一个特征性组织状况是周围组织(主要是骨骼肌)中BMP-2、-6和-7的上调。肌肉损伤后,为了修复受伤的肌肉,m祖细胞被激活。然而,在某些条件下,m祖细胞可以成骨,这可能是HO形成的重要条件[32]

4. 髋关节术后HO的预防

4.1. 放疗

放疗可以在多能间充质细胞开始分化为成骨细胞之前使其失活,是常用的预防HO发生的方法,可在术前与术后给予,但术后给予放疗是更常用的预防方法[33]。同时,有研究表明,于单次放疗相比,多次放疗可能效果更好[34]。放射治疗不仅有效,而且安全,但在临床中,我们要基于患者的具体情况以及成本原因决定其是否进行放射治疗。

4.2. 非甾体抗炎药(NSAIDs)

非甾体抗炎药已被用作髋关节术后预防HO的常规用药,其作用机制可能与抑制髋关节术后炎症反应有关,主要通过抑制环氧化酶,从而减少局部炎性反应,预防间充质细胞向成骨细胞转化,从而抑制HO [35]。其中吲哚美辛是最早用于预防髋关节术后HO非甾体抗炎药,后来,又陆续引入布洛芬与美昔康洛等药物。经研究发现,吲哚美辛与美昔康洛等药物在HO的预防效果并无特别差异[36],但由于成本等原因,临床上更多使用吲哚美辛。此外,我们应了解使用非甾体抗炎药后的副作用,包括胃肠道作用、过敏、头痛等[37]

4.3. 其他

预防髋关节术后HO的发生还有其他很多药物,如双磷酸盐,它的作用机制是抑制非晶形磷酸钙转化成磷酸钙,从而减慢骨矿化过程,但不能阻止骨基质形成[38],即仅能延迟而不能阻止HO的骨化过程,因而停药后容易复发[38]。但近年来Bijovet等人还通过进行一项前瞻性研究证明了二膦酸盐在HO预防中的无效性[39],在这方面还需要更进一步的研究。又比如维替泊芬,其可以阻断Wnt/β-连环蛋白信号通路从而预防HO的发生[40]。目前关于通过抑制信号通道来减少HO的发病的研究很少,是一个极具发展前景的研究方向。

5. 治疗

在HO发生的早期或HO未发生明显症状时,可采取保守治疗,剂使用非甾体抗炎药或放射治疗[41]。但对于已经存在症状的HO,保守治疗效果不大,因此,手术治疗是首选方法[42]。但是,要选择适当的手术时机,建议在髋关节术后留出6~12个月时间,以减少术后并发症的发生[43]。HO切除的术后并发症包括血肿、感染以及神经血管损伤[43],此外,由于髋关节术后HO大多发生在肌肉组织中,因此必须切除部分非功能性肌肉,术后存在关节活动受限的可能。因此,在选择手术时间时应考虑髋关节活动度的限制,因为在强直之前的较长时间内限制运动与肌肉、韧带、肌腱和关节囊的缩短有关,随后会使术后康复显着复杂化并恶化结果[44]。此外,有研究表明,手术应尽可能结合围手术期放疗和术后非甾体抗炎药药物,术后复发的概率较低[45]

6. 讨论和展望

髋关节术后HO的发生是一个复杂的病理生理过程,由于HO的有有害性,准确了解其潜在细胞和分子机制非常重要,但其具有多种不同的发病因素甚至发病机制,发病过程也需要多种细胞甚至环境的参与。然而具体有哪些因素参与以及其诱发机制和反应过程尚不明确。越来越多的学者证实,获得性HO是一种复杂的连续性病理,由组织损伤后的炎症驱动,随后是软骨形成、成骨和骨骼外骨堆积;也有越来越多的研究证明了其潜在细胞来源,包括干细胞、巨噬细胞等。目前来说,局部放射治疗和口服NSAIDs药物是HO常用的预防手段,手术治疗是其最有效的治疗方法,但其术后疗效及并发症仍不明确。当前,髋关节术后HO仍缺乏有效的特异性治疗方法,分子及靶向治疗可能是以后的研究热点,了解可能的机制和设计特定的治疗方法需要进一步的研究。

NOTES

*通讯作者。

参考文献

[1] Cao, G., Zhang, S., Wang, Y., Quan, S., Yue, C., Yao, J., et al. (2023) Pathogenesis of Acquired Heterotopic Ossification: Risk Factors, Cellular Mechanisms, and Therapeutic Implications. Bone, 168, Article ID: 116655.
https://doi.org/10.1016/j.bone.2022.116655
[2] Back, D.L., Smith, J.D., Dalziel, R.E., Young, D.A. and Shimmin, A. (2007) Incidence of Heterotopic Ossification after HIP Resurfacing. ANZ Journal of Surgery, 77, 642-647.
https://doi.org/10.1111/j.1445-2197.2007.04178.x
[3] Neal, B., Gray, H., MacMahon, S. and Dunn, L. (2002) Incidence of Heterotopic Bone Formation after Major Hip Surgery. ANZ Journal of Surgery, 72, 808-821.
https://doi.org/10.1046/j.1445-2197.2002.02549.x
[4] Singh, S., Morshed, S., Motamedi, D., Kidane, J., Paul, A., Hsiao, E.C., et al. (2022) Identification of Risk Factors in the Development of Heterotopic Ossification after Primary Total Hip Arthroplasty. The Journal of Clinical Endocrinology & Metabolism, 107, e3944-e3952.
https://doi.org/10.1210/clinem/dgac249
[5] Zhu, Y., Zhang, F., Chen, W., Zhang, Q., Liu, S. and Zhang, Y. (2015) Incidence and Risk Factors for Heterotopic Ossification after Total Hip Arthroplasty: A Meta-Analysis. Archives of Orthopaedic and Trauma Surgery, 135, 1307-1314.
https://doi.org/10.1007/s00402-015-2277-8
[6] Molligan, J., Mitchell, R., Schon, L., Achilefu, S., Zahoor, T., Cho, Y., et al. (2016) Influence of Bone and Muscle Injuries on the Osteogenic Potential of Muscle Progenitors: Contribution of Tissue Environment to Heterotopic Ossification. Stem Cells Translational Medicine, 5, 745-753.
https://doi.org/10.5966/sctm.2015-0082
[7] Elmstedt, E., Lindholm, T.S., Nilsson, O.S. and Törnkvist, H. (1985) Effect of Ibuprofen on Heterotopic Ossification after Hip Replacement. Acta Orthopaedica Scandinavica, 56, 25-27.
https://doi.org/10.3109/17453678508992973
[8] Kraft, C.T., Agarwal, S., Ranganathan, K., Wong, V.W., Loder, S., Li, J., et al. (2016) Trauma-Induced Heterotopic Bone Formation and the Role of the Immune System. Journal of Trauma and Acute Care Surgery, 80, 156-165.
https://doi.org/10.1097/ta.0000000000000883
[9] Genêt, F., Kulina, I., Vaquette, C., Torossian, F., Millard, S., Pettit, A.R., et al. (2015) Neurological Heterotopic Ossification Following Spinal Cord Injury Is Triggered by Macrophage‐Mediated Inflammation in Muscle. The Journal of Pathology, 236, 229-240.
https://doi.org/10.1002/path.4519
[10] Convente, M.R., Wang, H., Pignolo, R.J., Kaplan, F.S. and Shore, E.M. (2015) The Immunological Contribution to Heterotopic Ossification Disorders. Current Osteoporosis Reports, 13, 116-124.
https://doi.org/10.1007/s11914-015-0258-z
[11] Convente, M.R., Chakkalakal, S.A., Yang, E., Caron, R.J., Zhang, D., Kambayashi, T., et al. (2017) Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. Journal of Bone and Mineral Research, 33, 269-282.
https://doi.org/10.1002/jbmr.3304
[12] Kan, L., Liu, Y., McGuire, T.L., Berger, D.M.P., Awatramani, R.B., Dymecki, S.M., et al. (2009) Dysregulation of Local Stem/progenitor Cells as a Common Cellular Mechanism for Heterotopic Ossification. Stem Cells, 27, 150-156.
https://doi.org/10.1634/stemcells.2008-0576
[13] Ranganathan, K., Agarwal, S., Cholok, D., Loder, S., Li, J., Sung Hsieh, H.H., et al. (2016) The Role of the Adaptive Immune System in Burn-Induced Heterotopic Ossification and Mesenchymal Cell Osteogenic Differentiation. Journal of Surgical Research, 206, 53-61.
https://doi.org/10.1016/j.jss.2016.04.040
[14] Hoff, P., Rakow, A., Gaber, T., Hahne, M., Sentürk, U., Strehl, C., et al. (2013) Preoperative Irradiation for the Prevention of Heterotopic Ossification Induces Local Inflammation in Humans. Bone, 55, 93-101.
https://doi.org/10.1016/j.bone.2013.03.020
[15] Evans, K.N., Forsberg, J.A., Potter, B.K., Hawksworth, J.S., Brown, T.S., Andersen, R., et al. (2012) Inflammatory Cytokine and Chemokine Expression Is Associated with Heterotopic Ossification in High-Energy Penetrating War Injuries. Journal of Orthopaedic Trauma, 26, e204-e213.
https://doi.org/10.1097/bot.0b013e31825d60a5
[16] Sung Hsieh, H.H., Chung, M.T., Allen, R.M., Ranganathan, K., Habbouche, J., Cholok, D., et al. (2017) Evaluation of Salivary Cytokines for Diagnosis of Both Trauma-Induced and Genetic Heterotopic Ossification. Frontiers in Endocrinology, 8, Article 74.
https://doi.org/10.3389/fendo.2017.00074
[17] Forsberg, J.A., Potter, B.K., Polfer, E.M., Safford, S.D. and Elster, E.A. (2014) Do Inflammatory Markers Portend Heterotopic Ossification and Wound Failure in Combat Wounds? Clinical Orthopaedics & Related Research, 472, 2845-2854.
https://doi.org/10.1007/s11999-014-3694-7
[18] Urist, M.R. (1965) Bone: Formation by Autoinduction. Science, 150, 893-899.
https://doi.org/10.1126/science.150.3698.893
[19] Delaney, K., Kasprzycka, P., Ciemerych, M.A. and Zimowska, M. (2017) The Role of TGF‐β1 during Skeletal Muscle Regeneration. Cell Biology International, 41, 706-715.
https://doi.org/10.1002/cbin.10725
[20] Ranganathan, K., Loder, S., Agarwal, S., Wong, V.W., Forsberg, J., Davis, T.A., et al. (2015) Heterotopic Ossification: Basic-Science Principles and Clinical Correlates. Journal of Bone and Joint Surgery, 97, 1101-1111.
https://doi.org/10.2106/jbjs.n.01056
[21] Leblanc, E., Trensz, F., Haroun, S., Drouin, G., Bergeron, É., Penton, C.M., et al. (2010) BMP-9-Induced Muscle Heterotopic Ossification Requires Changes to the Skeletal Muscle Microenvironment. Journal of Bone and Mineral Research, 26, 1166-1177.
https://doi.org/10.1002/jbmr.311
[22] Hino, K., Ikeya, M., Horigome, K., Matsumoto, Y., Ebise, H., Nishio, M., et al. (2015) Neofunction of ACVR1 in Fibrodysplasia Ossificans Progressiva. Proceedings of the National Academy of Sciences of the United States of America, 112, 15438-15443.
https://doi.org/10.1073/pnas.1510540112
[23] Phornphutkul, C., Wu, K., Auyeung, V., Chen, Q. and Gruppuso, P.A. (2008) mTOR Signaling Contributes to Chondrocyte Differentiation. Developmental Dynamics, 237, 702-712.
https://doi.org/10.1002/dvdy.21464
[24] Laplante, M. and Sabatini, D.M. (2009) mTOR Signaling at a Glance. Journal of Cell Science, 122, 3589-3594.
https://doi.org/10.1242/jcs.051011
[25] Galdones, E. and Hales, B.F. (2008) Retinoic Acid Receptor Gamma-Induced Misregulation of Chondrogenesis in the Murine Limb Bud in Vitro. Toxicological Sciences, 106, 223-232.
https://doi.org/10.1093/toxsci/kfn169
[26] Romand, R., Hashino, E., Dollé, P., Vonesch, J., Chambon, P. and Ghyselinck, N.B. (2002) The Retinoic Acid Receptors RARα and RARγ Are Required for Inner Ear Development. Mechanisms of Development, 119, 213-223.
https://doi.org/10.1016/s0925-4773(02)00385-4
[27] Cash, D.E., Bock, C.B., Schughart, K., Linney, E. and Underhill, T.M. (1997) Retinoic Acid Receptor α Function in Vertebrate Limb Skeletogenesis: A Modulator of Chondrogenesis. The Journal of Cell Biology, 136, 445-457.
https://doi.org/10.1083/jcb.136.2.445
[28] Shimono, K., Morrison, T.N., Tung, W., Chandraratna, R.A., Williams, J.A., Iwamoto, M., et al. (2009) Inhibition of Ectopic Bone Formation by a Selective Retinoic Acid Receptor α‐Agonist: A New Therapy for Heterotopic Ossification? Journal of Orthopaedic Research, 28, 271-277.
https://doi.org/10.1002/jor.20985
[29] Mitchell, K.J., Pannérec, A., Cadot, B., Parlakian, A., Besson, V., Gomes, E.R., et al. (2010) Identification and Characterization of a Non-Satellite Cell Muscle Resident Progenitor during Postnatal Development. Nature Cell Biology, 12, 257-266.
https://doi.org/10.1038/ncb2025
[30] Gao, X., Usas, A., Tang, Y., Lu, A., Tan, J., Schneppendahl, J., et al. (2014) A Comparison of Bone Regeneration with Human Mesenchymal Stem Cells and Muscle-Derived Stem Cells and the Critical Role of BMP. Biomaterials, 35, 6859-6870.
https://doi.org/10.1016/j.biomaterials.2014.04.113
[31] Gao, X., Usas, A., Lu, A., Tang, Y., Wang, B., Chen, C., et al. (2013) BMP2 Is Superior to BMP4 for Promoting Human Muscle-Derived Stem Cell-Mediated Bone Regeneration in a Critical-Sized Calvarial Defect Model. Cell Transplantation, 22, 2393-2408.
https://doi.org/10.3727/096368912x658854
[32] Molligan, J., Mitchell, R., Schon, L., Achilefu, S., Zahoor, T., Cho, Y., et al. (2016) Influence of Bone and Muscle Injuries on the Osteogenic Potential of Muscle Progenitors: Contribution of Tissue Environment to Heterotopic Ossification. Stem Cells Translational Medicine, 5, 745-753.
https://doi.org/10.5966/sctm.2015-0082
[33] Seegenschmiedt, M.H., Martus, P., Goldmann, A.R., et al. (1994) [Pre-and Postoperative Radiotherapy to Prevent Heterotopic Ossification of the Hip Joint]. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesell-Schaft, 170, 281-91.
[34] Konski, A., Pellegrini, V., Poulter, C., Devanny, J., Rosier, R., McCollister Evarts, C., et al. (1990) Randomized Trial Comparing Single Dose versus Fractionated Irradiation for Prevention of Heterotopic Bone: A Preliminary Report. International Journal of Radiation Oncology Biology Physics, 18, 1139-1142.
https://doi.org/10.1016/0360-3016(90)90450-x
[35] Kan, S., Yang, B., Ning, G., Chen, L., Li, Y., Gao, S., et al. (2015) Nonsteroidal Anti-Inflammatory Drugs as Prophylaxis for Heterotopic Ossification after Total Hip Arthroplasty. Medicine, 94, e828.
https://doi.org/10.1097/md.0000000000000828
[36] Legenstein, R., Bösch, P. and Ungersböck, A. (2003) Indomethacin versus Meloxicam for Prevention of Heterotopic Ossification after Total Hip Arthroplasty. Archives of Orthopaedic and Trauma Surgery, 123, 91-94.
https://doi.org/10.1007/s00402-003-0487-y
[37] Forsberg, J.A. and Potter, B.K. (2010) Heterotopic Ossification in Wartime Wounds. Journal of Surgical Orthopaedic Advances, 19, 54-61.
[38] Yutani, Y., Ohashi, H., Nishimura, N., et al. (1995) Clinical Effect of Etidronate Disodium (EHDP) on Heterotopic Ossification Following Total Hip Arthroplasty. Osaka City Medical Journal, 41, 63-73.
[39] Papapoulos, S.E., Landman, J.O., Bijvoet, O.L.M., Löwik, C.W.G.M., Valkema, R., Pauwels, E.K.J., et al. (1992) The Use of Bisphosphonates in the Treatment of Osteoporosis. Bone, 13, S41-S49.
https://doi.org/10.1016/s8756-3282(09)80009-4
[40] Luo, G., Sun, Z., Liu, H., Yuan, Z., Wang, W., Tu, B., et al. (2023) Verteporfin Attenuates Trauma‐induced Heterotopic Ossification of Achilles Tendon by Inhibiting Osteogenesis and Angiogenesis Involvingyap/β‐catenin Signaling. The FASEB Journal, 37, e23057.
https://doi.org/10.1096/fj.202300568r
[41] Cohn, R.M., Schwarzkopf, R. and Jaffe, F. (2011) Heterotopic Ossification after Total Hip Arthroplasty. American Journal of Orthopedics, 40, E232-E235.
[42] Winkler, S., Wagner, F., Weber, M., Matussek, J., Craiovan, B., Heers, G., et al. (2015) Current Therapeutic Strategies of Heterotopic Ossification—A Survey Amongst Orthopaedic and Trauma Departments in Germany. BMC Musculoskeletal Disorders, 16, Article No. 313.
https://doi.org/10.1186/s12891-015-0764-2
[43] Pavey, G.J., Polfer, E.M., Nappo, K.E., Tintle, S.M., Forsberg, J.A. and Potter, B.K. (2015) What Risk Factors Predict Recurrence of Heterotopic Ossification after Excision in Combat-Related Amputations? Clinical Orthopaedics & Related Research, 473, 2814-2824.
https://doi.org/10.1007/s11999-015-4266-1
[44] Denormandie, P., de l’Escalopier, N., Gatin, L., Grelier, A. and Genêt, F. (2018) Resection of Neurogenic Heterotopic Ossification (NHO) of the Hip. Orthopaedics & Traumatology: Surgery & Research, 104, S121-S127.
https://doi.org/10.1016/j.otsr.2017.04.015
[45] Osório, T., Lemos, J., Tkachuk, O., Sousa, R. and Vasques, A. (2022) Surgical Resection Combined with Adjuvant Radiotherapy and Non-Steroidal Anti-Inflammatory Drugs in the Treatment of Heterotopic Ossification Following Total Hip Arthroplasty. Acta Médica Portuguesa, 36, 202-205.
https://doi.org/10.20344/amp.18230