结核分枝杆菌耐药机制的研究进展
Research Progress on the Drug Resistance Mechanism of Mycobacterium tuberculosis
DOI: 10.12677/acm.2024.1471989, PDF, HTML, XML, 下载: 29  浏览: 43 
作者: 庞佳琦, 郑改焕*:重庆医科大学附属儿童医院感染科,国家儿童健康与疾病临床研究中心,儿科发育疾病研究教育部重点实验室,儿童感染免疫重庆市重点实验室,重庆
关键词: 固有性耐药获得性耐药耐药结核抗结核药物Primary Drug Resistance Acquired Drug Resist Drug-Resistant Tuberculosis Antituberculosis Drugs
摘要: 结核病(Tuberculosis, TB)是由结核分枝杆菌(Mycobacterium tuberculosis, MTB)引发的慢性传染病,不仅有极高的致死性,更是全球公共卫生领域所面临的巨大挑战。而耐药结核的出现更是给这一挑战雪上加霜。耐药结核是指患者体内的MTB在进化的过程中,躲避宿主的免疫监控,进而降低抗结核药物效力。这一现象的背后,与抗生素的滥用、抗结核药物的不规范使用以及MTB自身的演变等因素紧密相连。面对这一严峻的现实,对MTB的耐药机制进行深入的研究不仅有助于我们更好地理解这一疾病的本质,更能为后续的快速分子诊断工具的开发以及新型抗结核药物的研发提供参考。
Abstract: Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB). It is not only extremely lethal, but also a huge challenge facing the global public health field. The emergence of drug-resistant tuberculosis has made this challenge even worse. Drug-resistant tuberculosis (TB) refers to the continuous evolution of MTB in the patient’s body, which makes it evade the immune surveillance of the host, reduces the efficacy of anti-tuberculosis drugs. Antibiotic abuse, non-standard use of anti-tuberculosis drugs, and the evolution of MTB itself are all causes of MTB resistance. Faced with this grim reality, in depth research on the drug resistance mechanism of MTB will not only help us better understand the nature of this disease, but also provide a reference for the subsequent development of rapid molecular diagnostic tools and the research and development of new anti-tuberculosis drugs.
文章引用:庞佳琦, 郑改焕. 结核分枝杆菌耐药机制的研究进展[J]. 临床医学进展, 2024, 14(7): 112-119. https://doi.org/10.12677/acm.2024.1471989

1. 引言

由MTB感染导致的结核病仍是全世界十大死因之一,也是威胁人类健康的世界三大传染病之一。据世界卫生组织(World Health Organization, WHO)公布的2022年结核病报告中指出,在30个结核病高负担国家中我国估算结核病发病数排第3位,仅低于印度和印度尼西亚,且2021年全球新发耐多药和利福平耐药结核病45万例,而其治疗成功率仅为60%,病死率达16% [1]。目前,MTB的耐药仍然是全球及我国结核病控制工作亟待解决的难题之一。

MTB的耐药机制可分为非特异性固有耐药(primary drug resistance)和获得性耐药(acquired drug resistance),后者为MTB耐药的主要机制[2]。固有耐药主要与细胞壁渗透性降低、外排泵作用和细胞代谢有关。而获得性耐药主要是因药物作用而导致MTB基因组产生基因突变使机体无法清除入侵的MTB。

2. 固有耐药

2.1. MTB细胞壁渗透性降低

与其他病原菌相比,MTB有独特且复杂的细胞壁结构。有研究[3]发现MTB细胞壁中脂质大约占40%,为其提供了强大的保护性屏障。目前许多抗结核药物通过影响细胞壁的生物合成从而发挥抗菌作用。其中有团队[4]通过敲除MurT-GatD复合物基因影响交联肽聚糖(PG)的合成,从而破坏MTB细胞壁完整性,为研究新型药物提供新思路。也有团队发现MTB细胞壁中蛋白质Rv2700突变会影响其生长速率、提高细胞包膜通透性、降低毒力,表明其可作为新型药物的靶点[5]。目前MTB细胞壁中只有不到0.5%的靶向细菌蛋白,并且缺乏足够的研究模型[6],因此了解细胞壁的结构和合成在研究MTB的耐药机制和研发新型药物中有很大的潜力。

2.2. MTB药物外排泵(EPs)

药物外排泵(EPs) [7]是位于细菌质膜中的转运蛋白,MTB可以通过EPs主动外排进入细菌的药物来降低菌体内药物浓度,使MTB产生耐药。EPs基因过度表达或EPs基因的转录调节被激活均会导致Mtb耐药。有研究[8]表明外排泵抑制剂(维拉帕米、利血平等)可显著降低耐药菌株耐药性,在治疗耐药结核方面有重要参考意义。也有研究[9]发现MTB可在低铁条件下自我中毒,说明MTB铁载体分泌与药物外排之间也有复杂的联系。药物外排泵的研究为开发新的抗结核药物提供有希望的靶点。

2.3. MTB细胞代谢

抗结核药物可通过重塑或影响MTB代谢或电子传递链从而产生耐药性。有研究[10]表明异柠檬酸裂解酶(ICL)可促进MTB对脂肪酸的利用,增强其毒力和持久性,ICL在致病性MTB H37Rv基因组序列中由Rv0467、Rv1915及Rv1916构成,可作为抗结核新靶点,但由于靶向所有三个直系同源基因存在挑战,目前尚无ICL抑制剂进入临床试验。而Gina [11]等研究表明具有缺陷蛋白酶体活性的MTB对宿主来源的抗菌分子NO和Cu高度敏感,这一发现为药物研发提供新思路。

3. 获得性耐药

3.1. 一线抗结核病药物

3.1.1. 异烟肼(Isoniazid, INH)

INH属于前体药物,其主要耐药机制是通过细胞质中过氧化氢-过氧化物酶(Kat G)被激活从而抑制靶蛋白烯酰还原酶ACP (Inh A),破坏细胞壁完整性而引起MTB裂解死亡[12]。INH耐药与多个基因有关,其中kat G (S315T1)和InhA (C15T)相关靶点的基因突变较为常见[13]。有研究发现INF耐药MTB中三个最常突变的位点是katG的位点315、inhA的位点-15和inhA的位点-8 [14]。另外[15],与INH耐药性相关的katG基因、inhA基因和oxyR-ahpC区域的点突变所累积的突变与耐多药结核病相关。有最新研究表明furA、kasA、ndh、fabG306等INH抗遗传位点性也可能参与INH耐药性的产生,但其具体机制尚不明确[14] [16]

3.1.2. 利福平(Rifampicin, Rfp)

Rfp主要作用于由rpoB基因生成的RNA多聚酶干扰MTB转录、抑制蛋白质的合成从而灭菌。95%以上的Rfp耐药菌株是由于rpoB基因突变所致MTB对Rfp亲和力下降引起[17]。也有体外研究[18]表明Rfp耐药与外排泵基因高表达有关,在该实验中随着Rfp体外诱导浓度增加,MTB药物外排泵基因Rv1457c、Rv1458c mRNA处于高表达状态,并且认为rpoB基因突变后的MTB菌株对Rfp耐药性能可获得稳定遗传。

3.1.3. 乙胺丁醇(Ethambutol, EMB)

EMB会干扰细菌细胞壁的主要成分阿拉伯半乳聚糖的生物合成,其通过阻断主要由embCAB操纵子编码的阿拉伯糖基转移酶(DPA),破坏细胞壁完整性[19]。大约70%的临床EMB耐药菌株是由embCAB操纵子突变引起,其最常见的突变位点位于embB基因的306位密码子上[20]。临床上通常将embB306作为EMB耐药诊断标志物。泰国[21]有研究发现ubiA突变与结核分枝杆菌的高水平EMB耐药特异性相关,其可能是检测高水平EMB抗性的标志。近期也有研究[22]表明pknH乙酰化可能通过降低EmbR (pknH底物)磷酸化来抑制MTB生长,因此增强pknH乙酰可能是抑制EMB耐药的一个有效方法。

3.1.4. 吡嗪酰胺(Pyrazinamide, PZA)

PZA作为前体药,在菌体内经pncA基因编码的吡嗪酰胺酶激活为吡嗪酸,通过干扰结核分枝杆菌脱氢酶影响MTB代谢而发挥杀菌作用[23]。pcnA基因突变具有高度可变性,有多达50多个位点突变可能与PZA耐药有关,在3~17位、132~142位、61~85位这3个密码子区域有相当程度的聚集性,这些区域很可能是吡嗪酰胺酶的催化部位,其中pcnA基因突变不仅会影响MTB能量生长,并且还参与抑制不同的代谢过程[24] [25]。此外,最新[26]研究表明PZA的耐药性通常与RpsA蛋白突变有关,为耐药结核的防治提供新思路。

3.1.5. 链霉素(Streptomycin, STR)

STR通过不可逆附着于MTB核糖体S12和30S亚基上的16S rRNA,阻碍tRNA与30S亚基的结合,干扰核糖体的翻译和校对能量,抑制蛋白质的合成,造成菌体裂解死亡[27]。STR的耐药性主要与MTB基因组中rpsL、rrs和gid基因突变有关,这些基因分别编码S12蛋白、16SrRNA和S-腺苷甲硫氨酸依赖性7-甲基转移酶[28]。近期Kuwait University [29]的研究团队通过研究表明GidB基因中的缺失、移码、非同义、同义突变会导致SM的低水平耐药,同时导致SM表型和基因型敏感性检测不一致,并且在该实验中少数表型耐SM菌株也缺乏rpsL、rrs或GidB突变,提示SM耐药尚存在其他机制。

3.2. 二线抗结核病药物

3.2.1. 卡那霉素(Kanamycin, Km)、阿米卡星(Amikacin, Am)、卷曲霉素(Capreomycin)等

二线抗结核病注射类药物通过与菌体30S亚基中的16S rRNA结合,抑制菌体蛋白的合成。Anda团队[30]通过研究表明编码16S核糖体RNA的rrs基因突变与阿米卡星、卡那霉素、卷曲霉素的耐药相关,而eis突变能够导致MTB对阿米卡星、卡那霉素产生低水平的耐药。此外也有研究[31]表明tlyA基因可突变能够使MTB产生对卷曲霉素和紫霉素的耐药性。

3.2.2. 乙硫异烟胺(Ethionamide, ETH)、丙硫异烟胺(Prothionamide, PTH)

ETH和PTH的衍生物都是异烟酸,其抗结核机制类似INH,需被前体药物激活酶EthA激活后抑制InhA活性,促进细胞壁中霉菌酸的合成并降低其通透性,因此ethA和inhA基因突变与其耐药性相关[32]。此外Mugumbate等[33]研究发现ethR基因过表达可降低ethA蛋白活性并减弱ETH对MTB的抑制。Gries R最新发现一种恶二唑化合物(S3)可阻断ESX-1分泌系统(MTB主要毒力因子),并导致一组包括ethA的基因的表达上调,协同增强ETH的抗菌作用[34]

3.2.3. 氟喹诺酮类药物(Fluoroquinolones, FQs)

莫西沙星、左氧氟沙星、环丙沙星、加替沙星等都是常见的氟喹诺酮类药物,其靶标是DNA解旋酶(由gyrA和gyrB基因编码),该基因突变后通过抑制MTB转录和翻译来抑制MTB生长并导致FQs的MIC增加[35]。有研究[36]发现在耐FQs结核杆菌中gyrA在第90、91和94位密码子和gyrB基因G1498A的突变较为常见。在Chong Y团队[37]的最新研究中以FQs耐药MTB为研究对象,定量分析其突变位点,在gyrB基因中发现了新的氨基酸突变点,即G500D和G520T,并确定FQs耐药决定区(QRDR)突变频率负荷作为该药耐药诊断的新方法。

3.2.4. 对氨基水杨酸(Para-Amino Salicylic Acid, PAS)

PAS通过干扰叶酸的合成,控制菌体代谢抑制MTB生长,是治疗结核病的抑菌剂。目前针对PAS耐药研究较多的是Folc蛋白编码基因folC,其突变会加速菌体内叶酸的合成速度,提高菌体对该药代谢速率产生耐药性[38]。另外,ribD、PapA1、SigB和MmpL11等基因突变也可能与PAS的耐药性有关,但具体机制有待进一步研究[39]。最新研究[40]发现了一种新的PAS抗药机制,蛋氨酸转运蛋白基因启动子区(Rv3253c)突变导致细胞内蛋氨酸迁移增加从而导致对PAS高抵抗性。

3.2.5. D-环丝氨酸(D-Cycloserine, DCS)

D-环丝氨酸通过抑制由pncA、ddlA基因编码的MTB细胞壁肽聚糖合成关键酶,使细胞壁合成受损并从而起到杀菌或抑菌作用[41]。另外[39] alr、ald、pykA和cycA等基因突变也会对DCS产生耐药。在最新一项[42]对DCS自发耐药突变体MTB的体外研究中,该菌落的最低抑制浓度(MIC)呈1~4倍增长,其中MIC与H37RV菌株密切相关。

3.2.6. 利奈唑胺(Linezolid, Lzd)

Lzd耐药性主要与rrl及rplC基因突变有关,其通过作用于核糖体上由rrl基因编码的23S rRNA,通过与由rplC基因编码的50S亚基结合而抑制70S亚基启动子复合物的形成,阻止蛋白质翻译而发挥抗MTB作用[39]。在一项回顾性研究[43]中,通过对Lzd产生耐药性的MTB的分析发现53.3%携带rplC或23S rRNA基因突变,其中最常见的突变是rplC基因中的Cys154Arg,为研究Lzd耐药性提供参考。印度孟买[44]的一项对Lzd耐药株的研究表明rplC基因中的C154R和rrl基因中G2814T是其耐药决定因素。

3.2.7. 氯法齐明(Clofazimine, Cfz)

Cfz作用机制尚不明确,可能与细胞膜磷脂相互作用阻止钾的吸收从而减少或抑制ATP产生导致MTB膜严重不稳定,也可能靶向MTB呼吸链及离子转运体影响MTB胞内氧化应激,还有人提出其可能与细菌DNA结合从而抑制细菌增殖[45]。MTB对Cfz耐药性与MmpR5阻遏蛋白的Rv0678基因突变有关,此外在Cfz抗体突变中也发现了Rv1453、Rv2535c (pepQ)和Rv1979c基因[45]。Cfz的耐药机制仍需进一步研究。

3.3. 新药

3.3.1. 贝达喹啉(Bedaquiline, Bdq)

Bqd可以特异性抑制由atpE基因编码ATP合成酶,减少ATP的合成,阻断MTB的能量供应而杀灭细菌[46]。已知的Bdq抗药机制与atpE、Rv0678和pepQ基因突变有关,其中作为Bqd主要途径的atpE突变会导致更高水平的Bqd抗药性,而且Bqd与Cfz之间存在交叉耐药[45]。此外,临床试验中有些耐Bdq菌株均不含有上述基因突变,提示MTB存在未知的Bdq耐药机制,有待进一步阐明。

3.3.2. 德拉马尼(Delamanid, Dlm)、PA-824

Dlm与PA-824均为前体药物并需要依赖于F420辅因子的硝基还原酶Ddn激活,破坏细胞壁的合成。而fbiABC蛋白复合体及由fdg1基因编码的葡萄糖-6-磷酸脱氢酶参与辅因子F420的生物合成。有研究[47]表明与其耐药性相关的遗传位点有ddn、fgd1、fbiABCD基因突变可能抑制药物活化并产生耐药。

3.3.3. SQ-109

SQ-109耐药机制与MmpL3基因密切相关。MmpL3是强有力的抗结核靶点,其可将分枝杆菌酸从细胞膜转运至细胞壁、降低细胞壁通透性令菌体产生抗药性,MmpL3 S228T突变体对抑制剂SQ-109表现出明显的耐药性,此外因其具有广谱杀菌效果,提示SQ109耐药机制有待进一步研究[48]

4. 展望

近年来,耐药结核病成为全球结核防治的重要挑战。耐药结核不仅有治疗周期长、治愈率低、传染性及病死率高、患者负担重、不良反应明显等特点,而且结核病菌的耐药机制多样且复杂,不同药物具有多种耐药模式。因此,探究MTB的耐药机制、发现新的耐药基因对开发新的靶向药物、研究快速分子诊断技术至关重要,可为预防和治疗耐药结核病提供新思路。

NOTES

*通讯作者。

参考文献

[1] World Health Organization (2022) Global Tuberculosis Report 2022. Geneva.
[2] 郑伟, 田甜, 王琦, 等. 结核分枝杆菌的耐药机制研究进展[J]. 中国人兽共患病学报, 2021, 37(11): 1044-1052.
[3] Batt, S.M., Burke, C.E., Moorey, A.R. and Besra, G.S. (2020) Antibiotics and Resistance: The Two-Sided Coin of the Mycobacterial Cell Wall. The Cell Surface, 6, Article ID: 100044.
https://doi.org/10.1016/j.tcsw.2020.100044
[4] Shaku, M.T., Ocius, K.L., Apostolos, A.J., Pires, M.M., Van Nieuwenhze, M.S., Dhar, N., et al. (2023) Amidation of Glutamate Residues in Mycobacterial Peptidoglycan Is Essential for Cell Wall Cross-Linking. Frontiers in Cellular and Infection Microbiology, 13, Article 1205829.
https://doi.org/10.3389/fcimb.2023.1205829
[5] Ballister, E.R., Samanovic, M.I. and Darwin, K.H. (2019) Mycobacterium Tuberculosis Rv2700 Contributes to Cell Envelope Integrity and Virulence. Journal of Bacteriology, 201, e00228-19.
https://doi.org/10.1128/jb.00228-19
[6] Capela, R., Félix, R., Clariano, M., Nunes, D., Perry, M.D.J. and Lopes, F. (2023) Target Identification in Anti-Tuberculosis Drug Discovery. International Journal of Molecular Sciences, 24, Article 10482.
https://doi.org/10.3390/ijms241310482
[7] Kanji, A., Hasan, R. and Hasan, Z. (2019) Efflux Pump as Alternate Mechanism for Drug Resistance in Mycobacterium Tuberculosis. Indian Journal of Tuberculosis, 66, 20-25.
https://doi.org/10.1016/j.ijtb.2018.07.008
[8] Hasan, Z., Razzak, S.A., Kanji, A., Shakoor, S. and Hasan, R. (2024) Efflux Pump Gene Single Nucleotide Variants Associated with Resistance in Mycobacterium Tuberculosis Isolates with Discrepant Drug Genotypes. Journal of Global Antimicrobial Resistance.
https://doi.org/10.1016/j.jgar.2024.05.006
[9] Meikle, V., Zhang, L. and Niederweis, M. (2023) Intricate Link between Siderophore Secretion and Drug Efflux in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 67, e01629-22.
https://doi.org/10.1128/aac.01629-22
[10] Antil, M. and Gupta, V. (2022) Lessons Learnt and the Way Forward for Drug Development against Isocitrate Lyase from Mycobacterium tuberculosis. Protein & Peptide Letters, 29, 1031-1041.
https://doi.org/10.2174/0929866529666221006121831
[11] Limón, G., Samhadaneh, N.M., Pironti, A. and Darwin, K.H. (2023) Aldehyde Accumulation in Mycobacterium tuberculosis with Defective Proteasomal Degradation Results in Copper Sensitivity. mBio, 2023, e00363-23.
https://doi.org/10.1128/mbio.00363-23
[12] Vilchèze, C. and Jacobs Jr., W.R. (2014) Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Microbiology Spectrum, 2, MGM2-0014-2013.
[13] Reta, M.A., Alemnew, B., Abate, B.B. and Fourie, P.B. (2021) Prevalence of Drug Resistance-Conferring Mutations Associated with Isoniazid-and Rifampicin-Resistant Mycobacterium Tuberculosis in Ethiopia: A Systematic Review and Meta-Analysis. Journal of Global Antimicrobial Resistance, 26, 207-218.
https://doi.org/10.1016/j.jgar.2021.06.009
[14] Valafar, S.J. (2021) Systematic Review of Mutations Associated with Isoniazid Resistance Points to Continuing Evolution and Subsequent Evasion of Molecular Detection, and Potential for Emergence of Multidrug Resistance in Clinical Strains of Mycobacterium Tuberculosis. Antimicrobial Agents and Chemotherapy, 65, e02091-20.
https://doi.org/10.1128/aac.02091-20
[15] Norouzi, F., Moghim, S., Farzaneh, S., Fazeli, H., Salehi, M. and Nasr Esfahani, B. (2021) Significance of the Coexistence of Non-Codon 315 katG, inhA, and oxyR-ahpC Intergenic Gene Mutations among Isoniazid-Resistant and Multidrug-Resistant Isolates of Mycobacterium Tuberculosis: A Report of Novel Mutations. Pathogens and Global Health, 116, 22-29.
https://doi.org/10.1080/20477724.2021.1928870
[16] Bakhtiyariniya, P., Khosravi, A.D., Hashemzadeh, M. and Savari, M. (2022) Detection and Characterization of Mutations in Genes Related to Isoniazid Resistance in Mycobacterium Tuberculosis Clinical Isolates from Iran. Molecular Biology Reports, 49, 6135-6143.
https://doi.org/10.1007/s11033-022-07404-2
[17] Zarei, Z., Emami, A., Moghadami, M., Kashkooli, G.S. and Pirbonyeh, N. (2017) Molecular Characterization of Isoniazid and Rifampicin Target Genes in Multi-Drug Resistant Mycobacterium Tuberculosis Isolates from Southwest of Iran. Gene Reports, 6, 19-25.
https://doi.org/10.1016/j.genrep.2016.11.003
[18] 司晓燕, 陈俊林, 施慧慧, 等. 体外诱导获取利福平耐药结核分枝杆菌菌株及其稳定性研究[J]. 交通医学, 2022, 36(1): 10-14, 18.
https://doi.org/10.19767/j.cnki.32-1412.2022.01.003
[19] Barliana, M.I., Afifah, N.N., Yunivita, V. and Ruslami, R. (2023) Genetic Polymorphism Related to Ethambutol Outcomes and Susceptibility to Toxicity. Frontiers in Genetics, 14, Article 1118102.
https://doi.org/10.3389/fgene.2023.1118102
[20] Xiang, X., Gong, Z., Deng, W., Sun, Q. and Xie, J. (2020) Mycobacterial Ethambutol Responsive Genes and Implications in Antibiotics Resistance. Journal of Drug Targeting, 29, 284-293.
https://doi.org/10.1080/1061186x.2020.1853733
[21] Tulyaprawat, O., Chaiprasert, A., Chongtrakool, P., Suwannakarn, K. and Ngamskulrungroj, P. (2019) Association of Ubia Mutations and High-Level of Ethambutol Resistance among Mycobacterium Tuberculosis Thai Clinical Isolates. Tuberculosis, 114, 42-46.
https://doi.org/10.1016/j.tube.2018.11.006
[22] Sun, Q., Zou, Y., Feng, Q., Gong, Z., Song, M., Li, M., et al. (2023) The Acetylation of pknH Is Linked to the Ethambutol Resistance of Mycobacterium Tuberculosis. Archives of Microbiology, 205, Article No. 337.
https://doi.org/10.1007/s00203-023-03676-9
[23] Lingaraju, S., Rigouts, L., Gupta, A., Lee, J., Umubyeyi, A.N., Davidow, A.L., et al. (2016) Geographic Differences in the Contribution of ubiA Mutations to High-Level Ethambutol Resistance in Mycobacterium Tuberculosis. Antimicrobial Agents and Chemotherapy, 60, 4101-4105.
https://doi.org/10.1128/aac.03002-15
[24] Özgür, D., Kayar, M.B., Biçmen, C., et al. (2017) Investigation of pncA, rpsA and panD Gene Mutations Associated with Resistance in Pyrazinamide-Resistant Mycobacterium Tubercresistance-Associated Mutations in Clinical Isolates: PncA Mutations and PZA Resistance in M. tuberculosis in Vietnam. Emerging Microbes & Infections, 6, 1-7.
[25] Rajendran, A. and Palaniyandi, K. (2022) Mutations Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis: A Review and Update. Current Microbiology, 79, Article No. 348.
https://doi.org/10.1007/s00284-022-03032-y
[26] Shahab, M., de Farias Morais, G.C., Akash, S., Fulco, U.L., Oliveira, J.I.N., Zheng, G., et al. (2024) A Robust Computational Quest: Discovering Potential Hits to Improve the Treatment of Pyrazinamide-Resistant Mycobacterium tuberculosis. Journal of Cellular and Molecular Medicine, 28, e18279.
https://doi.org/10.1111/jcmm.18279
[27] Wang, Y., Li, Q., Gao, H., et al. (2019) The Roles of rpsL, rrs, and gidB Mutations in Predicting Streptomycin-Resistant Drugs Used on Clinical Mycobacterium tuberculosis Isolates from Hebei Province, China. International Journal of Clinical and Experimental Pathology, 12, 2713.
[28] Rocha, D.M.G.C., Viveiros, M., Saraiva, M. and Osório, N.S. (2021) The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem. Genes, 12, Article 2003.
https://doi.org/10.3390/genes12122003
[29] Al-Mutairi, N.M., Ahmad, S. and Mokaddas, E. (2024) Discordance in Phenotypic and Genotypic Susceptibility Testing for Streptomycin Due to Nonsynonymous/Nonsense/Deletion Frame-Shift Mutations in gidB among Clinical Mycobacterium tuberculosis Isolates in Kuwait. Medical Principles and Practice.
https://doi.org/10.1159/000538584
[30] Vīksna, A., Sadovska, D., Berge, I., Bogdanova, I., Vaivode, A., Freimane, L., et al. (2023) Genotypic and Phenotypic Comparison of Drug Resistance Profiles of Clinical Multidrug-Resistant Mycobacterium tuberculosis Isolates Using Whole Genome Sequencing in Latvia. BMC Infectious Diseases, 23, Article No. 638.
https://doi.org/10.1186/s12879-023-08629-7
[31] Liu, Y.Y., Shi, J., Chu, P., et al. (2022) Exploratory Study on Detection of Drug Resistance of Mycobacterium tuberculosis in Sputum Specimens by Next-Generation Sequencing. Chinese Journal of Tuberculosis and Respiratory Diseases, 45, 552-559.
[32] Rueda, J., Realpe, T., Mejia, G.I., Zapata, E., Rozo, J.C., Ferro, B.E., et al. (2015) Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Clinical Isolates. Antimicrobial Agents and Chemotherapy, 59, 7805-7810.
https://doi.org/10.1128/aac.01028-15
[33] Mugumbate, G., Mendes, V., Blaszczyk, M., Sabbah, M., Papadatos, G., Lelievre, J., et al. (2017) Target Identification of Mycobacterium Tuberculosis Phenotypic Hits Using a Concerted Chemogenomic, Biophysical, and Structural Approach. Frontiers in Pharmacology, 8, Article 681.
https://doi.org/10.3389/fphar.2017.00681
[34] Gries, R., Chhen, J., van Gumpel, E., Theobald, S.J., Sonnenkalb, L., Utpatel, C., et al. (2024) Discovery of Dual-Active Ethionamide Boosters Inhibiting the Mycobacterium Tuberculosis ESX-1 Secretion System. Cell Chemical Biology, 31, 699-711.E6.
https://doi.org/10.1016/j.chembiol.2023.12.007
[35] Zhang, X., Chen, X., Wang, B., Fu, L., Huo, F., Gao, T., et al. (2021) Molecular Characteristic of Both Levofloxacin and Moxifloxacin Resistance in Mycobacterium tuberculosis from Individuals Diagnosed with Preextensive Drug-Resistant Tuberculosis. Microbial Drug Resistance, 28, 280-287.
https://doi.org/10.1089/mdr.2021.0212
[36] Chawla, K., Kumar, A., Shenoy, V.P., Chakrabarty, S. and Satyamoorthy, K. (2018) Genotypic Detection of Fluoroquinolone Resistance in Drug-Resistant Mycobacterium Tuberculosis at a Tertiary Care Centre in South Coastal Karnataka, India. Journal of Global Antimicrobial Resistance, 13, 250-253.
https://doi.org/10.1016/j.jgar.2018.01.023
[37] Chong, Y., Li, X., Long, Y., Pei, S., Ren, Q., Feng, F., et al. (2024) Identification of Novel Resistance-Associated Mutations and Discrimination within Whole-Genome Sequences of Fluoroquinolone-Resistant Mycobacterium tuberculosis Isolates. Microbiology Spectrum, 12, e03930-23.
https://doi.org/10.1128/spectrum.03930-23
[38] Wei, W., Yan, H., Zhao, J., Li, H., Li, Z., Guo, H., et al. (2019) Multi-Omics Comparisons of p-Aminosalicylic Acid (PAS) Resistance in folC Mutated and Un-Mutated Mycobacterium tuberculosis Strains. Emerging Microbes & Infections, 8, 248-261.
https://doi.org/10.1080/22221751.2019.1568179
[39] 葛赛, 孙曼銮, 李昭阳. 翻译后修饰对结核分枝杆菌耐药性调控机制的研究[J]. 中国人兽共患病学报, 2023, 39(5): 500-508.
[40] Zhang, Y., Wang, S., Chen, X., et al. (2024) Mutations in the Promoter Region of Methionine Transporter Gene metM (Rv3253c) Confer Para-Aminosalicylic Acid (PAS) Resistance in Mycobacterium tuberculosis. mBio, 15, e02073-23.
[41] Kumar, R., Singh, N., Chauhan, A., Kumar, M., Bhatta, R.S. and Singh, S.K. (2022) Mycobacterium Tuberculosis Survival and Biofilm Formation Studies: Effect of D-Amino Acids, D-Cycloserine and Its Components. The Journal of Antibiotics, 75, 472-479.
https://doi.org/10.1038/s41429-022-00534-6
[42] Osorio-González, A., Álvarez, N., Realpe, T. and Robledo, J. (2024) Protocol for the Selection of Mycobacterium tuberculosis Spontaneous Resistant Mutants to D-Cycloserine. MethodsX, 12, Article ID: 102690.
https://doi.org/10.1016/j.mex.2024.102690
[43] Yao, C., Guo, H., Li, Q., Zhang, X., Shang, Y., Li, T., et al. (2021) Prevalence of Extensively Drug-Resistant Tuberculosis in a Chinese Multidrug-Resistant TB Cohort after Redefinition. Antimicrobial Resistance & Infection Control, 10, Article No. 126.
https://doi.org/10.1186/s13756-021-00995-8
[44] Rodrigues, C., Nambiar, R., Tornheim, J., Diricks, M., De Bruyne, K., Sadani, M., et al. (2021) Linezolid Resistance in Mycobacterium Tuberculosis Isolates at a Tertiary Care Centre in Mumbai, India. Indian Journal of Medical Research, 154, 85-89.
https://doi.org/10.4103/ijmr.ijmr_1168_19
[45] Islam, M.M., Alam, M.S., Liu, Z., Khatun, M.S., Yusuf, B., Hameed, H.M.A., et al. (2024) Molecular Mechanisms of Resistance and Treatment Efficacy of Clofazimine and Bedaquiline against Mycobacterium tuberculosis. Frontiers in Medicine, 10, Article 1304857.
https://doi.org/10.3389/fmed.2023.1304857
[46] Divita, K.M. and Khatik, G.L. (2021) Current Perspective of ATP Synthase Inhibitors in the Management of the Tuberculosis. Current Topics in Medicinal Chemistry, 21, 1623-1643.
https://doi.org/10.2174/1568026621666210913122346
[47] Gómez-González, P.J., Perdigao, J., Gomes, P., Puyen, Z.M., Santos-Lazaro, D., Napier, G., et al. (2021) Genetic Diversity of Candidate Loci Linked to Mycobacterium Tuberculosis Resistance to Bedaquiline, Delamanid and Pretomanid. Scientific Reports, 11, Article No. 19431.
https://doi.org/10.1038/s41598-021-98862-4
[48] Ge, Y., Luo, Q., Liu, L., Shi, Q., Zhang, Z., Yue, X., et al. (2024) S288T Mutation Altering Mmpl3 Periplasmic Domain Channel and H-Bond Network: A Novel Dual Drug Resistance Mechanism. Journal of Molecular Modeling, 30, Article No. 39.
https://doi.org/10.1007/s00894-023-05814-y