循环miRNA在预测非小细胞肺癌转移中的研究进展
Study Progress of Circulating miRNA for Predicting Metastasis in Non-Small Cell Lung Cancer
DOI: 10.12677/acm.2024.1471982, PDF, HTML, XML, 下载: 31  浏览: 75 
作者: 丛靖靖, 王安娜, 刘凯静, 李红梅*:青岛大学附属医院肿瘤科,山东 青岛;李政霞:诸城市人民医院肿瘤科,山东 潍坊
关键词: 肺癌非小细胞肺癌转移生物标志物循环miRNALung Cancer Non-Small Cell Lung Cancer Metastasis Biomarkers Circulating miRNA
摘要: 肺癌是全球范围内癌症相关死亡的主要原因,非小细胞肺癌(NSCLC)是最常见的病理类型,远处转移是NSCLC相关死亡的重要原因。因此,有必要寻找新型分子生物标志物,识别具有高度转移风险的NSCLC患者,以进行更密切的随访和制定更个性化的治疗方法,从而改善NSCLC患者的生存。由于循环microRNA (miRNA)的诸多优点,如易获取性、高度稳定性、特异性、敏感性,故其作为预测NSCLC转移的分子生物标志物具有广阔的应用前景。本文对循环miRNA作为预测NSCLC转移生物标志物的作用进行了综述,以期为改善NSCLC的预后提供新的策略。
Abstract: Lung cancer is the leading cause of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) is the most common pathological type. The main cause of NSCLC-related deaths is distant metastasis. Therefore, it is necessary to find novel biomarkers to identify NSCLC patients with high metastatic risk for closer follow-up and more personalized treatment, thereby improving the survival of NSCLC patients. Because of the advantages, such as easy accessibility, high stability, specificity, and sensitivity, circulating microRNAs (miRNAs) have broad application prospects as molecular biomarkers for predicting NSCLC metastasis. In this review, the role of circulating miRNAs as biomarkers in predicting NSCLC metastasis is reviewed, in order to provide a new strategy for improving the prognosis of NSCLC.
文章引用:丛靖靖, 王安娜, 李政霞, 刘凯静, 李红梅. 循环miRNA在预测非小细胞肺癌转移中的研究进展[J]. 临床医学进展, 2024, 14(7): 65-73. https://doi.org/10.12677/acm.2024.1471982

1. 引言

肺癌是全球癌症相关死亡的主要原因,其中NSCLC约占80%~85% [1]。NSCLC又可分为腺癌、鳞状细胞癌、大细胞癌等。由于NSCLC早期缺乏特异性症状,及缺乏早期诊断方法,超过一半的患者在诊断时已是晚期,总体中位生存期7~12个月[2]。远处转移是NSCLC相关死亡的重要原因。对NSCLC转移做出早期诊断,并进行干预,对于改善患者的总生存期至关重要。

目前肺癌的诊断方法主要包括影像学检查、支气管内镜检查、经皮细针针吸活检等,但这些诊断方法均存在一定的局限性,表现为:① 影像学检查:包括X线、计算机断层扫描(CT)以及正电子发射断层扫描(PET-CT)。X线敏感性很低。CT是肺癌高危人群筛查的一种有效的方法,接受CT筛查的高危人群,肺癌死亡率可降低20% [3],基于这一结果,美国预防服务工作组建议对高危人群进行低剂量螺旋CT筛查[4],但是低剂量螺旋CT也有其局限性,其检测肺癌的特异性低,导致不必要的后续CT扫描或侵入性肺活检[5]。PET-CT作为一种非常有价值的非侵入性诊断方法,已被多个国际指南广泛采用,其诊断敏感性和特异性均明显高于CT,通过PET-CT对肿瘤分期可以避免不恰当的手术,但其对于10 mm以下的结节及代谢低的结节可能出现假阴性,且其对脑转移诊断价值有限[6]。② 支气管内镜或细针针吸活检:支气管内镜检查只局限于肺段口近端的支气管粘膜,无法检出周围型肺癌。经皮细针针吸活检无法检出中心型肺癌,两者均有创伤性,取材困难,只局限于肺部病灶的诊断,对发现肺外转移无意义。

因此,有必要寻找简单准确的预测肺癌转移的新型分子生物标志物,识别具有高度转移风险的NSCLC患者,以进行更密切的随访和制定更个性化的治疗方法,从而改善NSCLC患者的生存。肿瘤组织活检是目前主要的生物标志物分析方法,然而,这种方法也存在缺点,例如概括肿瘤异质性的能力有限、成本高和有创性等[7]。由于液体活检标本更容易获取,且安全、无创、可重复、操作简单,患者依从性更高等优点,近年来液体活检发展迅速,目前已知的液体活检生物标志物主要包括循环miRNA、循环肿瘤细胞(CTC)、循环肿瘤DNA (ctDNA)、无细胞DNA (cfDNA)、肿瘤外泌体、蛋白质、脂质等[1] [8]。由于miRNA的异常表达与癌症类型和癌症发展阶段相关,故检测异常表达的循环miRNA可用于监测癌症患者的转移[9]。本文重点讨论循环miRNA作为预测NSCLC转移的生物标志物的作用及研究进展。

2. miRNA

MiRNA是一类由19~24个核苷酸组成的短链非编码RNA,其通常通过与靶mRNA的3’-非翻译区(3’-UTR)以完全或不完全配对的方式结合,通过调节mRNA的稳定性或诱导mRNA的降解,而在转录后水平负性调节基因表达[10] [11]。但是,另有证据显示在特定条件下,miRNA也可促进靶mRNA的翻译[12]

据报道,大约60%的人类蛋白质编码基因接受miRNA的调控[13]。而且,一种miRNA可与多种mRNA结合,一种mRNA又被多种miRNA调控[14],这一特点决定了miRNA可参与多种生物学过程的调控。MiRNA在细胞生长发育、细胞周期、凋亡等过程中发挥着重要作用,在多种人类疾病中表达失调,包括癌症[10]

3. 循环miRNA

自20世纪90年代初miRNA被发现以来[15],随着分子遗传学及下一代测序技术的发展,已经鉴定出大量的miRNA。起初,认为miRNA仅在产生miRNA的细胞中调节其靶mRNA的表达,后来,发现miRNA还可被分泌到细胞外液中,并传递到其他细胞中发挥作用,这些被分泌到细胞外并进入体液的miRNA称为循环miRNA [16]。循环miRNA通过与RNA结合蛋白如AGO2或高密度脂蛋白(HDL)结合而受到保护,因此即使在恶劣条件下也非常稳定[17]。因为循环miRNA很容易通过非侵入性方法在体液中获取,而且具有很好的稳定性及高度的特异性和敏感性,使其成为理想的生物标志物[18]

4. miRNA作为预测NSCLC转移的生物标志物

NSCLC的生存期取决于诊断时的疾病阶段。韩国的一项研究显示,NSCLC的5年生存率I期为82%,II期为59%,III期为16%,IV期为10% [19],由以上数据可看出,当发生转移时,患者生存率明显下降。因此迫切需要寻找可以预测NSCLC转移的生物标志物,以改善患者的预后。癌细胞转移需要经历一系列步骤,受到肿瘤细胞、局部微环境和机体内环境等因素的调控,首先,癌细胞通过上皮–间质转化(EMT),与原发肿瘤脱离;然后,脱离的癌细胞侵入周围的血管或淋巴管,通过循环系统运输到远处部位,并从血管或淋巴管中渗出,癌细胞重新侵入新的部位,适应新的环境,最后增殖形成转移性肿瘤[20]。miRNA的异常表达与NSCLC的转移密切相关,凡是影响以上转移步骤的任何一个环节,都会对NSCLC的转移产生促进或抑制作用。

4.1. 对NSCLC有促进作用的miRNA

Wei CH等[21]研究发现,miR-330-3p的过表达可促进NSCLC细胞的增殖、迁移、侵袭和上皮–间质转化(EMT),促进NSCLC肿瘤发生。另有研究显示,与正常组织相比,miR-25在NSCLC组织中表达水平显著升高,且miR-25高表达的NSCLC患者较miR-25低表达患者预后更差,更易发生淋巴结转移,体外实验证实miR-25过表达可促进NSCLC细胞的增殖、迁移和侵袭[22] [23]。MiR-657也被证实其可促进NSCLC的肿瘤生长及上皮–间质转化[24]。还有多种miRNA已被证实对NSCLC的发展转移有促进作用,如miR-196b-5p [25]、miR-489-3p [26]、miR-31-3p [27]等。以上研究表明,miRNA对NSCLC转移有促进作用,可尝试通过检测异常表达的miRNA,来预测NSCLC转移。

4.2. 对NSCLC有抑制作用的miRNA

有研究证实,miR-101可通过抑制IDH2表达,来促进HIF1α的羟基化和降解,而下调HIF1α表达来抑制缺氧条件下的Warburg效应,从而抑制NSCLC肿瘤生长[28]。miR-130a同样通过抑制HIF1α的表达,从而抑制肿瘤生长[29]。Liu JT等[30]研究显示miR-615-3p通过抑制其下游靶基因IGF2的表达,而抑制NSCLC的生长和转移。同样,miR-98-5p通过靶向TGFBR1抑制NSCLC的生长和转移[31]。此外,还有大量miRNA已被证实对NSCLC的生长、增殖、迁移、侵袭、转移有抑制作用,如miR-340-5p [32]、miR-448 [33]、miR-485-5p [34]、miR-877 [35]等。以上研究表明,有大量miRNA对NSCLC的发生发展转移有抑制作用,这些抑制性miRNA有望成为NSCLC新的治疗靶点。

4.3. 循环miRNA与NSCLC

由于循环miRNA的高度稳定性及易获取性,有科研人员亦对循环miRNA对NSCLC的作用进行了研究。有研究发现,与健康受试者相比,NSCLC患者血浆中miR-320a水平显著下调,且miR-320a低表达的NSCLC患者较高表达者预后更差,在NSCLC细胞系中,miR-320a表达降低可促进细胞转移并抑制其凋亡,而过表达miR-320a可逆转这一作用,表明miR-320a对NSCLC发生发展转移有抑制作用[36]。同样Liu FY等[37]研究显示,与健康对照者相比,NSCLC患者的血清miR-629水平显著上调,且血清miR-629高表达组患者的总生存期和无病生存期均低于低表达组,表明miR-629对NSCLC发生发展转移有促进作用。以上研究表明,循环miRNA有望成为预测NSCLC复发转移的生物标志物。但是没有任何一个单一的miRNA在临床应用中是足够准确的,因此,需要建立生物标志物组合用来预测NSCLC的复发转移。如循环miR-21-5p和miR-126-3p组合,单一的循环miR-21-5p和miR-126-3p区分NSCLC和健康对照组的灵敏度分别为96.7和90%,而在二者组合使用时,灵敏度提高到了97% [38]。还有循环miRNA与CEA、CYFRA21-1的组合,有研究发现,CEA区分NSCLC患者和健康对照者的敏感性为75.00%,特异性为91.67%,CYFRA 21-1区分NSCLC患者和健康对照者的敏感性为74.32%,特异性为91.80%,而三者作为组合时,区分NSCLC患者和健康对照者的敏感性为89.19%,特异性为98.33% [39]。表明,循环miRNA组合诊断的敏感性及特异性均高于单一循环miRNA。

5. 循环miRNA的检测方法

5.1. Northern印迹法(Northern Blotting)

Northern印迹法是最早应用在检测miRNA的方法,它发现了第一个miRNA。其基本原理是RNA样本由限制性内切酶消化,通过琼脂糖凝胶电泳分离,变性后根据其在凝胶中的位置转移到硝酸纤维素膜或尼龙膜上,固定后与同位素或其他标记探针反应,洗涤探针后,可以通过放射自显影或其他合适的技术检测到miRNA。它不仅可以用于成熟miRNA的检测,还可以用于其前体的检测[40]。Northern印迹法虽然可以检测miRNA的相对分子大小和丰度,但其也存在低通量、耗时长等缺点,并且灵敏度和特异性较低[7],因此,无法检测到分子量较小的miRNA。

5.2. 逆转录定量聚合酶链反应(RT-qPCR)

尽管近年来已经开发了多种miRNA检测技术,但是RT-qPCR仍是目前miRNA检测的金标准,其具有灵敏度高、序列特异性强、动态范围大、成本低等优点[41],因此其通常被用于含量较小的miRNA表达水平的检测。虽然RT-qPCR具有灵敏度高、特异性强等优点,但应用仍然有其局限性,因RT-qPCR最初设计是用于检测长链RNA序列[42],而miRNA是短链RNA,引物设计困难,限制了其应用,而通过设计与miRNA部分互补的茎环或线性RT引物或通过使用poly(A)聚合酶解决了此问题[7]。因此,RT-qPCR的准确定量依赖于多个步骤的相互衔接,为了获得准确和可重复的结果,需要考虑RNA提取、RNA完整度、cDNA合成、引物设计、扩增检测和数据统计等因素。

5.3. 微阵列(Microarray)技术

微阵列技术是一种快速、高通量检测miRNA的方法。微阵列取决于杂交探针,根据杂交信号强度定量基因相对表达水平,首先从样本中提取总RNA,然后构建cDNA文库,将cDNA与预先设计的带荧光标记的DNA探针在固体表面混合,互补序列将与微阵列中的标记探针杂交,通过检测微阵列的探针荧光强度,可获得各基因的相对表达谱。微阵列是生物医学研究中的有力工具,并且已经成为高通量多重分析,特别是DNA和蛋白质分析中不可或缺的[43]

5.4. 下一代测序(NGS)技术

又称为二代测序、高通量测序,是基于PCR和芯片技术发展而来的测试技术。NGS可以对基因组的成百上千个基因、甚至全部人类基因进行大规模的平行测序,同时对产生的数十万至数百万的数据进行同时读取。NGS可准确鉴别不同的miRNA,即使是高度同源的序列。NGS已成为检测miRNA的重要方法,原因是其比微阵列更敏感,并且具有不需要预先知道靶序列的优点,随着测序成本的降低,NGS有望成为检测循环miRNA的主要技术[44]

5.5. 滚环扩增(RCA)技术

RCA是一种恒温酶促过程,其使用环状DNA模板和特殊DNA或RNA聚合酶扩增短DNA或RNA引物以形成长单链DNA或RNA。与PCR不同,RCA可以在恒温下,在溶液中、固体支持物上或复杂的生物环境中进行[45]。典型的RCA反应系统有五部分组成:DNA/RNA聚合酶、短DNA/RNA线性单链引物、环状模板(称为锁环探针)、用于锁环探针特异性环化的连接酶、原料dNTP/NTP。与其它扩增技术相比,RCA有如下优势:首先,锁环探针连接需要严格的互补性,其赋予RCA高度特异性;其次,通过引入多个引物,可以很容易的实现指数扩增,具有良好的灵敏度;再次,RCA可通过操纵环状模板来定制产物,从而产生功能性核酸;最后,RCA具有良好的生物相容性,特别适合于原位检测[46]。RCA已成为检测癌症生物标志物有效且有潜力的工具。

5.6. 表面等离子体共振(SPR)技术

SPR是一种光学传感器技术,其检测局部折射率的变化,以评估金属表面处的分子结合,其可用于研究安装的生物分子和分析物之间的相互作用[47]。SPR技术可以快速并以较小的侵入性检测各种循环生物标志物[47]。与其它常规技术相比,SPR的传感器有高敏感性、可重复性、无需标记、实时监测、所需样本量少等优点[48]。基于上述特点,SPR技术是用于检测生物标志物的一种非常有前景的技术。

5.7. 表面增强拉曼散射(SERS)技术

SERS是一种高灵敏度的振动光谱技术,具有分辨率高、抗干扰能力强、对样品无破坏等特点[49]。自从1977年发现粗糙化的金属表面可以使分子的拉曼信号增强几个数量级以来,SERS得到了广泛的研究[50]。SERS作为一种高灵敏度和非侵入性的技术,已应用于各种领域,如SERS已经用于检测肝细胞癌早期诊断和预后相关的miRNA [51]

6. 循环miRNA作为生物标志物存在的挑战

首先,循环miRNA的检测和精确定量是一个巨大的技术挑战。因为miRNA在生物流体中存在的量很少,且浓度范围较大,因此检测方法需要有足够的灵敏度,并且需要跨越至少四个数量级的动态范围[41]。同时,miRNA序列非常短,且具有非常高的同源性,因此,检测方法需要有高度的特异性[7]。此外,由于健康细胞和肿瘤细胞释放的miRNA之间的差异通常是非常小的,因此检测方法又需要有高度的准确度和精确度[7]

其次,血细胞miRNA会影响循环miRNA的水平,如在样品制备或提取过程中可能发生溶血,红细胞破裂致其内含有的miRNA释放,可能会影响循环miRNA的水平[52]。因此,通常全血不作为用于循环miRNA检测的优选生物流体,而是使用血浆和血清进行miRNA检测。然而,血清或血浆中残留血小板亦会影响循环miRNA的水平,因此,在制备标准血清或血浆的基础上,需对血清或血浆进一步离心,以尽可能去除可能影响miRNA精确定量的血小板成分[53]

最后,循环miRNA作为生物标志物进行临床转化的可重复性差。在最初检测阶段,通常采用各种检测技术对大量miRNA进行高通量筛选[54],然而,许多研究样本量相对较少,增加了误差,降低了研究的准确度。另外,不同来源的样本也是导致可重复性差的一个原因[8],如年龄不同其miRNA表达水平也不同[55],因此在实验研究中,应该根据统计学方法计算样本量,并设置年龄匹配的对照,以增加研究的准确度。

7. 结论与展望

由于循环miRNA的多种优点,如易获取性、高度稳定性、特异性、敏感性等,故其作为预测NSCLC转移的生物标志物具有巨大的前景和潜力,但是,目前仍存在许多困难和挑战,还需要进行大规模的研究进行论证。循环miRNA作为生物标志物进入临床实践还需要一个漫长的过程,但是我们相信,经过科学家们的不断探索,循环miRNA未来必将成为预测NSCLC转移的强有力工具。

NOTES

*通讯作者。

参考文献

[1] Chen, P., Liu, Y., Wen, Y. and Zhou, C. (2022) Non‐Small Cell Lung Cancer in China. Cancer Communications, 42, 937-970.
https://doi.org/10.1002/cac2.12359
[2] Yang, Z., Wang, H., Zhao, Z., Jin, Y., Zhang, Z., Tan, J., et al. (2022) Gene-microRNA Network Analysis Identified Seven Hub Genes in Association with Progression and Prognosis in Non-Small Cell Lung Cancer. Genes, 13, Article 1480.
https://doi.org/10.3390/genes13081480
[3] National Lung Screening Trial Research Team, Aberle, D.R., Adams, A.M., et al. (2011) Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England Journal of Medicine, 365, 395-409.
https://doi.org/10.1056/nejmoa1102873
[4] Moyer, V.A. (2014) Screening for Lung Cancer: U.S. Preventive Services Task Force Recommendation Statement. Annals of Internal Medicine, 160, 330-338.
https://doi.org/10.7326/m13-2771
[5] Bach, P.B., Mirkin, J.N., Oliver, T.K., Azzoli, C.G., Berry, D.A., Brawley, O.W., et al. (2012) Benefits and Harms of CT Screening for Lung Cancer. JAMA, 307, 2418-2429.
https://doi.org/10.1001/jama.2012.5521
[6] Owens, C., Hindocha, S., Lee, R., Millard, T. and Sharma, B. (2023) The Lung Cancers: Staging and Response, CT, 18F-FDG PET/CT, MRI, DWI: Review and New Perspectives. The British Journal of Radiology, 96, Article ID: 20220339.
https://doi.org/10.1259/bjr.20220339
[7] Jet, T., Gines, G., Rondelez, Y. and Taly, V. (2021) Advances in Multiplexed Techniques for the Detection and Quantification of microRNAs. Chemical Society Reviews, 50, 4141-4161.
https://doi.org/10.1039/d0cs00609b
[8] Cheong, J.K., Tang, Y.C., Zhou, L., Cheng, H. and Too, H. (2022) Advances in Quantifying Circulatory microRNA for Early Disease Detection. Current Opinion in Biotechnology, 74, 256-262.
https://doi.org/10.1016/j.copbio.2021.12.007
[9] Baldasici, O., Pileczki, V., Cruceriu, D., Gavrilas, L.I., Tudoran, O., Balacescu, L., et al. (2022) Breast Cancer-Delivered Exosomal Mirna as Liquid Biopsy Biomarkers for Metastasis Prediction: A Focus on Translational Research with Clinical Applicability. International Journal of Molecular Sciences, 23, Article 9371.
https://doi.org/10.3390/ijms23169371
[10] Ravegnini, G., Gorini, F., De Crescenzo, E., De Leo, A., De Biase, D., Di Stanislao, M., et al. (2021) Can mirnas Be Useful Biomarkers in Improving Prognostic Stratification in Endometrial Cancer Patients? An Update Review. International Journal of Cancer, 150, 1077-1090.
https://doi.org/10.1002/ijc.33857
[11] Khan, P., Ebenezer, N.S., Siddiqui, J.A., Maurya, S.K., Lakshmanan, I., Salgia, R., et al. (2022) MicroRNA-1: Diverse Role of a Small Player in Multiple Cancers. Seminars in Cell & Developmental Biology, 124, 114-126.
https://doi.org/10.1016/j.semcdb.2021.05.020
[12] Marcuello, M., Vymetalkova, V., Neves, R.P.L., Duran-Sanchon, S., Vedeld, H.M., Tham, E., et al. (2019) Circulating Biomarkers for Early Detection and Clinical Management of Colorectal Cancer. Molecular Aspects of Medicine, 69, 107-122.
https://doi.org/10.1016/j.mam.2019.06.002
[13] Friedman, R.C., Farh, K.K., Burge, C.B. and Bartel, D.P. (2008) Most Mammalian mRNAs Are Conserved Targets of microRNAs. Genome Research, 19, 92-105.
https://doi.org/10.1101/gr.082701.108
[14] Bartel, D.P. (2009) microRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-233.
https://doi.org/10.1016/j.cell.2009.01.002
[15] Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854.
https://doi.org/10.1016/0092-8674(93)90529-y
[16] Martinez, M.A., Tural, C. and Franco, S. (2022) Circulating microRNAs as a Tool for Diagnosis of Liver Disease Progression in People Living with HIV-1. Viruses, 14, Article 1118.
https://doi.org/10.3390/v14061118
[17] El-Hefnawy, T., Raja, S., Kelly, L., Bigbee, W.L., Kirkwood, J.M., Luketich, J.D., et al. (2004) Characterization of Amplifiable, Circulating RNA in Plasma and Its Potential as a Tool for Cancer Diagnostics. Clinical Chemistry, 50, 564-573.
https://doi.org/10.1373/clinchem.2003.028506
[18] Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) microRNA-based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article 7167.
https://doi.org/10.3390/ijms23137167
[19] Jeon, D.S., Kim, H.C., Kim, S.H., Kim, T., Kim, H.K., Moon, M.H., et al. (2023) Five-Year Overall Survival and Prognostic Factors in Patients with Lung Cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015. Cancer Research and Treatment, 55, 103-111.
https://doi.org/10.4143/crt.2022.264
[20] Ahn, Y. and Ko, Y.H. (2020) Diagnostic and Therapeutic Implications of microRNAs in Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 21, Article 8782.
https://doi.org/10.3390/ijms21228782
[21] Wei, C., Zhang, R., Cai, Q., Gao, X., Tong, F., Dong, J., et al. (2019) microRNA-330-3P Promotes Brain Metastasis and Epithelial-Mesenchymal Transition via GRIA3 in Non-Small Cell Lung Cancer. Aging, 11, 6734-6761.
https://doi.org/10.18632/aging.102201
[22] Liu, B. and Sun, X. (2019) miR-25 Promotes Invasion of Human Non-Small Cell Lung Cancer via CDH1. Bioengineered, 10, 271-281.
https://doi.org/10.1080/21655979.2019.1632668
[23] Wu, T., Hu, H., Zhang, T., Jiang, L., Li, X., Liu, S., et al. (2019) miR-25 Promotes Cell Proliferation, Migration, and Invasion of Non-Small-Cell Lung Cancer by Targeting the LATS2/YAP Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 9719723.
https://doi.org/10.1155/2019/9719723
[24] Zhang, Y., Yuan, J., Guo, M., Xiang, R., Wang, X., Xie, T., et al. (2022) miR-657 Targets SRCIN1 via the Slug Pathway to Promote NSCLC Tumor Growth and EMT Induction. Disease Markers, 2022, Article ID: 4842454.
https://doi.org/10.1155/2022/4842454
[25] Huang, X., Xiao, S., Zhu, X., Yu, Y., Cao, M., Zhang, X., et al. (2020) miR-196B-5P-mediated Downregulation of FAS Promotes NSCLC Progression by Activating IL6-STAT3 Signaling. Cell Death & Disease, 11, Article No. 785.
https://doi.org/10.1038/s41419-020-02997-7
[26] Zhang, P., Li, L., Wang, B., Ran, X., Yang, S., Luo, Y., et al. (2022) miR-489-3p Promotes Malignant Progression of Non-Small Cell Lung Cancer through the Inactivation of Wnt/β-Catenin Signaling Pathway via Regulating USP48. Respiratory Research, 23, Article No. 93.
https://doi.org/10.1186/s12931-022-01988-w
[27] Zeng, X., Liu, D., Peng, G., Liu, J. and Yang, H. (2022) Mirorna-31-3p Promotes the Invasion and Metastasis of Non-Small-Cell Lung Cancer Cells by Targeting Forkhead Box 1 (FOXO1). Computational and Mathematical Methods in Medicine, 2022, Article ID: 4597087.
https://doi.org/10.1155/2022/4597087
[28] Han, L., Zhang, Y., Zhao, B., Yue, J., Chen, Z., Lei, G., et al. (2022) MicroRNA 101 Attenuated NSCLC Proliferation through IDH2/HIFα Axis Suppression in the Warburg Effect. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 4938811.
https://doi.org/10.1155/2022/4938811
[29] Shi, J., Wang, H., Feng, W., Huang, S., An, J., Qiu, Y., et al. (2020) MicroRNA-130a Targeting Hypoxia-Inducible Factor 1 α Suppresses Cell Metastasis and Warburg Effect of NSCLC Cells under Hypoxia. Life Sciences, 255, Article ID: 117826.
https://doi.org/10.1016/j.lfs.2020.117826
[30] Liu, J., Jia, Y., Jia, L., Li, T., Yang, L. and Zhang, G. (2019) MicroRNA 615-3p Inhibits the Tumor Growth and Metastasis of NSCLC via Inhibiting IGF2. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 27, 269-279.
https://doi.org/10.3727/096504018x15215019227688
[31] Jiang, F., Yu, Q., Chu, Y., Zhu, X., Lu, W., Liu, Q., et al. (2018) MicroRNA-98-5p Inhibits Proliferation and Metastasis in Non-Small Cell Lung Cancer by Targeting TGFBR1. International Journal of Oncology, 54, 128-138.
https://doi.org/10.3892/ijo.2018.4610
[32] Lu, G. and Zhang, Y. (2019) MicroRNA-340-5p Suppresses Non-Small Cell Lung Cancer Cell Growth and Metastasis by Targeting ZNF503. Cellular & Molecular Biology Letters, 24, Article No. 34.
https://doi.org/10.1186/s11658-019-0161-1
[33] Gao, J., Feng, X., Wang, F., Wang, J., Wang, H., Li, H., et al. (2019) MicroRNA-448 Inhibits the Progression of Non‐Small-Cell Lung Cancer through Regulating IRS2. Journal of Cellular Biochemistry, 120, 13453-13463.
https://doi.org/10.1002/jcb.28619
[34] Huang, R., Zheng, Y., Li, C., Ding, C., Xu, C. and Zhao, J. (2018) MicroRNA-485-5p Suppresses Growth and Metastasis in Non-Small Cell Lung Cancer Cells by Targeting IGF2BP2. Life Sciences, 199, 104-111.
https://doi.org/10.1016/j.lfs.2018.03.005
[35] Bai, X., He, C., Fu, B., Kong, X., Bu, J., Zhu, K., et al. (2020) MicroRNA-877 Contributes to Decreased Non-Small Cell Lung Cancer Cell Growth via the PI3K/AKT Pathway by Targeting Tartrate Resistant Acid Phosphatase 5 Activity. Cell Cycle, 19, 3260-3276.
https://doi.org/10.1080/15384101.2020.1839697
[36] Khandelwal, A., Sharma, U., Barwal, T.S., Seam, R.K., Gupta, M., Rana, M.K., et al. (2021) Circulating miR-320a Acts as a Tumor Suppressor and Prognostic Factor in Non-Small Cell Lung Cancer. Frontiers in Oncology, 11, Article 645475.
https://doi.org/10.3389/fonc.2021.645475
[37] Liu, F., Li, T., Hu, P. and Dai, L. (2021) Upregulation of Serum Mir-629 Predicts Poor Prognosis for Non-Small-Cell Lung Cancer. Disease Markers, 2021, Article ID: 8819934.
https://doi.org/10.1155/2021/8819934
[38] Soliman, S.E., Abdelaleem, A.H., Alhanafy, A.M., Ibrahem, R.A.L., Elhaded, A.S.A. and Assar, M.F.A. (2021) Circulating miR-21-5p and miR-126-3p: Diagnostic, Prognostic Value, and Multivariate Analysis in Non-Small-Cell Lung Cancer. Molecular Biology Reports, 48, 2543-2552.
https://doi.org/10.1007/s11033-021-06302-3
[39] Chen, L., Li, Y. and Lu, J. (2020) Identification of Circulating Mir-762 as a Novel Diagnostic and Prognostic Biomarker for Non-Small Cell Lung Cancer. Technology in Cancer Research & Treatment, 19.
https://doi.org/10.1177/1533033820964222
[40] Torres, A.G., Fabani, M.M., Vigorito, E. and Gait, M.J. (2011) MicroRNA Fate upon Targeting with Anti-Mirna Oligonucleotides as Revealed by an Improved Northern-Blot-Based Method for miRNA Detection. RNA, 17, 933-943.
https://doi.org/10.1261/rna.2533811
[41] Gines, G., Menezes, R., Xiao, W., Rondelez, Y. and Taly, V. (2020) Emerging Isothermal Amplification Technologies for MicroRNA Biosensing: Applications to Liquid Biopsies. Molecular Aspects of Medicine, 72, Article ID: 100832.
https://doi.org/10.1016/j.mam.2019.11.002
[42] Tiberio, P., Callari, M., Angeloni, V., Daidone, M.G. and Appierto, V. (2015) Challenges in Using Circulating miRNAs as Cancer Biomarkers. BioMed Research International, 2015, Article ID: 731479.
https://doi.org/10.1155/2015/731479
[43] Brittain, W.J., Brandsetter, T., Prucker, O. and Rühe, J. (2019) The Surface Science of Microarray Generation—A Critical Inventory. ACS Applied Materials & Interfaces, 11, 39397-39409.
https://doi.org/10.1021/acsami.9b06838
[44] Wong, R.K.Y., MacMahon, M., Woodside, J.V. and Simpson, D.A. (2019) A Comparison of RNA Extraction and Sequencing Protocols for Detection of Small RNAs in Plasma. BMC Genomics, 20, Article No. 446.
https://doi.org/10.1186/s12864-019-5826-7
[45] Ali, M.M., Li, F., Zhang, Z., Zhang, K., Kang, D., Ankrum, J.A., et al. (2014) Rolling Circle Amplification: A Versatile Tool for Chemical Biology, Materials Science and Medicine. Chemical Society Reviews, 43, 3324-3341.
https://doi.org/10.1039/c3cs60439j
[46] Xu, L., Duan, J., Chen, J., Ding, S. and Cheng, W. (2021) Recent Advances in Rolling Circle Amplification-Based Biosensing Strategies—A Review. Analytica Chimica Acta, 1148, 238187.
https://doi.org/10.1016/j.aca.2020.12.062
[47] Das, S., Devireddy, R. and Gartia, M.R. (2023) Surface Plasmon Resonance (SPR) Sensor for Cancer Biomarker Detection. Biosensors, 13, Article 396.
https://doi.org/10.3390/bios13030396
[48] Singh, G.P. and Sardana, N. (2022) Smartphone-based Surface Plasmon Resonance Sensors: A Review. Plasmonics, 17, 1869-1888.
https://doi.org/10.1007/s11468-022-01672-1
[49] Guo, X., Li, J., Arabi, M., Wang, X., Wang, Y. and Chen, L. (2020) Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors. ACS Sensors, 5, 601-619.
https://doi.org/10.1021/acssensors.9b02039
[50] Li, M., Qiu, Y., Fan, C., Cui, K., Zhang, Y. and Xiao, Z. (2018) Design of SERS Nanoprobes for Raman Imaging: Materials, Critical Factors and Architectures. Acta Pharmaceutica Sinica B, 8, 381-389.
https://doi.org/10.1016/j.apsb.2018.01.010
[51] Wu, J., Zhou, X., Li, P., Lin, X., Wang, J., Hu, Z., et al. (2021) Ultrasensitive and Simultaneous SERS Detection of Multiplex MicroRNA Using Fractal Gold Nanotags for Early Diagnosis and Prognosis of Hepatocellular Carcinoma. Analytical Chemistry, 93, 8799-8809.
https://doi.org/10.1021/acs.analchem.1c00478
[52] Kirschner, M.B., Kao, S.C., Edelman, J.J., Armstrong, N.J., Vallely, M.P., van Zandwijk, N., et al. (2011) Haemolysis during Sample Preparation Alters MicroRNA Content of Plasma. PLOS ONE, 6, e24145.
https://doi.org/10.1371/journal.pone.0024145
[53] Cheng, H.H., Yi, H.S., Kim, Y., Kroh, E.M., Chien, J.W., Eaton, K.D., et al. (2013) Plasma Processing Conditions Substantially Influence Circulating MicroRNA Biomarker Levels. PLOS ONE, 8, e64795.
https://doi.org/10.1371/journal.pone.0064795
[54] Mestdagh, P., Hartmann, N., Baeriswyl, L., Andreasen, D., Bernard, N., Chen, C., et al. (2014) Evaluation of Quantitative Mirna Expression Platforms in the MicroRNA Quality Control (miRQC) Study. Nature Methods, 11, 809-815.
https://doi.org/10.1038/nmeth.3014
[55] Fehlmann, T., Lehallier, B., Schaum, N., Hahn, O., Kahraman, M., Li, Y., et al. (2020) Common Diseases Alter the Physiological Age-Related Blood MicroRNA Profile. Nature Communications, 11, Article No. 5958.
https://doi.org/10.1038/s41467-020-19665-1