五种传染病的即时检测研究进展
Research Progress in the Point-of-Care Testing of Five Infectious Diseases
DOI: 10.12677/jsta.2024.124063, PDF, HTML, XML, 下载: 20  浏览: 37  科研立项经费支持
作者: 卢 娟*, 李 刚, 杨 红, 刘 倩, 刘 敏, 施融峰, 刘 宾, 戴 斌#:湖南环境生物职业技术学院医药技术学院,湖南 衡阳
关键词: 传染病即时检测CRISPR/Cas技术等温扩增侧向流动分析技术Infectious Diseases Point-of-Care Testing CRISPR/Cas Technology Isothermal Amplification Lateral Flow Technology
摘要: 新型冠状病毒感染大流行,给全球经济造成巨大的损失。发展即时快速的病原体检测方法,对传染病的预防及治疗具有非常重要的意义。科技水平的提高以及人民对健康的重视,极大推动即时检测(POCT)技术的发展。本文综述了近年来POCT技术应用于疟疾、HBV、艾滋病、埃博拉病毒、SARS-CoV-2五种疾病的进展,突出利用等温扩增技术、CRISPR/Cas技术、侧向流动分析技术等多种技术的联合使用在不同传染病的检测优势。可穿戴设备、人工智能的引入使得POCT诊断更为方便。
Abstract: The global economic impact caused by the ongoing SARS-CoV-2 pandemic emphasizes the urgent need for the development of rapid and real-time pathogen detection methods. Such advancements are crucial for the prevention and treatment of infectious diseases. The continuous improvement of technology, coupled with increased public awareness of health, has greatly accelerated the progress of Point-of-Care Testing (POCT) techniques. This review article provides an overview of the recent advancements in POCT technology applied to five diseases: malaria, hepatitis B, HIV/AIDS, Ebola virus, and SARS-CoV-2. The article highlights the advantages of combining various techniques such as isothermal amplification, CRISPR/Cas technology, and lateral flow analysis for the detection of different infectious diseases. Furthermore, the integration of wearable devices and artificial intelligence has facilitated the convenience of POCT diagnostics.
文章引用:卢娟, 李刚, 杨红, 刘倩, 刘敏, 施融峰, 刘宾, 戴斌. 五种传染病的即时检测研究进展[J]. 传感器技术与应用, 2024, 12(4): 579-590. https://doi.org/10.12677/jsta.2024.124063

1. 引言

传染病是机体感染病原体(如细菌、病毒、真菌或寄生虫等)导致机体免疫反应和病理损伤,引发各种症状和并发症,严重情况下会危及生命。2019年底爆发的新型冠状病毒感染大流行对全球的公共卫生安全造成了重大威胁,截至2022年5月导致全球600多万人死亡[1]。快速、准确地检测病原体可以有效隔离感染患者,指导患者合理用药,避免疾病的传播。目前传染病的诊断方法包括免疫学分析、逆转录实时荧光定量PCR技术(RT-qPCR)和基因测序技术等。然而,这些技术都需要将样本运输到临床实验室集中检测。较长时间的运输都可能会影响检测结果。抗原–抗体检测结果的灵敏度和准确度不够高。核酸检测和基因测序较为复杂,需要专业的技术人员、昂贵的仪器和试剂耗材和较长时间的操作过程。上述这些诊断方法不足以在传染病大流行爆发期间,尤其是在医疗资源相对贫乏的地区,实现快速、准确的现场诊断。

近年来,即时检测(point-of-care testing, POCT)技术为传染病的检测提供快速、准确、灵敏、廉价、可行的诊断结果,为患者随时随地检测,是预防疾病传播、指导有效治疗最有效的方法之一[2]-[4]。世界卫生组织(WHO)推荐的POCT诊断提出的ASSURED标准应具备价格合理、敏感性高、特异性强、易于使用、快速、无设备以及可供最终用户使用等特性[5]。这项标准为开发实用的POCT设备提供了指导。

本文简单介绍了POCT常用的检测技术,以疟疾、HBV、艾滋病、埃博拉病毒、SARS-CoV-2为例,综述了近年来POCT在诊断5种传染病方面的研究进展,为POCT在传染病进一步检测提供指南。

2. 传染病POCT的常见技术

2.1. 等温核酸扩增技术

等温核酸扩增技术是POCT诊断平台常用的技术。该技术无需仪器,简化了扩增程序,提高检测灵敏度。目前,POCT诊断平台上实现的各种等温扩增技术主要有环介导等温扩增(loop-mediated isothermal amplification, LAMP) [6]-[8]、重组酶聚合酶扩增(recombinase polymerase amplification, RPA) [9] [10]、滚环扩增(rolling circle amplification, RCA) [11] [12]、切割酶恒温扩增(nicking enzyme-assisted reaction, NEAR) [13] [14]等。其中以LAMP和RPA最为常用。LAMP的独特优势是扩增产物可以通过多种方式进行检测,包括比色法、实时荧光法和浊度法,并且可以实现结果的可视化。RPA的反应温度低于LAMP,具有反应温度低、引物设计简单、扩增效率高、灵敏度高、易于与电化学生物传感器等其他技术相结合的优点,适合于各种场景的POCT。

2.2. CRISPR/Cas技术

CRISPR/Cas技术是一种常用的基因编辑工具,由成簇规则间隔的短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR)和CRISPR相关蛋白(CRISPR-associated proteins, Cas)组成。因其识别和切割特定DNA或RNA序列,可用于核酸检测领域。目前,该技术在分子诊断中取得重大进展[15]-[17]。其中基于Cas13a或Cas12a开发的超灵敏新平台SHERLOCK (specific highsensitivity enzymatic reporter unlocking) [18] [19]和DETECTR (DNA endonuclease-targeted CRISPR trans reporter) [20]为感染病的诊断如寨卡病毒、巨细胞病毒、BK病毒和疟原虫等[18] [21] [22]提供新的契机。在POCT诊断中,CRISPR/Cas技术往往与等温扩增技术[23] [24]、侧向流动分析技术[19] [21] [22] [25]等结合使用使检测平台更加灵敏高效。

2.3. 侧向流动分析技术

在POCT平台中,另一项值得关注的技术是基于纸张的侧向流动分析技术(Lateral flow assays, LFA)。LFA技术已被广泛用于检测各种分析物,包括蛋白质[26] [27]、核酸[28] [29]、感染性病毒[30] [31]等。它具有检测快速、检测成本低、在几分钟内通过肉眼得到结果等优点。纳米金颗粒(AuNPs)是传统LFA中最常用的抗体标记材料。但它在定量检测灵敏度存在局限性。近年来,荧光微球[32]、量子点[33]、铕纳米颗粒[34]、碳纳米颗粒[35]、上转换纳米颗粒[36]和等离子体纳米颗粒[37]、表面增强拉曼散射(SERS) [38]等新型标记材料使检测性能大幅度提升。此外,开发多重侧向流动分析可以实现多个分析物的同时检测[39]

3. POCT在5种传染病的研究进展

3.1. POCT在疟疾诊断中的研究进展

疟疾是一种急性发热性疾病,主要通过感染疟原虫的蚊子叮咬传播给人类。根据世界卫生组织推荐的《疟疾病例管理:操作手册》,早期即时诊断和青蒿素联合治疗(ACT)能减少疟疾耐药性和抑制疟疾传播[40]

在抗原检测中,恶性疟原虫乳酸脱氢酶(PfLDH)和恶性疟原虫富组氨酸蛋白2 (PfHRP2)是目前疟疾各项POCT中占主导地位的标志物[41] [42]。LFA技术结合其他技术用于疟疾种类的检测,并且检测灵敏度较高[43]。Li等开发一种新型微流控免疫分析平台快速定量全血中PfHRP2 [44]。该平台该装置通过两种诊断模式,即低浓度(100 pg/mL)和高浓度(1000 ng/mL)下检测PfHRP2,使其应用于多个场景,并且检测结果与超灵敏ELISA结果基本一致,在15分钟可完成检测。但是该平台不能对多种疟疾同时检测。为此,Kim等开发一种基于颜色编码的双色多路免疫分析方法,允许在单个检测线上识别疟疾种类,并且可同时检测PfHRP2和PfLDH [45]。其中检测线的颜色和颜色强度分别表示疟疾种类和抗原浓度水平。

LFA技术跟核酸扩增技术相结合用于疟疾的诊断。Cooper团队开发一种基于纸张的微流控装置,用于疟疾种类特异性诊断[46]。该装置包含样本的处理、LAMP等温扩增和基于侧向流动的结果检测。虽然该设备可在50分钟得到结果,但检测结果仍具有一定主观性,也不能及时反馈给中央实验室。为此,Cooper团队进一步研发一种新平台,用于疟疾的DNA诊断[47]。该装置由移动加热器,智能手机APP、基于纸张的微流控芯片技术以及后端引擎组成。该平台利用提供决策支持的深度学习算法,客观收集结果,并运用区块链技术将数据传到中心实验室,以实现远程诊断。

目前,疟疾的物种特异性检测主要是区分恶性疟原虫和非恶性疟原虫,而非恶性疟原虫的特异性诊断仍然是疟疾诊断方面的一个弱势。为此,Lai等开发一种多重LAMP反应系统,并结合自制的多重LFA同时检测恶性疟原虫、间日疟原虫、卵形疟原虫和诺氏疟原虫[48]。此外,Lee等开发一种超灵敏的基于CRISPR/Cas的新平台SHERLOCK检测4种疟原虫[21]。临床试验表明这两种方法检测的灵敏度和特异性均达到97%以上。

此外,无创诊断技术为无症状疟疾患者提供一个理想的平台。Garcia等开发一种基于近红外光谱技术和机器学习算法在10秒通过皮肤获得疟原虫吸收峰[49]。该方法可实现大规模人群的无创筛查,并识别无症状患者。

3.2. POCT在HBV诊断中的研究进展

乙型肝炎病毒(Hepatitis B virus, HBV)是一种引起乙型肝炎的病原体。尽管全球有广泛的疫苗接种计划,全球仍有2.6亿慢性乙肝患者,每年有89万人死于感染HBV所引起的并发症[50]。世卫组织计划提出到2030年使HBV的感染人数减少90% [51],这一任务仍然艰巨。

乙型肝炎表面抗原(HBsAg)是HBV感染后出现的第一个血清学标记物,检测的窗口期为HBV感染后的38天左右。HBsAg诊断对于监测和治疗HBV感染至关重要。目前已报道多种LFA技术结合其他技术用于检测HBsAg的POCT诊断[52] [53]。Lin等开发一种酶标记的电化学检测方法来检测HBsAg [52]。该方法结合LFA技术和酶标记电化学生物传感器的催化性能的优点,检测限为0.3 ng/mL。Martiskainen等开发利用上转换纳米颗粒结合LFA技术检测血清中的HBsAg,可在30分钟完成检测[53]。与常规LFA的检测线3.2 IU/mL相比,该方法的检测限为0.1 Ig/mL,大大提高检测灵敏度。

乙型肝炎e抗原(HBeAg)是HBV核衣壳的分泌形式,是病毒复制的标志物。HbeAg标志着该病毒具有高度复制能力和高度传染。Si等基于树突状纳米颗粒复合物的信号放大系统提高LFA的灵敏度,应用于HBeAg的检测,检测限低至9 ng/mL,比传统LFA相比的灵敏度高27倍[54]。Zhang等构建电化学免疫传感器检测HBeAg [55]。该方法结合辣根过氧化物酶(HRP)和金纳米颗粒提高检测灵敏度,检测限为0.064 pg/mL。

尽管HBsAg对HBV诊断很有效,但HBV DNA的检测有助于为HBV治疗提供决策信息和监测患者治疗情况。RPA技术和LAMP技术用于HBV DNA的检测[56] [57]。将两者技术相结合,显著提高HBV DNA检测的灵敏度和速度。Chen等将重交叉位移扩增(MCDA)与基于聚合物纳米颗粒的侧流生物传感器相结合,用于检测血液样本中HBV的e基因[58]。此外,基于CRISPR/Cas系统的新诊断平台用于HBV DNA的即时诊断。Ding等开发一种基于CRISPR/Cas12结合LAMP技术检测HBV DNA [59]。该方法结合LFA技术,使荧光信号可视化。在短时间内检测到1个拷贝/μL的HBV DNA,与qPCR结果完全一致。Tian等开发基于CRISPR/Cas13a结合RAA扩增技术的快速便携式HBV DNA检测技术,灵敏度为101拷贝/μL,特异性为100%,在1小时内即可得到结果[60]

在临床治疗中,HBV感染的功能性治愈是指HBsAg持续性消失,完全治愈则定义为HBV共价闭合环状DNA (HBV cccDNA)的根除[61] [62]。HBV cccDNA是HBV检测的一种新的标志物。Zhang等建立一种基于CRISPR/Cas13a的cccDNA新的检测方法[63]。将样本经过RCA和PCR扩增后,通过CRISPR/Cas13辅助荧光读数可以检测到1拷贝/μL cccDNA。他们使用数字PCR、qPCR、RCA-qPCR、PCR-CRISPR和RCA-PCR-CRISPR这5种方法分别检测40名HBV相关患者的肝组织样本,发现这些方法与CRISPR/Cas13a相比,有20份阳性样本完全未检测到HBV cccDNA。这些结果表明基于CRISPR/Cas13a的检测方法对HBV cccDNA检测具有高度的敏感性和特异性,为抗病毒治疗HBV感染提供了一种很有前途的检测方法。

3.3. POCT在艾滋病诊断中的研究进展

艾滋病(Acquired Immunodeficiency Syndrome, AIDS)是由人类免疫缺陷病毒(Human Immunodeficiency Virus, HIV)感染引起的一种严重的免疫系统疾病。全世界有4000多万人受到艾滋病毒的感染。艾滋病毒感染会造成机体多种免疫系统功能障碍,最终导致患者各种感染和肿瘤并发症。目前,尚无治愈艾滋病的药物,抗逆转录病毒疗法(Antiretroviral Therapy, ART)能有效抑制病毒的复制和繁殖,提高患者的生存率。

艾滋病的早期核酸诊断是启动抗逆转录病毒治疗的关键。LAMP技术和RPA技术应用于HIV核酸的即时检测[64] [65]。Kong等开发一种可穿戴的RPA设备[65]。该设备由聚二甲基硅氧烷(PDMS)制备,利用人体热量在30分钟内扩增HIV-1 DNA,通过智能手机实现定量分析。这种可穿戴设备允许无限连接智能手机进行健康监测。Liu等开发一种基于逆转录LAMP(RT-LAMP)的集成核酸检测(NAT)设备,由微流控试剂盒和连接USB的小型分析仪组成,可对患者的病毒载量实时监测[66]。Li等基于CRISPR/Cas13a平台结合RT-RAA技术检测HIV-1 RNA,灵敏度为1拷贝/μL,检测限(LOD)为112拷贝/mL [67]

HIV p24抗原是HIV感染的早期生物学标志物,在病毒感染的第14天可检测到[68]。微流控芯片技术结合其他检测方法实现HIV p24抗原快速检测,并具有极高的灵敏度,实现多样本检测[69] [70]。然而这些装置需要接通外部电源才可完成检测,在实际操作比较麻烦。Sailapu等构建p24抗原检测的自供电智能传感平台,利用电解质门控场效应晶体管和纸基生物燃料电池从样品中获得能量来解决电源问题,检测线为1fM [71]。Chen等通过设计一种基于比色ELISA的3D纸基微流控分析装置(3DtPADs),利用酶促反应的纸基比色检测系统来解决外部电源的供应,检测线可达到0.03 ng/mL [72]

CD4+细胞计数是用于监测和评估HIV患者的免疫状态的一个指标。Sher等开发基于细胞裂解液电阻率量变化的方法来定量CD4+细胞[73]。Xiao等设计一种基于荧光免疫层析系统和阻断技术相结合间接计数CD4+的方法[74]。此外,Hwang等开发一种ImmunoSpin方法,基于微粒结合图像技术对CD4+细胞计数[75]。该方法既无微流控装置,也无荧光检测装置。以上方法与临床实验室流式细胞术FCM结果高度一致,说明在实际应用中可行。

3.4. POCT在埃博拉病毒诊断中的研究进展

由埃博拉病毒(Ebola virus, EBOV)感染引起的埃博拉病(Ebola virus disease, EVD),是一种具有较高致病性、传染性和致死性的人畜共患疾病[76]。患者在传染之初症状并不明显,很容易导致多系统器官衰竭和严重的出血症状,致死率很高。

可溶性糖蛋白(sGP)是埃博拉病毒的一个早期生物学标志物。使用比色–荧光–磁性纳米颗粒结合LFA提高检测的灵敏度[77]。Hu等开发一种双信号可读的新型多功能纳米球(RNs@Au),结合LFA技术对EBOV糖蛋白检测[78]。这些含有量子点和金纳米颗粒的纳米球比单量子点或金纳米颗粒具有更强的荧光和比色信号,检测结果可通过比色和荧光模式读取。这种双重模式的信号输出具有更高的灵敏度和特异性,在20分钟内完成。Fontes等开发一种新型超灵敏–抗体微阵列芯片平台(EBOV D4 assay)用于检测sGP [79]。该技术在非人灵长类动物模型中能比PCR技术更早检测到EBOV感染。这对EBOV的早期诊断是非常有效的。此外,Zang等构建一种超灵敏的三维等离子体纳米生物传感器,有效识别血浆中接近220 fg/mL的sGP [80]。与现有的FDA批准的免疫分析法相比,该传感器装置提高了超过24万倍的EBOV抗原监测的灵敏度。

核酸检测仍然是EBOV病毒早期诊断最有效的指标。为此,Na等利用RCA技术对包括EBOV在内的多种病毒进行核酸扩增,在15分钟完成检测,满足现场检测的需求[81]。为了区分埃博拉病毒与疫区的其他发热性疾病,Barnes等基于CRISPR/Cas13a的新平台SHERLOCK,结合LFA技术和荧光检测埃博拉和拉沙病毒(LASV)的DNA [82]。该检测方法可检测到低至10拷贝/mL的DNA。并使用这种方法成功测试来自塞拉利昂和尼日利亚地区的临床样本。

3.5. POCT在SARS-CoV-2诊断中的研究进展

严重急性呼吸系统综合征冠状病毒2型(Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2),是2019年冠状病毒传染病(COVID-19)的病原体,属于冠状病毒。它会导致严重的急性呼吸系统疾病和一系列并发症[83]。该病毒具有高度传染性,目前在全球仍处于低水平传播,持续的流行给全球经济和公共医疗系统带来了沉重负担[84] [85]

基于CRISPR/Cas系统的诊断新平台SHERLOCK和DETECT,已广泛用于SARS-CoV-2的诊断[86]-[89]。Braugton等介绍一种基于CRISPR/Cas12结合LFA技术检测SARS-CoV-2中RNA的E和N基因。该方法同时利用RT-LAMP对RNA扩增,可在40分钟内完成检测,并且与qRT-PCR检测结果具有高度一致性[86]

随着疫情的进展,SARS-CoV-2的基因序列不断发生突变,这为其诊断和治疗带来难题[90]。Lin等基于CRISPR/Cas12结合RAA技术,开发一种单管基因分型检测方法[91]。他们通过设计一组能够识别目标序列中单核苷酸突变的特异性CRISPR RNAs (crRNAs),在2小时内实现对SARS-CoV-2突变株包括Alpha变异株、Beta变异株、Delta变异株和奥密克戎BA.1和BA.2的鉴定和检测。Helena等基于CRISPR原理,开发miSHERLOCK平台检测SARS-CoV-2的变异区域[89]。该平台利用智能手机应用程序对检测结果量化分析并远程检测。

越来越多学者关注ACE2蛋白作为SARS-CoV-2的受体,并开发基于ACE2的生物传感器用于检测SARS-CoV-2及其变异体[92]-[94]。Park等开发一种基于电化学生物传感器检测SARS-CoV-2的ACE2,并采用双门场效应晶体管来提高灵敏度[95]。这种便携式电生物传感器在20分钟内完成检测,检测灵敏度可到达165拷贝/mL。

LFA技术仍是SARS-CoV-2抗原检测重要手段[96]。为提高传统LFA的灵敏度,Guo等利用具有介孔二氧化硅封装纳米壳结构的上转换纳米颗粒标记LFA,通过荧光传感器检测S和N蛋白质的灵敏度可达到1.6 ng/mL和2.2 ng/mL [97]。该方法通过物联网设备进行大数据分析和远程监控。纳米材料修饰会提高电化学免疫传感技术检测的灵敏度[98]。Zeng等开发一种金纳米颗粒修饰的丝网印刷碳电极的电化学免疫分析方法,用于检测SARS-CoV-2的N蛋白[99]。该方法的检测限为2.6 pg/mL,在5分钟内完成检测。

4. 小结与展望

POCT在以上五种传染病诊断上已取得巨大的进步。基于等温扩增、CRISPR/Cas、LFA等技术的发展使POCT检测设备更加便捷。而这些技术的联合使用又进一步使POCT检测更加快速、灵敏、准确。此外,基于智能手机的生物传感器[100]、基于纸张的诊断平台[101]、基于等离子体平台[102]等已被报道用于传染病的快速诊断,并且可以实现多种疾病和多个指标的检测。

尽管针对传染病的POCT检测方法和相关的POCT设备发展迅速,但实现快速、高灵敏度、准确的传染病POCT技术仍然是该领域的一大挑战。可穿戴设备、人工智能和医用物联网技术的引入使得POCT实现数据共享和远程实时监测。这将彻底改变医疗诊断,并及时提供个性化的医疗服务。这些方法将有助于更早识别传染病,从而有助于预防大流行疾病爆发。尽管POCT诊断还存在一定挑战,比如POCT受到人为因素和环境的影响、检测结果的定标问题、质量控制问题等。这些问题将激励更多智能POCT技术的发展。

基金项目

湖南省自然科学基金项目(2023JJ60207, 2024JJ9053);衡阳市科技指导性项目(S2018F9031018292)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Pollard, C.A., Morran, M.P. and Nestor-Kalinoski, A.L. (2020) The COVID-19 Pandemic: A Global Health Crisis. Physiological Genomics, 52, 549-557.
https://doi.org/10.1152/physiolgenomics.00089.2020
[2] Chen, H., Liu, K., Li, Z. and Wang, P. (2019) Point of Care Testing for Infectious Diseases. Clinica Chimica Acta, 493, 138-147.
https://doi.org/10.1016/j.cca.2019.03.008
[3] Wang, C., Liu, M., Wang, Z., Li, S., Deng, Y. and He, N. (2021) Point-of-Care Diagnostics for Infectious Diseases: From Methods to Devices. Nano Today, 37, Article ID: 101092.
https://doi.org/10.1016/j.nantod.2021.101092
[4] Kozel, T.R. and Burnham-Marusich, A.R. (2017) Point-of-Care Testing for Infectious Diseases: Past, Present, and Future. Journal of Clinical Microbiology, 55, 2313-2320.
https://doi.org/10.1128/jcm.00476-17
[5] Mabey, D., Peeling, R.W., Ustianowski, A. and Perkins, M.D. (2004) Diagnostics for the Developing World. Nature Reviews Microbiology, 2, 231-240.
https://doi.org/10.1038/nrmicro841
[6] Sharma, S., Thomas, E., Caputi, M. and Asghar, W. (2022) RT-LAMP Based Molecular Diagnostic Set-Up for Rapid Hepatitis C Virus Testing. Biosensors, 12, Article 298.
https://doi.org/10.2139/ssrn.4055777
[7] Vanhomwegen, J., Kwasiborski, A., Diop, A., Boizeau, L., Hoinard, D., Vray, M., et al. (2021) Development and Clinical Validation of Loop-Mediated Isothermal Amplification (LAMP) Assay to Diagnose High HBV DNA Levels in Resource-Limited Settings. Clinical Microbiology and Infection, 27, 1858.e9-1858.e15.
https://doi.org/10.1016/j.cmi.2021.03.014
[8] Augustine, R., Hasan, A., Das, S., Ahmed, R., Mori, Y., Notomi, T., et al. (2020) Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. Biology, 9, Article 182.
https://doi.org/10.3390/biology9080182
[9] El Wahed, A.A., Patel, P., Maier, M., Pietsch, C., Rüster, D., Böhlken-Fascher, S., et al. (2021) Suitcase Lab for Rapid Detection of SARS-CoV-2 Based on Recombinase Polymerase Amplification Assay. Analytical Chemistry, 93, 2627-2634.
https://doi.org/10.1021/acs.analchem.0c04779
[10] Behrmann, O., Bachmann, I., Spiegel, M., Schramm, M., Abd El Wahed, A., Dobler, G., et al. (2020) Rapid Detection of SARS-Cov-2 by Low Volume Real-Time Single Tube Reverse Transcription Recombinase Polymerase Amplification Using an Exo Probe with an Internally Linked Quencher (Exo-IQ). Clinical Chemistry, 66, 1047-1054.
https://doi.org/10.1093/clinchem/hvaa116
[11] Choi, M.H., Kumara, G.S.R., Lee, J. and Seo, Y.J. (2022) Point-of-Care COVID-19 Testing: Colorimetric Diagnosis Using Rapid and Ultra-Sensitive Ramified Rolling Circle Amplification. Analytical and Bioanalytical Chemistry, 414, 5907-5915.
https://doi.org/10.1007/s00216-022-04156-7
[12] Li, Y., Chen, X., Zhao, Y., Wan, Z., Zeng, Y., Ma, Y., et al. (2021) A Rapid Variant-Tolerant Reverse Transcription Loop-Mediated Isothermal Amplification Assay for the Point of Care Detection of HIV-1. The Analyst, 146, 5347-5356.
https://doi.org/10.1039/d1an00598g
[13] Mane, A., Jain, S., Jain, A., Pereira, M., Sirsat, A., Pathak, G., et al. (2022) Diagnostic Performance of Oral Swab Specimen for SARS-CoV-2 Detection with Rapid Point-of-Care Lateral Flow Antigen Test. Scientific Reports, 12, Article No. 7355.
https://doi.org/10.1038/s41598-022-11284-8
[14] Suea-Ngam, A., Bezinge, L., Mateescu, B., Howes, P.D., deMello, A.J. and Richards, D.A. (2020) Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sensors, 5, 2701-2723.
https://doi.org/10.1021/acssensors.0c01488
[15] Tan, X., Letendre, J.H., Collins, J.J. and Wong, W.W. (2021) Synthetic Biology in the Clinic: Engineering Vaccines, Diagnostics, and Therapeutics. Cell, 184, 881-898.
https://doi.org/10.1016/j.cell.2021.01.017
[16] Kaminski, M.M., Abudayyeh, O.O., Gootenberg, J.S., Zhang, F. and Collins, J.J. (2021) CRISPR-Based Diagnostics. Nature Biomedical Engineering, 5, 643-656.
https://doi.org/10.1038/s41551-021-00760-7
[17] Weng, Z., You, Z., Yang, J., Mohammad, N., Lin, M., Wei, Q., et al. (2023) CRISPR-Cas Biochemistry and CRISPR‐Based Molecular Diagnostics. Angewandte Chemie International Edition, 62, e202214987.
https://doi.org/10.1002/anie.202214987
[18] Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., et al. (2017) Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science, 356, 438-442.
https://doi.org/10.1126/science.aam9321
[19] Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J. and Zhang, F. (2018) Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a, and Csm6. Science, 360, 439-444.
https://doi.org/10.1126/science.aaq0179
[20] Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science, 360, 436-439.
https://doi.org/10.1126/science.aar6245
[21] Lee, R.A., Puig, H.D., Nguyen, P.Q., Angenent-Mari, N.M., Donghia, N.M., McGee, J.P., et al. (2020) Ultrasensitive CRISPR-Based Diagnostic for Field-Applicable Detection of Plasmodium Species in Symptomatic and Asymptomatic Malaria. Proceedings of the National Academy of Sciences of the United States of America, 117, 25722-25731.
https://doi.org/10.1073/pnas.2010196117
[22] Kaminski, M.M., Alcantar, M.A., Lape, I.T., Greensmith, R., Huske, A.C., Valeri, J.A., et al. (2020) A CRISPR-Based Assay for the Detection of Opportunistic Infections Post-Transplantation and for the Monitoring of Transplant Rejection. Nature Biomedical Engineering, 4, 601-609.
https://doi.org/10.1038/s41551-020-0546-5
[23] Hernandez-Garcia, A., Morales-Moreno, M.D., Valdés-Galindo, E.G., Jimenez-Nieto, E.P. and Quezada, A. (2022) Diagnostics of COVID-19 Based on CRISPR-Cas Coupled to Isothermal Amplification: A Comparative Analysis and Update. Diagnostics, 12, Article 1434.
https://doi.org/10.3390/diagnostics12061434
[24] Feng, W., Newbigging, A.M., Tao, J., Cao, Y., Peng, H., Le, C., et al. (2021) CRISPR Technology Incorporating Amplification Strategies: Molecular Assays for Nucleic Acids, Proteins, and Small Molecules. Chemical Science, 12, 4683-4698.
https://doi.org/10.1039/d0sc06973f
[25] Li, Y., Li, S., Wang, J. and Liu, G. (2019) CRISPR/Cas Systems towards Next-Generation Biosensing. Trends in Biotechnology, 37, 730-743.
https://doi.org/10.1016/j.tibtech.2018.12.005
[26] Shen, M., Li, N., Lu, Y., Cheng, J. and Xu, Y. (2020) An Enhanced Centrifugation-Assisted Lateral Flow Immunoassay for the Point-of-Care Detection of Protein Biomarkers. Lab on a Chip, 20, 2626-2634.
https://doi.org/10.1039/d0lc00518e
[27] Grant, B.D., Anderson, C.E., Williford, J.R., Alonzo, L.F., Glukhova, V.A., Boyle, D.S., et al. (2020) SARS-CoV-2 Coronavirus Nucleocapsid Antigen-Detecting Half-Strip Lateral Flow Assay toward the Development of Point of Care Tests Using Commercially Available Reagents. Analytical Chemistry, 92, 11305-11309.
https://doi.org/10.1021/acs.analchem.0c01975
[28] He, X., Liu, Z., Yang, Y., Li, L., Wang, L., Li, A., et al. (2019) Sensitivity Enhancement of Nucleic Acid Lateral Flow Assays through a Physical-Chemical Coupling Method: Dissoluble Saline Barriers. ACS Sensors, 4, 1691-1700.
https://doi.org/10.1021/acssensors.9b00594
[29] Mukama, O., Wu, J., Li, Z., Liang, Q., Yi, Z., Lu, X., et al. (2020) An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosensors and Bioelectronics, 159, Article ID: 112143.
https://doi.org/10.1016/j.bios.2020.112143
[30] Ivanov, A.V., Safenkova, I.V., Zherdev, A.V. and Dzantiev, B.B. (2020) Nucleic Acid Lateral Flow Assay with Recombinase Polymerase Amplification: Solutions for Highly Sensitive Detection of RNA Virus. Talanta, 210, Article ID: 120616.
https://doi.org/10.1016/j.talanta.2019.120616
[31] Le, T.T., Chang, P., Benton, D.J., McCauley, J.W., Iqbal, M. and Cass, A.E.G. (2017) Dual Recognition Element Lateral Flow Assay toward Multiplex Strain Specific Influenza Virus Detection. Analytical Chemistry, 89, 6781-6786.
https://doi.org/10.1021/acs.analchem.7b01149
[32] Xie, Q., Wu, Y., Xiong, Q., Xu, H., Xiong, Y., Liu, K., et al. (2014) Advantages of Fluorescent Microspheres Compared with Colloidal Gold as a Label in Immunochromatographic Lateral Flow Assays. Biosensors and Bioelectronics, 54, 262-265.
https://doi.org/10.1016/j.bios.2013.11.002
[33] Wang, W., Yang, X., Rong, Z., Tu, Z., Zhang, X., Gu, B., et al. (2022) Introduction of Graphene Oxide-Supported Multilayer-Quantum Dots Nanofilm into Multiplex Lateral Flow Immunoassay: A Rapid and Ultrasensitive Point-of-Care Testing Technique for Multiple Respiratory Viruses. Nano Research, 16, 3063-3073.
https://doi.org/10.1007/s12274-022-5043-6
[34] Liang, R., Deng, Q., Chen, Z., Xu, X., Zhou, J., Liang, J., et al. (2017) Europium (III) Chelate Microparticle-Based Lateral Flow Immunoassay Strips for Rapid and Quantitative Detection of Antibody to Hepatitis B Core Antigen. Scientific Reports, 7, Article No. 14093.
https://doi.org/10.1038/s41598-017-14427-4
[35] Kropaneva, M., Khramtsov, P., Bochkova, M., et al. (2023)Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept. ChemRxiv.
https://doi.org/10.26434/chemrxiv-2023-0fx93
[36] Martiskainen, I., Juntunen, E., Salminen, T., Vuorenpää, K., Bayoumy, S., Vuorinen, T., et al. (2021) Double-Antigen Lateral Flow Immunoassay for the Detection of Anti-HIV-1 and-2 Antibodies Using Upconverting Nanoparticle Reporters. Sensors, 21, Article 330.
https://doi.org/10.3390/s21020330
[37] Chen, H., Park, S., Choi, N., Moon, J., Dang, H., Das, A., et al. (2020) SERS Imaging-Based Aptasensor for Ultrasensitive and Reproducible Detection of Influenza Virus A. Biosensors and Bioelectronics, 167, Article ID: 112496.
https://doi.org/10.1016/j.bios.2020.112496
[38] Kim, K., Kashefi-Kheyrabadi, L., Joung, Y., Kim, K., Dang, H., Chavan, S.G., et al. (2021) Recent Advances in Sensitive Surface-Enhanced Raman Scattering-Based Lateral Flow Assay Platforms for Point-of-Care Diagnostics of Infectious Diseases. Sensors and Actuators B: Chemical, 329, Article ID: 129214.
https://doi.org/10.1016/j.snb.2020.129214
[39] Anfossi, L., Di Nardo, F., Cavalera, S., et al. (2018) Multiplex Lateral Flow Immunoassay: An Overview of Strategies towards High-Throughput Point-of-Need Testing.
https://doi.org/10.20944/preprints201811.0405.v1
[40] Kim, S., Nhem, S., Dourng, D. and Ménard, D. (2015) Malaria Rapid Diagnostic Test as Point-of-Care Test: Study Protocol for Evaluating the VIKIA® Malaria Ag Pf/pan. Malaria Journal, 14, Article No. 114.
https://doi.org/10.1186/s12936-015-0633-3
[41] Krampa, F.D., Aniweh, Y., Kanyong, P. and Awandare, G.A. (2020) Recent Advances in the Development of Biosensors for Malaria Diagnosis. Sensors, 20, Article 799.
https://doi.org/10.3390/s20030799
[42] Hendriksen, I.C.E., White, L.J., Veenemans, J., Mtove, G., Woodrow, C., Amos, B., et al. (2012) Defining Falciparum-Malaria-Attributable Severe Febrile Illness in Moderate-to-High Transmission Settings on the Basis of Plasma PfHRP2 Concentration. The Journal of Infectious Diseases, 207, 351-361.
https://doi.org/10.1093/infdis/jis675
[43] Li, B., Sun, Z., Li, X., Li, X., Wang, H., Chen, W., et al. (2017) Performance of pfHRP2 versus pLDH Antigen Rapid Diagnostic Tests for the Detection of Plasmodium falciparum: A Systematic Review and Meta-Analysis. Archives of Medical Science, 3, 541-549.
https://doi.org/10.5114/aoms.2017.67279
[44] Li, J., Saidi, A.M., Seydel, K. and Lillehoj, P.B. (2024) Rapid Diagnosis and Prognosis of Malaria Infection Using a Microfluidic Point-of-Care Immunoassay. Biosensors and Bioelectronics, 250, Article ID: 116091.
https://doi.org/10.1016/j.bios.2024.116091
[45] Kim, J., Cao, X.E., Finkelstein, J.L., Cárdenas, W.B., Erickson, D. and Mehta, S. (2019) A Two-Colour Multiplexed Lateral Flow Immunoassay System to Differentially Detect Human Malaria Species on a Single Test Line. Malaria Journal, 18, Article No. 313.
https://doi.org/10.1186/s12936-019-2957-x
[46] Reboud, J., Xu, G., Garrett, A., Adriko, M., Yang, Z., Tukahebwa, E.M., et al. (2019) Paper-based Microfluidics for DNA Diagnostics of Malaria in Low Resource Underserved Rural Communities. Proceedings of the National Academy of Sciences of the United States of America, 116, 4834-4842.
https://doi.org/10.1073/pnas.1812296116
[47] Guo, X., Khalid, M.A., Domingos, I., Michala, A.L., Adriko, M., Rowel, C., et al. (2021) Smartphone-Based DNA Diagnostics for Malaria Detection Using Deep Learning for Local Decision Support and Blockchain Technology for Security. Nature Electronics, 4, 615-624.
https://doi.org/10.1038/s41928-021-00612-x
[48] Lai, M.Y., Zen, L.P.Y., Abdul Hamid, M.H., Jelip, J., Mudin, R.N., Ivan, V.J.S., et al. (2023) Point-of-Care Diagnosis of Malaria Using a Simple, Purification-Free DNA Extraction Method Coupled with Loop-Mediated Isothermal Amplification-Lateral Flow. Tropical Medicine and Infectious Disease, 8, Article 199.
https://doi.org/10.3390/tropicalmed8040199
[49] Garcia, G.A., Kariyawasam, T.N., Lord, A.R., da Costa, C.F., Chaves, L.B., Lima-Junior, J.d.C., et al. (2022) Malaria Absorption Peaks Acquired through the Skin of Patients with Infrared Light Can Detect Patients with Varying Parasitemia. PNAS Nexus, 1, pgac272.
https://doi.org/10.1093/pnasnexus/pgac272
[50] Kumar, M., Pahuja, S., Khare, P. and Kumar, A. (2023) Current Challenges and Future Perspectives of Diagnosis of Hepatitis B Virus. Diagnostics, 13, Article 368.
https://doi.org/10.3390/diagnostics13030368
[51] 刘珏, 刘民. 我国实现WHO 2030消除乙型肝炎目标的进展与挑战[J]. 中华流行病学杂志, 2019, 40(6): 605-609.
[52] Zou, Z., Wang, J., Wang, H., Li, Y. and Lin, Y. (2012) An Integrated Electrochemical Device Based on Immunochromatographic Test Strip and Enzyme Labels for Sensitive Detection of Disease-Related Biomarkers. Talanta, 94, 58-64.
https://doi.org/10.1016/j.talanta.2012.02.046
[53] Martiskainen, I., Talha, S.M., Vuorenpää, K., Salminen, T., Juntunen, E., Chattopadhyay, S., et al. (2020) Upconverting Nanoparticle Reporter-Based Highly Sensitive Rapid Lateral Flow Immunoassay for Hepatitis B Virus Surface Antigen. Analytical and Bioanalytical Chemistry, 413, 967-978.
https://doi.org/10.1007/s00216-020-03055-z
[54] Si, J., Li, J., Zhang, L., Zhang, W., Yao, J., Li, T., et al. (2019) A Signal Amplification System on a Lateral Flow Immunoassay Detecting for Hepatitis E‐antigen in Human Blood Samples. Journal of Medical Virology, 91, 1301-1306.
https://doi.org/10.1002/jmv.25452
[55] Zhang, Y., Gao, Y., Zhang, X., Wang, H., Xia, T., Bian, C., et al. (2019) Electrochemical Immunosensor for Hbe Antigen Detection Based on a Signal Amplification Strategy: The Co-Catalysis of Horseradish Peroxidase and Nanoporous Gold. Sensors and Actuators B: Chemical, 284, 296-304.
https://doi.org/10.1016/j.snb.2018.12.157
[56] Zhang, B., Zhu, Z., Li, F., Xie, X. and Ding, A. (2021) Rapid and Sensitive Detection of Hepatitis B Virus by Lateral Flow Recombinase Polymerase Amplification Assay. Journal of Virological Methods, 291, Article ID: 114094.
https://doi.org/10.1016/j.jviromet.2021.114094
[57] Rollin, P.E., Nichol, S.T., Zaki, S., et al. (2015) Arenaviruses and Filoviruses. In: Jorgensen, J.H., et al., Eds., Manual of Clinical Microbiology, Wiley, 1669-1686.
https://doi.org/10.1128/9781555817381.ch97
[58] Chen, X., Zhou, Q., Dong, S., Wang, S., Liu, R., Wu, X., et al. (2021) Multiple Cross Displacement Amplification Linked with Nanoparticles-Based Lateral Flow Biosensor in Screening of Hepatitis B Virus in Clinical Application. Infection and Drug Resistance, 14, 1219-1229.
https://doi.org/10.2147/idr.s297645
[59] Ding, R., Long, J., Yuan, M., Zheng, X., Shen, Y., Jin, Y., et al. (2021) CRISPR/Cas12-based Ultra-Sensitive and Specific Point-of-Care Detection of HBV. International Journal of Molecular Sciences, 22, Article 4842.
https://doi.org/10.3390/ijms22094842
[60] Tian, Y., Fan, Z., Xu, L., Cao, Y., Chen, S., Pan, Z., et al. (2023) CRISPR/Cas13a-Assisted Rapid and Portable HBV DNA Detection for Low-Level Viremia Patients. Emerging Microbes & Infections, 12, e2177088.
https://doi.org/10.1080/22221751.2023.2177088
[61] Terrault, N.A., Lok, A.S.F., McMahon, B.J., Chang, K., Hwang, J.P., Jonas, M.M., et al. (2018) Update on Prevention, Diagnosis, and Treatment of Chronic Hepatitis B: AASLD 2018 Hepatitis B Guidance. Hepatology, 67, 1560-1599.
https://doi.org/10.1002/hep.29800
[62] Seto, W., Lo, Y., Pawlotsky, J. and Yuen, M. (2018) Chronic Hepatitis B Virus Infection. The Lancet, 392, 2313-2324.
https://doi.org/10.1016/s0140-6736(18)31865-8
[63] Zhang, X., Tian, Y., Xu, L., Fan, Z., Cao, Y., Ma, Y., et al. (2022) CRISPR/Cas13-Assisted Hepatitis B Virus Covalently Closed Circular DNA Detection. Hepatology International, 16, 306-315.
https://doi.org/10.1007/s12072-022-10311-0
[64] Makler-Disatham, A., Caputi, M. and Asghar, W. (2024) Development of a Lamp-Based Diagnostic for the Detection of Multiple HIV-1 Strains. Biosensors, 14, Article 157.
https://doi.org/10.3390/bios14040157
[65] Kong, M., Li, Z., Wu, J., Hu, J., Sheng, Y., Wu, D., et al. (2019) A Wearable Microfluidic Device for Rapid Detection of HIV-1 DNA Using Recombinase Polymerase Amplification. Talanta, 205, Article ID: 120155.
https://doi.org/10.1016/j.talanta.2019.120155
[66] Liu, T., Choi, G., Tang, Z., Kshirsagar, A., Politza, A.J. and Guan, W. (2022) Fingerpick Blood-Based Nucleic Acid Testing on a USB Interfaced Device Towards HIV Self-Testing. Biosensors and Bioelectronics, 209, Article ID: 114255.
https://doi.org/10.1016/j.bios.2022.114255
[67] Li, X., Su, B., Yang, L., et al. (2023) Rapid, Point-of-Care Antigen and Molecular Tests Base on CRISPR for Diagnosis of HIV-1 Infection.
https://doi.org/10.21203/rs.3.rs-2711381/v1
[68] Gray, E.R., Bain, R., Varsaneux, O., Peeling, R.W., Stevens, M.M. and McKendry, R.A. (2018) P24 Revisited: A Landscape Review of Antigen Detection for Early HIV Diagnosis. AIDS, 32, 2089-2102.
https://doi.org/10.1097/qad.0000000000001982
[69] Liu, D., Zhang, Y., Zhu, M., Yu, Z., Ma, X., Song, Y., et al. (2020) Microfluidic-Integrated Multicolor Immunosensor for Visual Detection of HIV-1 P24 Antigen with the Naked Eye. Analytical Chemistry, 92, 11826-11833.
https://doi.org/10.1021/acs.analchem.0c02091
[70] Li, F., Zheng, Y., Wu, J., Zhao, L., Shui, L., Pu, Q., et al. (2019) Smartphone Assisted Immunodetection of HIV P24 Antigen Using Reusable, Centrifugal Microchannel Array Chip. Talanta, 203, 83-89.
https://doi.org/10.1016/j.talanta.2019.05.042
[71] Sailapu, S.K., Macchia, E., Merino-Jimenez, I., Esquivel, J.P., Sarcina, L., Scamarcio, G., et al. (2020) Standalone Operation of an EGOFET for Ultra-Sensitive Detection of HIV. Biosensors and Bioelectronics, 156, 112103.
https://doi.org/10.1016/j.bios.2020.112103
[72] Chen, C., Yuan, H., Chen, C., Chien, Y., Sheng, W. and Chen, C. (2021) An Electricity-and Instrument-Free Infectious Disease Sensor Based on a 3D Origami Paper-Based Analytical Device. Lab on a Chip, 21, 1908-1915.
https://doi.org/10.1039/d1lc00079a
[73] Sher, M. and Asghar, W. (2019) Development of a Multiplex Fully Automated Assay for Rapid Quantification of CD4+ T Cells from Whole Blood. Biosensors and Bioelectronics, 142, Article ID: 111490.
https://doi.org/10.1016/j.bios.2019.111490
[74] Xiao, W., Xiao, M., Yao, S., Cheng, H., Shen, H., Fu, Q., et al. (2019) A Rapid, Simple, and Low-Cost CD4 Cell Count Sensor Based on Blocking Immunochromatographic Strip System. ACS Sensors, 4, 1508-1514.
https://doi.org/10.1021/acssensors.8b01628
[75] Hwang, S., Yang, J.J., Oh, Y., Ko, D., Sung, H., Cho, Y., et al. (2021) Microparticle-Tagged Image-Based Cell Counting (ImmunoSpin) for CD4 + T Cells. Microchimica Acta, 188, Article No. 431.
https://doi.org/10.1007/s00604-021-05070-y
[76] Jacob, S.T., Crozier, I., Fischer, W.A., Hewlett, A., Kraft, C.S., Vega, M.D.L., et al. (2020) Ebola Virus Disease. Nature Reviews Disease Primers, 6, Article No. 13.
https://doi.org/10.1038/s41572-020-0147-3
[77] Hu, J., Jiang, Y., Tang, M., Wu, L., Xie, H., Zhang, Z., et al. (2018) Colorimetric-Fluorescent-Magnetic Nanosphere-Based Multimodal Assay Platform for Salmonella Detection. Analytical Chemistry, 91, 1178-1184.
https://doi.org/10.1021/acs.analchem.8b05154
[78] Hu, J., Jiang, Y., Wu, L., Wu, Z., Bi, Y., Wong, G., et al. (2017) Dual-Signal Readout Nanospheres for Rapid Point-of-Care Detection of Ebola Virus Glycoprotein. Analytical Chemistry, 89, 13105-13111.
https://doi.org/10.1021/acs.analchem.7b02222
[79] Fontes, C.M., Lipes, B.D., Liu, J., Agans, K.N., Yan, A., Shi, P., et al. (2021) Ultrasensitive Point-of-Care Immunoassay for Secreted Glycoprotein Detects Ebola Infection Earlier than PCR. Science Translational Medicine, 13, eabd9696.
https://doi.org/10.1126/scitranslmed.abd9696
[80] Zang, F., Su, Z., Zhou, L., Konduru, K., Kaplan, G. and Chou, S.Y. (2019) Ultrasensitive Ebola Virus Antigen Sensing via 3D Nanoantenna Arrays. Advanced Materials, 31, Article ID: 1902331.
https://doi.org/10.1002/adma.201902331
[81] Na, W., Nam, D., Lee, H. and Shin, S. (2018) Rapid Molecular Diagnosis of Infectious Viruses in Microfluidics Using DNA Hydrogel Formation. Biosensors and Bioelectronics, 108, 9-13.
https://doi.org/10.1016/j.bios.2018.02.040
[82] Barnes, K.G., Lachenauer, A.E., Nitido, A., Siddiqui, S., Gross, R., Beitzel, B., et al. (2020) Deployable CRISPR-Cas13a Diagnostic Tools to Detect and Report Ebola and Lassa Virus Cases in Real-time. Nature Communications, 11, Article No. 4161.
https://doi.org/10.1038/s41467-020-17994-9
[83] Bai, Y.X., Xu, Y.H., Wang, X., et al. (2020) Advances in SARS-CoV-2: A Systematic Review. European Review for Medical & Pharmacological Sciences, 24, 9208-9215.
[84] Rothan, H.A. and Byrareddy, S.N. (2020) The Epidemiology and Pathogenesis of Coronavirus Disease (COVID-19) Outbreak. Journal of Autoimmunity, 109, Article ID: 102433.
https://doi.org/10.1016/j.jaut.2020.102433
[85] Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733.
https://doi.org/10.1056/nejmoa2001017
[86] Broughton, J.P., Deng, X., Yu, G., Fasching, C.L., Servellita, V., Singh, J., et al. (2020) CRISPR-Cas12-Based Detection of SARS-CoV-2. Nature Biotechnology, 38, 870-874.
https://doi.org/10.1038/s41587-020-0513-4
[87] Casati, B., Verdi, J.P., Hempelmann, A., Kittel, M., Klaebisch, A.G., Meister, B., et al. (2022) Rapid, Adaptable and Sensitive Cas13-Based COVID-19 Diagnostics Using ADESSO. Nature Communications, 13, Article No. 3308.
https://doi.org/10.1038/s41467-022-30862-y
[88] Joung, J., Ladha, A., Saito, M., Kim, N., Woolley, A.E., Segel, M., et al. (2020) Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine, 383, 1492-1494.
https://doi.org/10.1056/nejmc2026172
[89] de Puig, H., Lee, R.A., Najjar, D., Tan, X., Soenksen, L.R., Angenent-Mari, N.M., et al. (2021) Minimally Instrumented SHERLOCK (miSHERLOCK) for CRISPR-Based Point-of-Care Diagnosis of SARS-CoV-2 and Emerging Variants. Science Advances, 7, eabh2944.
https://doi.org/10.1126/sciadv.abh2944
[90] Badua, C.L.D.C., Baldo, K.A.T. and Medina, P.M.B. (2020) Genomic and Proteomic Mutation Landscapes of SARS-CoV-2. Journal of Medical Virology, 93, 1702-1721.
https://doi.org/10.1002/jmv.26548
[91] Lin, H., Liang, Y., Zou, L., Li, B., Zhao, J., Wang, H., et al. (2022) Combination of Isothermal Recombinase-Aided Amplification and CRISPR-Cas12a-Mediated Assay for Rapid Detection of Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern. Frontiers in Microbiology, 13, Article 945133.
https://doi.org/10.3389/fmicb.2022.945133
[92] Lee, J., Choi, M., Jung, Y., Lee, S.K., Lee, C., Kim, J., et al. (2021) A Novel Rapid Detection for SARS-CoV-2 Spike 1 Antigens Using Human Angiotensin Converting Enzyme 2 (ACE2). Biosensors and Bioelectronics, 171, 112715.
https://doi.org/10.1016/j.bios.2020.112715
[93] Han, J., Lee, S., Kim, J., Seo, G. and Lee, Y.W. (2022) Sars-cov-2 Spike Protein Detection Using Slightly Tapered No-Core Fiber-Based Optical Transducer. Microchimica Acta, 189, Article No. 321.
https://doi.org/10.1007/s00604-022-05413-3
[94] Wei, H., Zhang, C., Du, X. and Zhang, Z. (2023) Research Progress of Biosensors for Detection of SARS-CoV-2 Variants Based on ACE2. Talanta, 251, Article ID: 123813.
https://doi.org/10.1016/j.talanta.2022.123813
[95] Park, S., Kim, H., Woo, K., Kim, J., Jo, H., Jeong, Y., et al. (2021) SARS-CoV-2 Variant Screening Using a Virus-Receptor-Based Electrical Biosensor. Nano Letters, 22, 50-57.
https://doi.org/10.1021/acs.nanolett.1c03108
[96] Pickering, S., Batra, R., Merrick, B., Snell, L.B., Nebbia, G., Douthwaite, S., et al. (2021) Comparative Performance of SARS-CoV-2 Lateral Flow Antigen Tests and Association with Detection of Infectious Virus in Clinical Specimens: A Single-Centre Laboratory Evaluation Study. The Lancet Microbe, 2, E461-E471.
https://doi.org/10.1016/s2666-5247(21)00143-9
[97] Guo, J., Chen, S., Tian, S., Liu, K., Ni, J., Zhao, M., et al. (2021) 5G-Enabled Ultra-Sensitive Fluorescence Sensor for Proactive Prognosis of COVID-19. Biosensors and Bioelectronics, 181, Article ID: 113160.
https://doi.org/10.1016/j.bios.2021.113160
[98] Zhang, Z., Cong, Y., Huang, Y. and Du, X. (2019) Nanomaterials-Based Electrochemical Immunosensors. Micromachines, 10, Article 397.
https://doi.org/10.3390/mi10060397
[99] Zeng, R., Qiu, M., Wan, Q., Huang, Z., Liu, X., Tang, D., et al. (2022) Smartphone-Based Electrochemical Immunoassay for Point-of-Care Detection of SARS-CoV-2 Nucleocapsid Protein. Analytical Chemistry, 94, 15155-15161.
https://doi.org/10.1021/acs.analchem.2c03606
[100] Ong, D.S.Y. and Poljak, M. (2020) Smartphones as Mobile Microbiological Laboratories. Clinical Microbiology and Infection, 26, 421-424.
https://doi.org/10.1016/j.cmi.2019.09.026
[101] Yadav, S., Sharma, N.N. and Akhtar, J. (2021) Nucleic Acid Analysis on Paper Substrates (NAAPs): An Innovative Tool for Point of Care (POC) Infectious Disease Diagnosis. The Analyst, 146, 3422-3439.
https://doi.org/10.1039/d1an00214g
[102] Li, Z., Leustean, L., Inci, F., Zheng, M., Demirci, U. and Wang, S. (2019) Plasmonic-Based Platforms for Diagnosis of Infectious Diseases at the Point-of-Care. Biotechnology Advances, 37, Article ID: 107440.
https://doi.org/10.1016/j.biotechadv.2019.107440