TransPRK、SMILE及FS-LASIK术后早期角膜光密度的对比研究
Comparison of Early Postoperative Corneal Densitometry Changes in TransPRK, SMILE, and FS-LASIK for Myopia Patients
摘要: 目的:对比TransPRK、SMILE、FS-LASIK术后早期患者角膜光密度变化。方法:回顾性对照研究,收集2020年1月至2023年6月205名行近视激光手术的患者右眼资料(TransPRK 76眼、SMILE 66眼、FS-LASIK 63眼),包括术前、术后1月及3月用Pentacam测角膜光密度(corneal densitometry, CD),使用重复测量方差分析对比三个不同层次(前、中、后层)、三个直径范围(0~2 mm、2~6 mm及6~10 mm) CD值差异。结果:TransPRK组术后1月比较术前的角膜前层2~6 mm及中层0~2 mm范围CD值增加(p均<0.001),且中层0~2 mm范围CD高于FS-LASIK组(p = 0.012),术后3月相较术前的角膜中、后层的0~2 mm、2~6 mm范围的CD均增加(p均<0.01),此时中层0~2 mm范围CD高于其他两手术组(p均<0.01),后层0~2 mm范围CD高于FS-LASIK组(p = 0.025)。SMILE组术后1月相较术前,前层2~6 mm范围及中层0~2 mm、2~6 mm范围CD增加(p均<0.05)。FS-LASIK组术后3月前层全范围及中层2~6 mm范围CD均增加(p均<0.05)。结论:TransPRK对角膜中层0~2 mm CD影响显著,需加强术后早期管理。角膜中层0~2 mm CD值可作为观察术后角膜透明度改变的敏感指标。
Abstract: Objective: To compare the changes in corneal densitometry (CD) in patients following TransPRK, SMILE, and FS-LASIK surgeries in the early postoperative period. Methods: A retrospective controlled study was conducted to collect data from the right eyes of 205 patients who underwent refractive laser surgery from January 2020 to June 2023, including 76 eyes for TransPRK, 66 eyes for SMILE, and 63 eyes for FS-LASIK. Pentacam was used to measure corneal densitometry (CD) preoperatively, one month postoperatively, and three months postoperatively. Repeated measures analysis of variance was applied to compare the differences in CD values across three different layers (anterior, middle, and posterior) and three diameter ranges (0~2 mm, 2~6 mm, and 6~10 mm).Results: In the TransPRK group, there was a significant increase in CD values in the anterior layer (2~6 mm) and middle layer (0~2 mm) one month postoperatively compared to preoperative values (both p < 0.001). Additionally, the CD in the middle layer (0~2 mm) was higher than that in the FS-LASIK group (p = 0.012). At three months postoperatively, the CD values in the middle and posterior layers (0~2 mm and 2~6 mm) were significantly increased compared to preoperative values (both p < 0.01). Notably, the CD in the middle layer (0~2 mm) was higher than that in the other two surgical groups (both p < 0.01), and the CD in the posterior layer (0~2 mm) was higher than that in the FS-LASIK group (p = 0.025). In the SMILE group, there was an increase in CD values in the anterior layer (2~6 mm) and middle layer (0~2 mm and 2~6 mm) one month postoperatively compared to preoperative values (all p < 0.05). In the FS-LASIK group, there was a significant increase in CD values in the full range of the anterior layer and the middle layer (2~6 mm) three months postoperatively (all p < 0.05).Conclusion: TransPRK has a significant impact on the CD in the middle layer (0~2 mm) of the cornea, necessitating enhanced management in the early postoperative period. The CD value in the middle layer (0~2 mm) can serve as a sensitive indicator for observing changes in corneal transparency following surgery.
文章引用:罗俐, 周幼明, 尹欢, 张日平. TransPRK、SMILE及FS-LASIK术后早期角膜光密度的对比研究[J]. 眼科学, 2024, 13(2): 41-53. https://doi.org/10.12677/hjo.2024.132007

1. 引言

角膜是眼屈光的主要组成部分,其屈光度取决于光滑程度、曲率及其透明性。角膜光密度作为反映角膜透明和健康程度的客观定量评估指标[1],已广泛应用于角膜疾病的诊疗及内眼手术和角膜接触镜对角膜的影响的评估及随访[2]-[8],同时也广泛应用在角膜屈光手术预后评估方面[9]-[12]。F Poyales等观察了336名患者角膜屈光手术前后角膜光密度的变化,认为光密度测量是临床医生评价角膜愈合反应及混浊程度的客观指标[13]。当角膜受手术等因素影响,其内部生理结构会发生变化,导致透明度降低和光散射增加,即表现为角膜光密度值增加。Pentacam Scheimpflug三维眼前节分析系统作为一种非接触性检查,可客观、快速、高重复性地获取角膜光密度值[14]。随着角膜屈光手术的发展,目前主流的表层角膜屈光矫正手术是经上皮准分子激光屈光性角膜切除术(Transepithelial photorefractive keratectomy, TransPRK),板层角膜屈光矫正手术则有结合了飞秒激光安全制备超薄角膜瓣技术、准分子激光个体化角膜基质切削技术的优点的飞秒激光制瓣联合准分子激光原位角膜磨镶术(Femtosecond-assisted laser in-situ keratomileusis, FS-LASIK),以及利用飞秒激光精准聚焦定位的立体切割技术、在基质层内制作特定大小的透镜保持了前部角膜组织的结构完整性的飞秒激光辅助的小切口微透镜取出术(Small incision Lenticule Extraction, SMILE)。三种手术方式各有优缺点,在临床上得到广泛应用。本研究旨在通过Pentacam Scheimpflug三维眼前节分析系统对比分析TransPRK、FS-LASIK和SMILE手术前后角膜光密度的变化。

2. 方法

2.1. 研究对象

回顾分析2020年1月至2023年6月于汕头大学·香港中文大学联合汕头国际眼科中心行近视激光手术的患者数据(TransPRK组76例、FS-LASIK组63例、SMILE组66例),右眼纳入分析。本研究获汕头大学·香港中文大学联合汕头国际眼科中心伦理委员会批准(批件号:EC 20210901(8)-P03)。纳入标准:1) 年龄18~38岁的屈光不正患者,男女性别不限;2) 所有入组对象术前检查结果均符合相应手术指征(参照2015版《激光角膜屈光手术临床诊疗专家共识》[1]);3) 近视球镜度−1.0 D~−6.0 D,柱镜度绝对值≤5.0 D,等效球镜(spherical equivalent, SE) ≤ −6.0D;4) 术前最佳矫正视力(best corrected visual acuity, BCVA) ≥ 1.0; 5)术后1月及3月规律随访。排除标准:1) 有其他眼部疾病史、手术史及外伤史者;2) 有糖尿病、免疫性疾病、胶原性疾病、高血压等全身系统性疾病者;3) 出现严重的并发症,如:SMILE术中切口撕裂或基质透镜残留、FS-LASIK手术出现角膜瓣相关并发症者;4) Pentacam检查范围暴露欠佳;5) 随访数据缺失的。

2.2. 方法

1) 术前常规检查裸眼视力(uncorrected visual acuity, UCVA)、屈光度数(主观、客观及睫状肌麻痹验光法)、最佳矫正视力、裂隙灯检查、泪膜破裂时间、非接触式眼压检查,并使用Pentacam三维眼前节分析仪进行角膜地形图检查。术前3天常规使用0.3%左氧氟沙星滴眼液,每天4次滴双眼。所有患者均由同一位熟练掌握Trans-PRK、SMILE和FS-LASIK技术的高年资医师完成手术。

2) TransPRK组手术及用药:使用SCHWINDAMARIS 750RS准分子激光治疗系统(德国SCHWIND公司)对角膜上皮层及基质层进行消融,复方电解质眼内冲洗液冲洗术眼后,佩戴角膜绷带镜并于术后第5天取出。术后用药:左氧氟沙星滴眼液连续点眼1周,4次/天;双氯芬酸钠滴眼液点眼3天,4次/天;0.1%氟米龙滴眼液点眼2.5个月,第1个月4次/天,往后每半月减量一次;人工泪液点眼3个月,4次/天。

3) SMILE组手术及用药:VisuMax全飞秒激光屈光手术系统(德国Carl Zeiss公司)使用飞秒激光制作角膜透镜,并于角膜微切口取出基质透镜。术后用药:氧氟沙星眼膏睡前涂眼1周,左氧氟沙星滴眼液连续点眼1周,4次/天;0.1%氟米龙滴眼液点眼1个月,第1周4次/天,逐周减一次;人工泪液点眼3个月,4次/天。

4) FS-LASIK组手术及用药:ZIEMER FEMTO LDV飞秒激光治疗仪(瑞士Ziemer公司)使用飞秒激光制作角膜瓣后,翻转角膜瓣,通过SCHWINDAMARIS 750RS准分子激光治疗系统(德国SCHWIND公司)对基质层进行消融;使用复方电解质眼内冲洗液冲洗层间后复位角膜瓣。术后用药:左氧氟沙星滴眼液连续点眼1周,4次/天;0.1%氟米龙滴眼液点眼1个月,第1周4次/天,逐周减一次;人工泪液点眼3个月,4次/天。

5) 术后常规检查术后进行UCVA、屈光度数、BCVA、非接触眼压和裂隙灯检查,术后1个月及3个月通过Pentacam测量角膜光密度数值,分区为:前层(前60 μm)、中层、后层(后120 μm)及顶点周围0~2 mm、2~6 mm、6~10 mm、10~12 mm,如图1所示。由于10~12 mm受角膜直径、眼睑的影响较大,所以选择性分析前层(前60 μm)、中层及后层(后120 μm)的顶点周围0~2 mm,2~6 mm,6~10 mm的角膜光密度值,结果以灰度值表示,0为完全透明,100为完全混浊不透光。

Figure 1. The zonal measurements of corneal densitometry using the Pentacam anterior segment analyzer

1. Pentacam三维眼前节分析仪角膜光密度测量分区

2.3. 统计学方法

回顾性非随机对照研究。应用SPSS 25.0统计软件进行数据分析。符合正态分布的数据用均数 ± 标准差表示,差异性比较采用方差分析,不符合正态分布则以M (P25, P75)表示,采用Kruskal-Wallis H检验。三组间术前的年龄、暗室瞳孔大小、眼压、最薄点角膜厚度、角膜前表面曲率(前表面平坦曲率K1f、前表面陡峭曲率K2f)、眼轴,球镜、柱镜、SE及BCVA和术后的UCVA、SE及BCVA均采用单因素方差进行分析,三组间性别的构成采用卡方检验比较。三组间手术前后角膜光密度变化的对比采用重复测量方差进行分析。P < 0.05时差异具有统计学意义。

3. 结果

本研究共纳入205眼。TransPRK组患者共76例,其中男47例,女29例,年龄(23.25 ± 4.96)岁,术前SE (−3.45 ± 1.13) D,该组术后均未发生2级及以上的角膜上皮下雾状混浊;SMILE组共66人(66眼),其中男35例,女31例,年龄(24.77 ± 5.17)岁,术前SE (−3.81 ± 0.80) D;FS-LASIK组共63例,其中男30例,女33例,年龄(24.94 ± 4.84)岁,术前SE (−3.78 ± 1.01) D。三组间患者性别、年龄、暗室瞳孔大小、眼压、最薄点角膜厚度、角膜前表面曲率、眼轴、术前球镜、术前柱镜、术前SE及术前BCVA比较差异均无统计学意义(表1)。三组患者的术后1月及术后3月的UCVA、BCVA及SE均无统计学差异(表2)。

Table 1. Comparison of preoperative baseline data among three groups

1. 三组术前基线资料对比


TransPRK组

SMILE组

FS-LASIK组

p值

Mean ± SD

Mean ± SD

Mean ± SD

性别(男/女)

47/29

35/31

30/33

0.233

年龄

23.25 ± 4.96

24.77 ± 5.17

24.94 ± 4.84

0.086

暗室瞳孔大小

6.44 ± 0.82

6.32 ± 0.80

6.50 ± 0.83

0.436

续表

眼压

15.75 ± 2.56

15.58 ± 2.56

16.30 ± 2.56

0.256

术前角膜厚度

537.12 ± 38.53

547.55 ± 30.04

548.21 ± 34.74

0.104

K1f

42.85 ± 1.21

42.81 ± 1.25

42.76 ± 1.22

0.908

K2f

43.75 ± 1.29

43.83 ± 1.36

43.86 ± 1.39

0.886

眼轴

25.15 ± 0.81

25.34 ± 0.85

25.40 ± 0.79

0.172

术前球镜

−3.2 ± 1.13

−3.50 ± 0.74

−3.49 ± 1.02

0.128

术前柱镜

−0.48 ± 0.4

−0.64 ± 0.05

−0.56 ± 0.48

0.14

术前等效球镜

−3.45 ± 1.13

−3.81 ± 0.80

−3.78 ± 1.01

0.053

术前BCVA

−0.04 ± 0.05

−0.05 ± 0.05

−0.05 ± 0.04

0.246

p < 0.05具有统计学意义;Statistical significance was defined as p < 0.05.

Table 2. Comparison of postoperative visual acuity and refractive power among three groups

2. 三组术后视力、屈光度的对比


TransPRK

SMILE

FS-LASIK

p值

Mean ± SD

Mean ± SD

Mean ± SD

术后1月UCVA

−0.02 ± 0.07

−0.03 ± 0.06

−0.04 ± 0.07

0.230

术后1月SE

0.01 ± 0.21

0.02 ± 0.24

0.06 ± 0.27

0.469

术后1月BCVA

−0.05 ± 0.06

−0.05 ± 0.06

−0.06 ± 0.06

0.301

术后3月UCVA

−0.04 ± 0.08

−0.04 ± 0.05

−0.05 ± 0.06

0.657

术后3月SE

0.01 ± 0.23

−0.02 ± 0.18

0.03 ± 0.17

0.421

术后3月BCVA

−0.07 ± 0.06

−0.06 ± 0.06

−0.0 ± 0.06

0.860

p < 0.05具有统计学意义;Statistical significance was defined as p < 0.05.

术前及术后三种手术方式各层各范围角膜光密度结果见表3,三组重复测量方差分析主效应结果如表4所示,对测量时间与手术方式存在交互效应的数据进行简单效应分析(见表5)及两两对比分析(见图2图3)。结果表明术前三组在各层、各范围的角膜光密度无统计学差异。术后1月时,中层0~2 mm范围角膜光密度TransPRK组高于FS-LASIK组(角膜光密度平均值差值d = 0.858,p = 0.012),同时三组间对比结果提示前层各范围、后层各范围、中层其余范围的角膜光密度均无统计学差异。术后3月时,三组之间前层各范围角膜光密度两两对比无统计学差异;中层0~2 mm范围角膜光密度TransPRK组高于SMILE组及FS-LASIK组(d = 1.009, p = 0.004; d = 1.115, p = 0.002),该范围内SMILE组与FS-LASIK组之间无统计学差异;三组间中层其余范围角膜光密度无统计学差异。后层0~2 mm范围角膜光密度TransPRK组高于FS-LASIK组(d = 0.721, p = 0.025),三组间后层其余范围角膜光密度无显著统计学差异。

TransPRK组内,与术前相比,术后1月时,前层2~6 mm范围角膜光密度增加(d = 1.195, p < 0.001)、中层0~2 mm范围角膜光密度增加(d = 0.561, p = 0.001),其余各层各范围角膜光密度随时间变化无统计学差异。与术前相比,术后3月时,中层0~2 mm、2~6 mm范围角膜光密度均增加(d = 1.326, p < 0.001; d = 0.817, p < 0.001),后层0~2 mm、2~6 mm范围角膜光密度均增加(d = 0.687, p = 0.004; d = 0.614, p = 0.005);与术后1月相比,术后3月时中层0~2 mm、2~6 mm范围角膜光密度均增加(d = 0.766, p = 0.002; d = 0.571, p = 0.009)。其余各层各范围角膜光密度随时间的变化无统计学差异。

SMILE组内,与术前相比,术后1月时,前层2~6 mm范围角膜光密度增加(d = 0.950, p = 0.013),中层0~2 mm、2~6 mm范围角膜光密度均增加(d = 0.621, p = 0.001; d = 0.438, p = 0.006)。其余各层各范围角膜光密度随时间的变化无统计学差异。

FS-LASIK组内,与术前相比,术后1月时各层各范围角膜光密度随时间的变化无统计学差异。与术前相比,术后3个月时,前层0~2 mm、2~6 mm、6~10 mm范围角膜光密度均增加(d = 1.598, p = 0.039; d = 1.706, p = 0.007; d = 1.210, p = 0.027),中层2~6 mm范围角膜光密度增加(d = 0.554, p = 0.047)。与术后1月相比,术后3个月时前层0~2 mm、2~6 mm、6~10 mm范围角膜光密度均增加(d = 1.386, p = 0.046; d = 1.448, p = 0.011l; d = 1.314, p = 0.005),中层2~6 mm范围角膜光密度增加(d = 0.549, p = 0.028)。其余各层各范围角膜光密度随时间的变化无统计学差异。

Table 3. Comparison of corneal densitometry values at various layers and ranges among three groups*

3. 三组各层各范围的角膜光密度值*

层次

范围


术前



术后1月



术后3月


TransPRK

SMILE

FS-LASIK

TransPRK

SMILE

FS-LASIK

TransPRK

SMILE

FS-LASIK

前层

0~2 mm

18.78 ± 4.6

17.85 ± 3.30

17.55 ± 3.39

18.16 ± 4.30

18.76 ± 4.13

17.76 ± 3.97

19.08 ± 4.48

18.67 ± 4.34

19.15 ± 4.43

2~6 mm

17.08 ± 3.89

16.32 ± 2.78

16.03 ± 2.97

15.88 ± 3.48

17.27 ± 3.59

16.29 ± 3.39

16.86 ± 3.61

17.23 ± 3.93

17.74 ± 3.96

6~10 mm

16.84 ± 4.09

15.67 ± 2.73

15.77 ± 2.96

15.99 ± 4.26

15.91 ± 2.90

15.66 ± 2.85

16.50 ± 4.24

15.85 ± 3.80

16.98 ± 3.35

中层

0~2 mm

12.41 ± 1.67

12.21 ± 1.36

12.02 ± 1.39

12.97 ± 1.8

12.83 ± 1.73

12.11 ± 1.63

13.73 ± 2.13

12.72 ± 1.71

12.62 ± 1.62

2~6 mm

11.26 ± 1.38

11.13 ± 1.18

10.95 ± 1.29

11.50 ± 1.52

11.57 ± 1.41

10.96 ± 1.44

12.07 ± 1.71

11.49 ± 1.50

11.51 ± 1.45

6~10 mm

11.43 ± 1.75

11.34 ± 1.60

11.4 ± 1.94

11.45 ± 2.00

11.37 ± 1.74

11.23 ± 1.76

11.66 ± 2.00

11.27 ± 2.11

11.83 ± 1.90

后层

0~2 mm

10.17 ± 1.56

10.67 ± 1.73

10.36 ± 1.94

10.49 ± 1.60

10.58 ± 1.67

10.03 ± 1.86

10.86 ± 1.59

10.4 ± 1.59

10.14 ± 1.58

2~6 mm

9.37 ± 1.33

9.80 ± 1.49

9.56 ± 1.72

9.67 ± 1.41

9.82 ± 1.49

9.33 ± 1.67

9.99 ± 1.40

9.71 ± 1.50

9.57 ± 1.45

6~10 mm

9.70 ± 1.40

9.95 ± 1.35

9.91 ± 1.78

10.00 ± 1.66

10.07 ± 1.62

9.87 ± 1.68

10.23 ± 1.62

10.01 ± 1.94

10.31 ± 1.75

*以均数 ± 标准差表示*expressed as mean ± SD values

Table 4. Repeated measurement ANOVA of corneal densitometry (Main effect)

4. 角膜光密度重复测量方差分析(主效应)



0~2 mm

2~6 mm

6~10 mm

前层


F

p值

η2

F

p值

η2

F

p值

η2

时间

3.399

0.035

0.033

4.311

0.015

0.041

3.633

0.028

0.035

手术方式

0.422

0.656

0.004

0.267

0.766

0.003

0.764

0.467

0.008

时间 * 手术方式

2.861

0.023

0.028

6.778

<0.001

0.063

3.267

0.012

0.031

中层

时间

17.951

<0.001

0.152

10.819

<0.001

0.097

1.993

0.139

0.019

手术方式

6.092

0.003

0.057

2.985

0.053

0.029

0.257

0.774

0.003

时间 * 手术方式

3.384

0.010

0.032

2.444

0.046

0.024

1.450

0.217

0.014

后层

时间

0.469

0.626

0.005

1.353

0.261

0.013

3.609

0.029

0.035

手术方式

1.406

0.247

0.014

0.910

0.404

0.009

0.025

0.975

0.000

时间 * 手术方式

3.576

0.007

0.034

2.764

0.027

0.027

1.519

0.196

0.015

p < 0.05具有统计学意义;Statistical significance was defined as p < 0.05.

Table 5. Repeated measurement ANOVA of corneal densitometry (Simple effect)

5. 角膜光密度重复测量方差分析(简单效应)




0~2 mm

2~6 mm

6~10 mm




F

p值

η2

F

p值

η2

F

p值

η2

前层

手术方式

术前

1.979

0.141

0.019

1.901

0.152

0.018

2.689

0.070

0.026

术后1月

0.962

0.384

0.009

2.907

0.057

0.028

0.163

0.849

0.002

术后3月

0.222

0.801

0.002

0.914

0.403

0.009

1.407

0.247

0.014

时间

TransPRK

2.695

0.070

0.026

8.961

<0.001

0.082

4.770

0.009

0.045

SMILE

2.873

0.059

0.028

4.222

0.016

0.040

0.300

0.741

0.003

LASIK

3.414

0.035

0.033

5.040

0.007

0.048

5.126

0.007

0.049

中层

手术方式

术前

1.154

0.317

0.011

0.943

0.391

0.009

/

/

/

术后1月

4.714

0.010

0.045

3.423

0.035

0.033

/

/

/

术后3月

7.907

<0.001

0.073

3.210

0.042

0.031

/

/

/

时间

TransPRK

16.055

<0.001

0.138

7.781

0.001

0.072

/

/

/

SMILE

7.292

0.001

0.068

4.878

0.009

0.046

/

/

/

LASIK

2.644

0.074

0.026

3.606

0.029

0.035

/

/

/

后层

手术方式

术前

1.472

0.232

0.014

1.380

0.254

0.013

/

/

/

术后1月

1.968

0.142

0.019

1.766

0.174

0.017

/

/

/

术后3月

3.715

0.026

0.035

1.531

0.219

0.015

/

/

/

时间

TransPRK

5.245

0.006

0.050

5.191

0.006

0.049

/

/

/

SMILE

0.713

0.491

0.007

0.214

0.807

0.002

/

/

/

LASIK

1.878

0.156

0.018

1.764

0.174

0.017

/

/

/

p < 0.05具有统计学意义;Statistical significance was defined as p < 0.05.

Figure 2. Comparison of corneal densitometry at various layers and ranges among different surgical techniques at different time points. A. TransPRK group, B. SMILE group, C. FS-LASIK group; * represents p < 0.05 in pairwise comparison using repeated measures ANOVA; ** represents p < 0.001 in pairwise comparison using repeated measures ANOVA

2. 同种术式不同时间角膜各层、各范围角膜光密度的对比。A. TransPRK组,B. SMILE组,C. FS-LASIK组;*代表重复测量方差分析两两比较时p < 0.05;**代表重复测量方差分析两两比较时p < 0.001

Figure 3. Comparison of corneal densitometry at various layers and ranges among different surgical techniques at the same time point. A. Preoperatively, B. 1 month postoperatively, C. 3 months postoperatively; * represents p < 0.05 in pairwise comparison using repeated measures ANOVA

3. 同一时间不同术式角膜各层、各范围光密度对比。A. 术前,B. 术后1月,C. 术后3月;*代表重复测量方差分析两两比较时p < 0.05

将三组患者术前、术后1月、术后3月的角膜光密度与相应时间的BCVA、角膜厚度进行Pearson相关分析(见表6~8),发现角膜光密度与BCVA间无显著相关性(p均>0.05)。术前的前层0~2 mm范围和中层0~2 mm范围、2~6 mm范围角膜光密度均与角膜厚度无显著相关,但在术后1月和术后3月时成负相关呈微弱负相关(p均 < 0.05)。

Table 6. Pearson correlation analysis of corneal thickness, BCVA and corneal densitometry before sugery

6. 术前角膜厚度、最佳矫正视力与角膜光密度的相关分析


角膜光密度

前层

中层

后层

0~2 mm

2~6 mm

6~10 mm

0~2 mm

2~6 mm

6~10 mm

0~2 mm

2~6 mm

6~10 mm

术前最薄点角膜厚度

r

0.079

0.105

0.147

0.004

0.055

0.078

−0.002

0.022

0.014

p

0.26

0.136

0.035

0.954

0.433

0.265

0.976

0.759

0.838

术前BCVA

r

0.111

0.097

0.132

0.107

0.071

0.022

−0.052

−0.063

−0.03

p

0.113

0.166

0.059

0.127

0.314

0.754

0.456

0.368

0.673

p < 0.05具有统计学意义;Statistical significance was defined as p < 0.05.

Table 7. Pearson correlation analysis of corneal thickness, BCVA and corneal densitometry at 1 month after sugery

7. 术后1月角膜厚度、最佳矫正视力与角膜光密度的相关分析


角膜光密度

前层

中层

后层

0~2 mm

2~6 mm

6~10 mm

0~2 mm

2~6 mm

6~10 mm

0~2 mm

2~6 mm

6~10 mm

术后1月最薄点角膜厚度

r

−0.178

−0.132

0.026

−0.223

−0.174

−0.035

−0.095

−0.103

−0.099

p

0.011

0.059

0.707

0.001

0.013

0.614

0.176

0.141

0.156

术后1月BCVA

r

0.036

0.025

0.038

0.059

0.044

0.027

−0.021

−0.016

−0.002

p

0.605

0.722

0.589

0.398

0.533

0.705

0.77

0.815

0.972

p < 0.05具有统计学意义;Statistical significance was defined as p < 0.05.

Table 8. Pearson correlation analysis of corneal thickness, BCVA and corneal densitometry at 3 month after sugery

8. 术后3月角膜厚度、最佳矫正视力与角膜光密度的相关分析


角膜光密度

前层

中层

后层

0~2 mm

2~6 mm

6~10 mm

0~2 mm

2~6 mm

6~10 mm

0~2 mm

2~6 mm

6~10 mm

术后3月最薄点角膜厚度

r

−0.166

−0.116

0.069

−0.266

−0.198

−0.005

−0.118

−0.113

−0.078

p

0.017

0.098

0.329

p < 0.001

0.004

0.942

0.093

0.107

0.269

术后3月BCVA

r

0.069

0.081

0.077

0.066

0.055

0.07

−0.042

−0.043

0.027

p

0.323

0.25

0.271

0.349

0.437

0.322

0.554

0.536

0.701

p < 0.05具有统计学意义;Statistical significance was defined as p < 0.05.

4. 讨论与总结

在本研究中,三种手术方式的术后视力及屈光度没有显著性差异,既往有多个研究发现FS-LASIK与SMILE的屈光矫正效果无统计学差异[15]-[17],与本研究相符。Assaf Gershoni的研究结果表明,对于轻中度近视患者,FS-LASIK组在术后视力及残留屈光度上的表现略优于TransPRK组[18],这与本研究的结论不同,考虑可能的原因是Assaf Gershoni研究中组间术前屈光度及年龄基线资料不一致,且术后视力统计以最后一次为随访终点,但时间点不完全一致。而本研究中三组术前基线一致,选取的随访时点为术后1个月及术后3个月,患者角膜基本愈合良好;且本研究中TransPRK手术仪器结合了SmartPulse Technology (SPT)技术,增加了基质表面光滑性,减少了不规则性,进一步减少角膜混浊的发生,有助于视力预后。

TransPRK、SMILE以及FS-LASIK手术均作用于角膜基质,会造成一定的损伤,手术导致的角膜水肿和炎症,术后角膜胶原纤维的重塑均有可能导致角膜透明性下降[19]-[22]。本研究发现近视激光术后3个月内,FS-LASIK及TransPRK组术后角膜光密度总体随时间变化呈增加趋势,同时该特征在TransPRK组中层0~2 mm及2~6 mm范围尤为明显。考虑该范围位于手术涉及的主要光学区,因此上皮及基底膜受损明显、修复愈合反应明显,最终导致光密度的显著增加。SMILE组术后1个月时前层2~6 mm,中层0~2 mm,2~6 mm出现一过性角膜光密度增加,术后3个月时恢复术前水平,先增加后下降的角膜光密度变化趋势与既往研究结论一致[23]

本研究组间对比发现:TransPRK组中层0~2 mm范围角膜光密度,在术后1月时高于FS-LASIK组,且在术后3月时高于FS-LASIK组及SMILE组。TransPRK组后层0~2 mm角膜光密度在术后3月时也高于FS-LASIK组。考虑TransPRK作为表层手术,对角膜上皮基底膜及前弹力层的损伤最大,其固有的光斑直径会导致一定程度的角膜基质表面粗糙,基质表面不规则引发的上皮反应、以及维生素缺乏、干眼和紫外线照射均可导致上皮下雾状浑浊(Haze) [24]-[27],影响角膜的透明程度而影响屈光效果。文献报道Haze形成程度与角膜间质表面的不规则程度相关,并且发生率随着矫正度数和基质组织切除量的增加而增加[28] [29],常发生在术后1~3个月[29] [30]。在本研究中TransPRK组确有少数患者术眼出现2级以下Haze,可能造成该组角膜光密度增加,提示我们要加强TransPRK术后早期的管理,增加术后早期的复查频次,在术后1月到术后4月期间可每月随访一次。

我们对比发现SMILE组与FS-LASIK组的术后角膜光密度无统计学差异。有文献报道,术后1周、1月、3月、1年SMILE与FS-LASIK之间的光密度无统计学差异[31],与本研究结果结果一致,表明两种板层角膜屈光手术对角膜基质层的干扰及产生的愈合反应相当。另有研究显示术后第1天时SMILE前层0~2 mm,2~6 mm的角膜光密度高于FS-LASIK组,在术后3年时无统计学差异[23]。也有动物实验在炎症因子层面发现在术后3天、1周、1月时,SMILE手术比FS-LASIK手术产生更少的角膜组织的损伤、水肿和炎症反应[32],预期SMILE组的角膜光密度应较FS-LASIK更低。与本研究在临床临床观察结果不一致,原因可能时两个研究者使用的FS-LASIK设备不一样,且在我们的研究中未对术后1月内的多个时间节点进行观察分析。

本研究发现术前角膜厚度与前层0~2 mm范围、中层0~2 mm、2~6 mm范围的角膜光密度无显著相关,但术后却呈现负相关。这与Charpentier等的研究一致,该团队发现术中切削深度越深,术后角膜损伤更明显,光密度更高[12]。可能与手术切削角膜基质越多,造成肌成纤维细胞显著增加,从而引发角膜胶原纤维排列紊乱有关[19] [33],但仍需进一步研究证明。

本研究存在局限性,第一:本研究为回顾性研究,存在数据缺失的情况导致样本量相对较小,不足以支撑对比分析低、中、高度近视对术后角膜光密度的影响,且未纳入角膜生物力学等更多角膜相关参数进行全面分析。检查过程中无法完全排除泪膜干扰的影响。第二:本研究随访时点为1个月及3个月,此阶段角膜已基本愈合但还不是最后稳定状态,而忽略了术后更稳定时期角膜光密度的变化。第三:TransPRK组虽未出现2级及以上程度Haze,但分析过程中未根据Haze程度进行亚组分析,未进行TransPRK术后光密度改变与Haze的关联性分析。第四:可通过扩大样本量,增加随访时间点,有助于进一步分析三种手术方式的视力变化及角膜愈合情况。

综上所述,TransPRK、SMILE和FS-LASIK均可达到满意的屈光矫正效果。由于术后3个月内,TransPRK对中层0~2 mm范围角膜光密度的影响高于SMILE、FS-LASIK,提示我们在术后早期要加强对TransPRK患者的管理。中层0~2 mm范围角膜光密度或许可以作为一个敏感指标用于观察角膜透明度的改变。

利益冲突

本研究无任何利益冲突。

作者贡献

罗俐:参与课题设计,文章撰写,根据编辑部的修改意见进行修改;周幼明:参与数据初步的统计分析、资料的分析、撰写论文。尹欢:收集数据及参与选题;张日平:参与选题、设计和论文结果、结论的指导核修。罗俐与周幼明在文章中贡献一致。

基金项目

1) 广东省医学科学技术研究基金(A2022170);

2) 汕头市科技计划项目(220520096490385);

3) 汕头大学·香港中文大学联合汕头国际眼科中心院内项目(20-010)。

NOTES

*通讯作者。

参考文献

[1] Ní Dhubhghaill, S., Rozema, J.J., Jongenelen, S., Ruiz Hidalgo, I., Zakaria, N. and Tassignon, M. (2014) Normative Values for Corneal Densitometry Analysis by Scheimpflug Optical Assessment. Investigative Opthalmology & Visual Science, 55, 162-168.
https://doi.org/10.1167/iovs.13-13236
[2] Shah, K., Eghrari, A.O., Vanner, E.A., O’Brien, T.P. and Koo, E.H. (2021) Scheimpflug Corneal Densitometry Values and Severity of Guttae in Relation to Visual Acuity in Fuchs Endothelial Corneal Dystrophy. Cornea, 41, 692-698.
https://doi.org/10.1097/ico.0000000000002762
[3] Mounir, A., Awny, I., Yousef, H. and Mostafa, E. (2023) Distribution of Corneal Densitometry in Different Grades of Keratoconus. Indian Journal of Ophthalmology, 71, 830-836.
https://doi.org/10.4103/ijo.ijo_1792_22
[4] Wei, S., Li, J., Li, Y., Zhang, Y., Cai, Y., Du, J., et al. (2022) Corneal Densitometry in Bilateral Keratoconus Patients with Unilateral Corneal Vogt’s Striae: A Contralateral Eye Study. International Ophthalmology, 43, 885-897.
https://doi.org/10.1007/s10792-022-02491-3
[5] El Zarif, M., Alió del Barrio, J.L., Mingo, D., A Jawad, K. and Alió, J.L. (2022) Corneal Stromal Densitometry Evolution in a Clinical Model of Cellular Therapy for Advanced Keratoconus. Cornea, 42, 332-343.
https://doi.org/10.1097/ico.0000000000003152
[6] Hsieh, T., Yu, H., Yang, I., Ho, R., Hsiao, Y., Fang, P., et al. (2021) Simultaneously Monitoring Whole Corneal Injury with Corneal Optical Density and Thickness in Patients Undergoing Cataract Surgery. Diagnostics, 11, Article 1639.
https://doi.org/10.3390/diagnostics11091639
[7] Zhao, J., Yang, W., Zhao, J., Shen, Y., Sun, L., Han, T., et al. (2021) A Four-Year Observation of Corneal Densitometry after Implantable Collamer Lens V4c Implantation. Annals of Translational Medicine, 9, 536-536.
https://doi.org/10.21037/atm-20-6628
[8] Zhang, Y.E., Ouzzani, M., Wright, C. and Sorbara, L. (2023) Changes in Corneal Thickness, Corneal Volume, and Densitometry after Long-Term Orthokeratology Wear. Contact Lens and Anterior Eye, 46, 101703.
https://doi.org/10.1016/j.clae.2022.101703
[9] Wei, R., Li, M., Yang, W., Shen, Y., Zhao, Y., Fu, D., et al. (2020) Corneal Densitometry after Small Incision Lenticule Extraction (SMILE) and Femtosecond Laser-Assisted LASIK (FS-LASIK): 5-Year Prospective Comparative Study. Frontiers in Medicine, 7, Article 521078.
https://doi.org/10.3389/fmed.2020.521078
[10] Cai, W., Liu, L., Li, M., Shi, Y., Sun, L., Ma, X., et al. (2023) Comparison of Corneal Densitometry and Visual Quality after Small Incision Lenticule Extraction (SMILE) and Laser Epithelial Keratomileusis (LASEK): One-Year Comparative Study. BioMed Research International, 2023, Article ID: 3430742.
https://doi.org/10.1155/2023/3430742
[11] Savini, G., Huang, J., Lombardo, M., Serrao, S., Schiano-Lomoriello, D., Venanzio, S., et al. (2016) Objective Monitoring of Corneal Backward Light Scattering after Femtosecond Laser-Assisted Lasik. Journal of Refractive Surgery, 32, 20-25.
https://doi.org/10.3928/1081597x-20151207-08
[12] Charpentier, S., Keilani, C., Maréchal, M., Friang, C., De Faria, A., Froussart-Maille, F., et al. (2021) Corneal Haze Post Photorefractive Keratectomy. Journal Français dOphtalmologie, 44, 1425-1438.
https://doi.org/10.1016/j.jfo.2021.05.006
[13] Poyales, F., Garzón, N., Mendicute, J., Illarramendi, I., Caro, P., Jáñez, O., et al. (2017) Corneal Densitometry after Photorefractive Keratectomy, Laser-Assisted in Situ Keratomileusis, and Small-Incision Lenticule Extraction. Eye, 31, 1647-1654.
https://doi.org/10.1038/eye.2017.107
[14] Kirkwood, B.J., Hendicott, P.L., Read, S.A. and Pesudovs, K. (2009) Repeatability and Validity of Lens Densitometry Measured with Scheimpflug Imaging. Journal of Cataract and Refractive Surgery, 35, 1210-1215.
https://doi.org/10.1016/j.jcrs.2009.03.017
[15] Xia, L., Zhang, J., Wu, J. and Yu, K. (2016) Comparison of Corneal Biological Healing after Femtosecond LASIK and Small Incision Lenticule Extraction Procedure. Current Eye Research, 41, 1202-1208.
https://doi.org/10.3109/02713683.2015.1107590
[16] Ang, M., Farook, M., Htoon, H.M. and Mehta, J.S. (2020) Randomized Clinical Trial Comparing Femtosecond LASIK and Small-Incision Lenticule Extraction. Ophthalmology, 127, 724-730.
https://doi.org/10.1016/j.ophtha.2019.09.006
[17] Du, H., Zhang, B., Wang, Z. and Xiong, L. (2023) Quality of Vision after Myopic Refractive Surgeries: SMILE, FS-LASIK, and ICL. BMC Ophthalmology, 23, Article No. 291.
https://doi.org/10.1186/s12886-023-03045-6
[18] Gershoni, A., Reitblat, O., Mimouni, M., Livny, E., Nahum, Y. and Bahar, I. (2020) Femtosecond Laser Assisted in Situ Keratomileusis (FS-LASIK) Yields Better Results than Transepithelial Photorefractive Keratectomy (Trans-PRK) for Correction of Low to Moderate Grade Myopia. European Journal of Ophthalmology, 31, 2914-2922.
https://doi.org/10.1177/1120672120980346
[19] Mohan, R.R., Hutcheon, A.E.K., Choi, R., Hong, J., Lee, J., Mohan, R.R., et al. (2003) Apoptosis, Necrosis, Proliferation, and Myofibroblast Generation in the Stroma Following LASIK and PRK. Experimental Eye Research, 76, 71-87.
https://doi.org/10.1016/s0014-4835(02)00251-8
[20] Ma, X.H., Li, J.H., Bi, H.S., et al. (2003) [Comparison of Corneal Wound Healing of Photorefractive Keratectomy and Laser in Situ Keratomileusis in Rabbits]. Chinese Journal of Ophthalmology, 39, 140-145.
[21] Kaji, Y., Yamashita, H. and Oshika, T. (2003) Corneal Wound Healing after Excimer Laser Keratectomy. Seminars in Ophthalmology, 18, 11-16.
https://doi.org/10.1076/soph.18.1.11.14075
[22] Spadea, L., Giammaria, D. and Trabucco, P. (2015) Corneal Wound Healing after Laser Vision Correction. British Journal of Ophthalmology, 100, 28-33.
https://doi.org/10.1136/bjophthalmol-2015-306770
[23] Han, T., Zhao, J., Shen, Y., Chen, Y., Tian, M. and Zhou, X. (2017) A Three-Year Observation of Corneal Backscatter after Small Incision Lenticule Extraction (Smile). Journal of Refractive Surgery, 33, 377-382.
https://doi.org/10.3928/1081597x-20170420-01
[24] Stojanovic, A. and Nitter, T.A. (2001) Correlation between Ultraviolet Radiation Level and the Incidence of Late-Onset Corneal Haze after Photorefractive Keratectomy. Journal of Cataract and Refractive Surgery, 27, 404-410.
https://doi.org/10.1016/s0886-3350(00)00742-2
[25] Al-Sharif, E.M. and Stone, D.U. (2016) Correlation between Practice Location as a Surrogate for UV Exposure and Practice Patterns to Prevent Corneal Haze after Photorefractive Keratectomy (PRK). Saudi Journal of Ophthalmology, 30, 213-216.
https://doi.org/10.1016/j.sjopt.2016.11.004
[26] Moshirfar, M., Wang, Q., Theis, J., Porter, K.C., Stoakes, I.M., Payne, C.J., et al. (2023) Management of Corneal Haze after Photorefractive Keratectomy. Ophthalmology and Therapy, 12, 2841-2862.
https://doi.org/10.1007/s40123-023-00782-1
[27] Ang, B.C.H., Yap, S.C., Toh, Z.H., Lim, E.W.L., Tan, M.M.H., Nah, G.K.M., et al. (2020) Refractive Outcomes, Corneal Haze and Endothelial Cell Loss after Myopic Photorefractive Keratectomy in an Asian Population: The Singapore Armed Forces’ Experience. Clinical & Experimental Ophthalmology, 48, 558-568.
https://doi.org/10.1111/ceo.13759
[28] Thomas, K.E., Brunstetter, T., Rogers, S. and Sheridan, M.V. (2008) Astigmatism: Risk Factor for Postoperative Corneal Haze in Conventional Myopic Photorefractive Keratectomy. Journal of Cataract and Refractive Surgery, 34, 2068-2072.
https://doi.org/10.1016/j.jcrs.2008.08.026
[29] Kaiserman, I., Sadi, N., Mimouni, M., Sela, T., Munzer, G. and Levartovsky, S. (2017) Corneal Breakthrough Haze after Photorefractive Keratectomy with Mitomycin C: Incidence and Risk Factors. Cornea, 36, 961-966.
https://doi.org/10.1097/ico.0000000000001231
[30] Autrata, R. and Rehurek, J. (2003) Laser-Assisted Subepithelial Keratectomy and Photorefractive Keratectomy for the Correction of Hyperopia: Results of a 2-Year Follow-Up. Journal of Cataract and Refractive Surgery, 29, 2105-2114.
https://doi.org/10.1016/s0886-3350(03)00415-2
[31] Shajari, M., Wanner, E., Rusev, V., Mir Mohi Sefat, S., Mayer, W.J., Kohnen, T., et al. (2018) Corneal Densitometry after Femtosecond Laser-Assisted in Situ Keratomileusis (Fs-LASIK) and Small Incision Lenticule Extraction (SMILE). Current Eye Research, 43, 605-610.
https://doi.org/10.1080/02713683.2018.1431288
[32] Dong, Z., Zhou, X., Wu, J., Zhang, Z., Li, T., Zhou, Z., et al. (2013) Small Incision Lenticule Extraction (SMILE) and Femtosecond Laser LASIK: Comparison of Corneal Wound Healing and Inflammation. British Journal of Ophthalmology, 98, 263-269.
https://doi.org/10.1136/bjophthalmol-2013-303415
[33] Møller-Pedersen, T., Cavanagh, H.D., Petroll, W.M. and Jester, J.V. (1998) Neutralizing Antibody to TGFβ Modulates Stromal Fibrosis but Not Regression of Photoablative Effect Following PRK. Current Eye Research, 17, 736-747.
https://doi.org/10.1076/ceyr.17.7.736.5163