微针贴片负载利多卡因在皮肤创面的镇痛研究
A Study on the Analgesic Effect of Lidocaine-Loaded Microneedle Patch on Skin Wounds
DOI: 10.12677/acm.2024.1471986, PDF, HTML, XML, 下载: 30  浏览: 38 
作者: 刘学全, 朱泓宇, 董 河*:青岛大学附属医院麻醉科,山东 青岛
关键词: 利多卡因微针贴片皮肤创面镇痛Lidocaine Microneedle Patch Skin Wound Analgesia
摘要: 目的:研发一种无痛、快速、经皮给药的局麻镇痛载药方式。方法:首先利用微成型技术制备出含有利多卡因的微针贴片(MNs-Lido),对其进行物理、化学表征,利用大鼠足底切口疼痛模型检测MNs-Lido的镇痛效果,将大鼠随机分为3组:空白组(Blank组)、不载药物的MNs组(MNs组)和MNs-Lido组。大鼠术前先用Von-Frey测量机械缩足阈值(PWT),使用异氟醚麻醉后,建立足底切口疼痛模型,术后1天记录各组大鼠的PWT。结果:Blank组和MNs组相比差异无统计学意义;与Blank组和MNs相比,MNs-Lido组的阈值在给药后15、30、45分钟时有显著改善,在60分钟时仍存在镇痛效果,因此证明利多卡因的麻醉效果可以维持60分钟。结论:MNs-Lido在皮肤创面镇痛中表现出有效的镇痛效果,其持续麻醉效果至少持续60分钟。本研究为皮肤创面镇痛提供了一种快速、无痛的局部麻醉方法。
Abstract: Objective: To develop a painless, rapid, and transdermal local anesthesia and analgesia method. Methods: Firstly, microneedle patches loaded with lidocaine (MNs-Lido) were fabricated using microfabrication technology and characterized physically and chemically. The analgesic effect of MNs-Lido was evaluated using a rat plantar incision pain model. Rats were randomly divided into three groups: Blank group, MNs group without drug, and MNs-Lido group. The mechanical withdrawal threshold (PWT) was measured using the Von-Frey test before surgery. After isoflurane anesthesia, a plantar incision pain model was established, and PWT of each group was recorded 1 day after surgery. Results: There was no significant difference between the Blank group and MNs group. Compared with the Blank group and MNs group, PWT in the MNs-Lido group was significantly improved at 15, 30, and 45 minutes after administration, and the analgesic effect was still observed at 60 minutes, indicating that the anesthetic effect of lidocaine could last for at least 60 minutes. Conclusion: MNs-Lido exhibited effective analgesic effect on skin wounds, with a sustained anesthetic effect of at least 60 minutes. This study provides a rapid and painless local anesthesia method for analgesia of skin wounds.
文章引用:刘学全, 朱泓宇, 董河. 微针贴片负载利多卡因在皮肤创面的镇痛研究[J]. 临床医学进展, 2024, 14(7): 89-95. https://doi.org/10.12677/acm.2024.1471986

1. 引言

局部麻醉的应用非常广泛,这种麻醉方式发挥作用主要依靠局麻药与神经细胞膜上的钠离子通道结合,阻断神经电信号的传导。这种结合导致神经细胞膜对钠离子的通透性减少,阻止钠离子进入细胞内部,从而抑制神经冲动的传递[1]-[3]。常用的局部麻醉方式有注射局麻药、喷雾剂、涂抹药膏等。然而,注射给药存在注射痛感强、专业技术要求高和患者依从性差等问题;涂覆给药存在低透皮率、起效较慢和局部局麻药量大等问题[4]-[10]。因此,亟需研发一种无痛、快速、经皮给药的局麻镇痛策略。本研究设计的利多卡因微针贴片可实现快速、短效的局部镇痛作用,具有使用便捷、起效较快、生物安全性高、镇痛效果佳、镇痛时长合理等优势,可为皮肤创面患者的疼痛管理提供舒适化的新策略[11]-[19]

2. 实验部分

采用微成型技术进行微针贴片(MNs-Lido)的制备,可分为两个部分:含有利多卡因(Lido)的透明质酸(HA)针尖和由HA和聚乙烯吡咯烷酮(PVP)组成的背衬层。采用了一个平面型聚二甲基硅氧烷(PDMS)模具进行微成型技术。① 针尖层的制备,首先在10 mL双蒸馏水中溶解0.2 g利多卡因盐酸盐粉末,将溶液放磁力搅拌器室温搅拌0.5 h后,得到2%的利多卡因溶液。然后,在溶解好的利多卡因溶液中加入0.1 g HA,并在室温下搅拌1 h。得到的HA/Lido混合溶液浇筑在PDMS模板上,将其放入真空干燥箱,抽真空30 min,以确保模具各针孔内完全充满溶液。之后,使用移液枪移除多余溶液。② 背衬层的制备,将0.7 g HA和0.3 g PVP溶解在10 mL双蒸馏水中,并放置在集热式恒温磁力搅拌器上加热至95℃,搅拌0.5 h 后得到HA/PVP混合溶液。将该溶液加入先前的PDMS模板内,干燥过夜,通过人工脱模得到MNs-Lido。

使用体式显微镜观察MNs-Lido的宏观形貌,使用扫描电子显微镜观察MNs-Lido的微观形貌;使用傅里叶变换红外光谱仪测量MNs-Lido、Lido和HA的红外光谱,在500~4000 cm1的波长范围内进行测量。MNs-Lido的机械强度是使用万能试验机测定的。将样品放置在金属固定站上,并使用机械传感器以1.1 mm/min的速率施加轴向力以压缩样品,记录由此产生的力–位移关系。本研究采用von Frey法评估大鼠的机械伤害知觉阈值,即机械缩足阈值(PWT)。使用雄性SD大鼠构建Brennan足底切口模型来评价MNs-Lido的镇痛作用。在氧气和自主呼吸中用异氟醚诱导并维持麻醉。用黑色记号笔在左后爪上标记手术切口。将后爪穿过无菌布上的孔,并用10%聚维酮碘溶液进行无菌处理。从足跟近缘0.5 cm处开始,用11号刀片作1 cm纵切口,切开皮肤和筋膜,露出脚趾肌肉。通过钝性解剖将趾短屈肌抬起并纵向劈开,并且保持肌肉起点和止点完整。止血后,用FS-2针用4-0尼龙缝合伤口两针。手术结束后将大鼠放回原笼内,麻醉苏醒约15 min。每只大鼠被置于一个独立的塑料室中(15厘米 × 15厘米 × 30厘米),下方为网状结构,并悬挂在支架上,以最小限度地限制大鼠并减少对行为测试的干扰。在一个适应期后,使用0.4 g、0.6 g、1 g、2 g、4 g、6 g、8 g和15 g弯曲力的von Frey细丝来测量机械缩足阈值。将细丝从笼下穿过网底依次触碰到大鼠手术区域的足底皮肤上。采用适量的起始细丝,垂直放置在左后爪足底表面持续2~3 s。对于积极的反应,如突然缩回爪子、身体颤抖或舔患侧爪子,标记为“x”。若没有反应,则记录为“o”。采用上下法,根据大鼠的反应调整刺激的强度,来确定50%机械缩足阈值。如果在最大的弯曲力15 g下仍然没有反应,则将15 g作为截止值。统计学分析实验数据以平均值 ± 标准差表示。使用GraphPad Prism 8软件进行统计分析。采用单因素方差分析(ANOVA)和双因素方差分析确定统计学意义,认为数据在*p < 0.05、**p < 0.01、***p < 0.001时具有统计学意义。

3. 结果与讨论

3.1. 体式显微镜分析

图1(a)可以看到MNs-Lido被成功制备出,含有225个针尖,并且无缺针、断针情况发生,针尖排列规则,大小基本一致。通过图1(b)可观察到单个针尖的形貌呈圆锥形,针尖保存完整,具有较好的形态。

(a) (b)

Figure 1. (a) is the top view of MNs-Lido, (b) is the side view of MNs-Lido

1. (a) 为MNs-Lido的俯视图,(b) 为MNs-Lido的侧视图

3.2. 扫描电子显微镜(SEM)分析

图2是在电子束加速电压为20.0 KV的条件下拍摄的,可以看到针尖形貌呈圆锥形,单个针尖形状完整,未发生弯曲,空针等情况。并且在针尖上能看到颜色的深浅变化,考虑是和利多卡因的载入有关。

3.3. 傅里叶变换红外光谱分析

通过图3盐酸利多卡因在1541 cm1处的强度最大值被分配给C-N的拉伸,1541 cm1处的谱带对应酰胺振动,1477 cm1的波段对应于C=O组合的C-O基团,证明了MNs@Lido中利多卡因的载入,1035 cm1处的谱带对应C-O-C基团的拉伸。红外结果证明了利多卡因成功负载到微针贴片[20] [21]

Figure 2. SEM image of MNs-Lido

2. MNs-Lido的SEM图

Figure 3. Fourier Transform Infrared Spectra of MNs-Lido, Lido, and HA

3. MNs-Lido、Lido、HA的傅里叶变换红外光谱

3.4. 力学分析

通过图4可以看到负载利多卡因的微针贴片拥有足够强的刚性,并且具有良好的机械性能,单个微针的断裂力(0.67 N)均超过穿透皮肤所需的最小力(0.03 N),具有穿透皮肤的能力。

Figure 4. Mechanical curve of MNs-Lido measured using a universal testing machine

4. 万能试验机测出的MNs-Lido的力学曲线

3.5. 机械缩足阈值分析

在使用不同粗细的Von-Frey纤维丝刺激大鼠足底,当刺激达到一定阈值时,大鼠常表现为缩脚、逃跑、嘶叫及攻击性行为。这个模型是通过纵向切开足跟部皮肤和筋膜,暴露脚趾肌肉,然后纵向劈开趾短屈肌来构建的。让所有大鼠在实验室适应两天;然后在建模之前完成基线测量。术后一天让大鼠恢复,并在术后第一天测试术后机械缩足阈值。如图5所示,所有PIM大鼠的机械阈值均显着下降至PIM前基线的15.4% ± 5.7%,证实建模成功。然后各组PIM大鼠分别给予不含利多卡因的MNs、含药物的MNs-Lido、空白不治疗的Blank作为对照组。Blank组和MNs组相比差异无统计学意义;与Blank组和MNs相比,MNs@Lido组的阈值在给药后15、30、45分钟时有显著改善,在60分钟时仍存在镇痛效果,因此证明利多卡因的麻醉效果可以维持60分钟。

Figure 5. Mechanical indentation threshold measurements of the Blank group, MNs group without drug (MNs group), and MNs group with drug loaded (MNs-Lido group). *p < 0.05, **p < 0.01, ***p < 0.001, #p < 0.05, ##p < 0.01, ###p < 0.001

5. 空白组(Blank组)、不载药物的MNs组(MNs组)和负载药物的MNs组(MNs-Lido组)的机械缩足阈值测量结果,*p < 0.05,**p < 0.01,***p < 0.001,#p < 0.05,##p < 0.01,###p < 0.001

本研究设计的MNs-Lido在动物实验中表现出比较良好的镇痛效果,至少可维持60分钟,对比先前的研究中使用利多卡因凝胶的应用,镇痛效果更加明显[6]。表现为起效快,作用时间持久。

4. 结论

总而言之,实验结果表明,我们成功地利用微成型技术制备了由PVP和HA组成的快速溶解微针贴片,作为利多卡因在皮肤创面镇痛中的微针递送系统。MNs-Lido具有足够的硬度,可以穿透皮肤,有效递送利多卡因。重要的是,MNs-Lido在皮肤创面镇痛中表现出有效的镇痛效果,其持续麻醉效果至少持续60分钟。本研究为皮肤创面镇痛提供了一种快速、无痛的局部麻醉方法。

NOTES

*通讯作者。

参考文献

[1] Ragsdale, D.S., McPhee, J.C., Scheuer, T. and Catterall, W.A. (1994) Molecular Determinants of State-Dependent Block of Na+ Channels by Local Anesthetics. Science, 265, 1724-1728.
https://doi.org/10.1126/science.8085162
[2] Ragsdale, D.S., McPhee, J.C., Scheuer, T. and Catterall, W.A. (1996) Common Molecular Determinants of Local Anesthetic, Antiarrhythmic, and Anticonvulsant Block of Voltage-Gated Na+ Channels. Proceedings of the National Academy of Sciences of the United States of America, 93, 9270-9275.
https://doi.org/10.1073/pnas.93.17.9270
[3] Ragsdale, D.S., Scheuer, T. and Catterall, W.A. (1991) Frequency and Voltage-Dependent Inhibition of type IIA Na+ Channels, Expressed in a Mammalian Cell Line, by Local Anesthetic, Antiarrhythmic, and Anticonvulsant Drugs. Molecular Pharmacology, 40, 756-765.
[4] Lee, B., Lee, C., Lahiji, S.F., Jung, U., Chung, G. and Jung, H. (2020) Dissolving Microneedles for Rapid and Painless Local Anesthesia. Pharmaceutics, 12, Article 366.
https://doi.org/10.3390/pharmaceutics12040366
[5] Zhu, T., Yu, X., Yi, X., Guo, X., Li, L., Hao, Y., et al. (2022) Lidocaine-Loaded Hyaluronic Acid Adhesive Microneedle Patch for Oral Mucosal Topical Anesthesia. Pharmaceutics, 14, Article 686.
https://doi.org/10.3390/pharmaceutics14040686
[6] Yang, Y., Chu, H., Zhang, Y., Xu, L., Luo, R., Zheng, H., et al. (2022) Rapidly Separable Bubble Microneedle Patch for Effective Local Anesthesia. Nano Research, 15, 8336-8344.
https://doi.org/10.1007/s12274-022-4508-y
[7] Daly, S., Claydon, N.C.A., Newcombe, R.G., Seong, J., Addy, M. and West, N.X. (2021) Randomised Controlled Trial of a Microneedle Patch with a Topical Anaesthetic for Relieving the Pain of Dental Injections. Journal of Dentistry, 107, Article ID: 103617.
https://doi.org/10.1016/j.jdent.2021.103617
[8] Xie, X., Pascual, C., Lieu, C., Oh, S., Wang, J., Zou, B., et al. (2016) Analgesic Microneedle Patch for Neuropathic Pain Therapy. ACS Nano, 11, 395-406.
https://doi.org/10.1021/acsnano.6b06104
[9] Liu, Y., Zhao, Z.Q., Liang, L., et al. (2024) Toward a Solid Microneedle Patch for Rapid and Enhanced Local Analgesic Action.
https://doi.org/10.21203/rs.3.rs-3316431/v1
[10] Batra, P., Dawar, A. and Miglani, S. (2020) Microneedles and Nanopatches-Based Delivery Devices in Dentistry. Discoveries, 8, e116.
https://doi.org/10.15190/d.2020.13
[11] Gangadharan, V., Zheng, H., Taberner, F.J., Landry, J., Nees, T.A., Pistolic, J., et al. (2022) Neuropathic Pain Caused by Miswiring and Abnormal End Organ Targeting. Nature, 606, 137-145.
https://doi.org/10.1038/s41586-022-04777-z
[12] Smith, T.J., Wang, E.J. and Loprinzi, C.L. (2023) Cutaneous Electroanalgesia for Relief of Chronic and Neuropathic Pain. New England Journal of Medicine, 389, 158-164.
https://doi.org/10.1056/nejmra2110098
[13] Finsterer, J. and Scorza, F.A. (2022) Small Fiber Neuropathy. Acta Neurologica Scandinavica, 145, 493-503.
https://doi.org/10.1111/ane.13591
[14] Debroas, G., Hoeffel, G., Reynders, A. and Ugolini, S. (2018) Interactions neuro-immunes dans la peau. Un lien entre douleur et immunité. Neuroimmune Interactions in the Skin: A Link between Pain and Immunity. Medicine Sciences, 34, 432-438.
https://doi.org/10.1051/medsci/20183405016
[15] Walk, D. (2018) Measures of Cutaneous Pain Perception and Nociceptor Density: More than Skin Deep. Muscle & Nerve, 58, 472-474.
https://doi.org/10.1002/mus.26199
[16] Misery, L., Loser, K. and Ständer, S. (2016) Sensitive Skin. Journal of the European Academy of Dermatology and Venereology, 30, 2-8.
https://doi.org/10.1111/jdv.13532
[17] Upton, D. and Andrews, A. (2013) Pain and Trauma in Negative Pressure Wound Therapy: A Review. International Wound Journal, 12, 100-105.
https://doi.org/10.1111/iwj.12059
[18] Bae, S., Ji, J., Oh, J., Won, J., Ryu, Y., Lee, H., et al. (2021) The Role of Skin Mast Cells in Acupuncture Induced Analgesia in Animals: A Preclinical Systematic Review and Meta-Analysis. The Journal of Pain, 22, 1560-1577.
https://doi.org/10.1016/j.jpain.2021.06.006
[19] Lee, E.K., Kim, M.K. and Lee, C.H. (2019) Skin-mountable Biosensors and Therapeutics: A Review. Annual Review of Biomedical Engineering, 21, 299-323.
https://doi.org/10.1146/annurev-bioeng-060418-052315
[20] Wójcik-Pastuszka, D., Stawicka, K., Dryś, A. and Musiał, W. (2023) Influence of HA on Release Process of Anionic and Cationic API Incorporated into Hydrophilic Gel. International Journal of Molecular Sciences, 24, Article 5606.
https://doi.org/10.3390/ijms24065606
[21] Kochhar, J.S., Lim, W.X.S., Zou, S., Foo, W.Y., Pan, J. and Kang, L. (2013) Microneedle Integrated Transdermal Patch for Fast Onset and Sustained Delivery of Lidocaine. Molecular Pharmaceutics, 10, 4272-4280.
https://doi.org/10.1021/mp400359w