CD44的生物特征及在恶性肿瘤中的研究进展
Biological Characterization of CD44 and Progress in Malignant Tumors
DOI: 10.12677/acm.2024.1461940, PDF, HTML, XML, 下载: 48  浏览: 102 
作者: 田思岳*, 范志勤#:新疆医科大学附属肿瘤医院日间病房(三病区),新疆 乌鲁木齐
关键词: CD44恶性肿瘤癌症干细胞预后CD44 Cancer Cancer Stem Cells Prognosis
摘要: CD44是一种复杂的跨膜糖蛋白,在肿瘤干细胞上过度表达。CD44表达失调与肿瘤发生和发展有关。CD44参与多种重要信号通路的调控,与肿瘤增殖、侵袭、转移和治疗耐药密切相关。CD44过度表达抑制化疗药物在多种癌症中的细胞毒作用。因此,CD44可以作为癌症患者的不良预后标志物。CD44过度表达为化疗耐药患者的治疗干预提供新的分子靶点。本篇综述重点概述CD44的结构功能,CD44在肿瘤细胞干性和肿瘤发生发展中的作用,及与癌症患者预后的关系。
Abstract: CD44 is a complex transmembrane glycoprotein that is overexpressed on tumor stem cells. Dysregulated CD44 expression is associated with tumorigenesis and progression. CD44 is involved in the regulation of multiple important signaling pathways and is closely related to tumor proliferation, invasion, metastasis, and therapeutic resistance. CD44 overexpression inhibits the cytotoxic effects of chemotherapeutic agents in multiple cancers. Therefore, CD44 can be used as a poor prognostic marker for cancer patients. CD44 overexpression provides new molecular targets for therapeutic intervention in chemotherapy-resistant patients. This review focuses on an overview of the structure and function of CD44, the role of CD44 in tumor cell stemness and tumorigenesis and development, and its relationship to the prognosis of cancer patients.
文章引用:田思岳, 范志勤. CD44的生物特征及在恶性肿瘤中的研究进展[J]. 临床医学进展, 2024, 14(6): 1490-1494. https://doi.org/10.12677/acm.2024.1461940

1. 引言

恶性肿瘤是全球发病率和死亡率的主要原因之一。恶性肿瘤是一种具有表型和遗传异质性的恶性疾病类型。根据世界卫生组织统计[1],2020年约有千万人死于恶性肿瘤。其中肺癌、结直肠癌和乳腺癌是全球最常见的恶性肿瘤[2]。目前恶性肿瘤的治疗方法以手术为主,辅以放化疗,结合中医中药治疗。尽管恶性肿瘤在治疗策略方面已经取得巨大进步,但是对患者总生存率没有绝对疗效。肿瘤局部进展、远处转移和治疗抵抗导致患者死亡。寻找新分子诊治靶标,制定个性化治疗方案,为恶性肿瘤患者提供指导,这是恶性肿瘤诊治工作中亟待解决的重要问题。遗传因子的异常表达在肿瘤治疗中越来越受到关注。肿瘤细胞通过改变基因表达水平获得化疗诱导的细胞凋亡和细胞周期阻滞的抵抗。本文综述了CD44基因和蛋白的结构,概述了CD44在肿瘤发生、发展和耐药中的作用,并对CD44靶向治疗的前景进行展望。

2. CD44的结构和功能

CD44是一种细胞表面糖蛋白,由人类11号染色体短臂的CD44基因编码[3]。CD44基因在人类中由19个外显子组成,其中前5个外显子(外显子1~5)和后5个外显子(外显子16~20)不断编码CD44,这是最常见、最小的CD44蛋白,分子量为85~95 kda [4]。CD44与几种常见的配体结合,包括透明质酸、纤维连接蛋白、骨桥蛋白和软骨素。恶性肿瘤细胞中,CD44与透明质酸结合,导致CD44与转化生长因子-β (TGF-β)受体I型、表皮生长因子受体(EGFR) ErbB2等信号受体相互作用,并激活受体。CD44/透明质酸结合影响多种下游信号通路,特别是Ras、丝裂原活化蛋白激酶(MAPK)和磷酸肌苷激酶(PI3K)的活性,导致肿瘤细胞粘附、细胞增殖、迁移和耐药[5]。CD44参与恶性肿瘤的发生发展、转移和治疗抗性有关。肿瘤细胞对放化疗产生耐受性,是由于肿瘤细胞对活性氧引起的应激具有保护机制。活性氧促进化疗抵抗、细胞增殖和肿瘤转移。CD44可增强对活性氧的防御。抑制CD44增强肿瘤细胞的化疗敏感性[6]

3. CD44与肿瘤干细胞

肿瘤干细胞是肿瘤组织中具有自我更新、无限增殖和分化潜力的一类细胞。癌症干细胞在肿瘤学领域中的作用日益受到关注。在初步接受化学治疗或放射治疗成功的肿瘤患者,肿瘤干细胞在血管生成、转移、复发和耐药等生物学功能发挥着至关重要的作用[7] [8]。有研究发现肿瘤干细胞由细胞可塑性、衰老和静止驱动,增加DNA修复能力、解除抗凋亡蛋白的调控,以及细胞周期动力学和肿瘤微环境的改变来增加肿瘤来维持其自我更新能力和抵抗肿瘤微环境应激和治疗[9] [10]。识别肿瘤干细胞的表面标记物、细胞内信号通路、肿瘤微环境与肿瘤干细胞之间的交互作用对于探究新的治疗策略至关重要。肿瘤干细胞标记物可以分为两类:即CD分子和ATP盒式传感器。分离和鉴定肿瘤干细胞的CD分子中部分具有预后价值,包括CD24、CD133、CD44和CD166等。其中,CD44是最常见的肿瘤干细胞标志物,翻译后修饰和选择性剪接等调节机制可影响CD44与配体结合的亲和力,继而调节肿瘤干细胞活性。CD44是在肿瘤细胞中过表达的细胞外基质粘附蛋白,主要在肿瘤细胞转移、粘附和迁移中起介导作用[11]

CD44在肿瘤的发生和发展中起着重要作用。CD44是结直肠癌[6]、乳腺癌[12]和胃癌[13]中肿瘤干细胞的细胞表面标记分子。CD44作为诊断预后潜在的表面标记物,具有重要的研究价值和广阔的前景。CD44通过激活血小板衍生的生长因子受体β和转录3激活因子(STAT3)信号转导,参与驱动肿瘤干性。翻译后修饰和选择性剪接可影响CD44与其配体的结合亲和力,并调节肿瘤干细胞活性[11]。Qi Chen等[14]对前列腺癌中CD44亚型表达的研究显示,CD44s促进前列腺癌肿瘤发生、细胞增殖、侵袭和迁移。此外,CD44v到CD44s亚型的可变剪接影响前列腺癌进展、上皮–间充质转化和干细胞特性。Angel A Gómez-Gallegos等[13]对127例初治胃癌患者进行多参数流式细胞术分析,鉴定胃癌干细胞,并用斑马鱼模型评估鉴定细胞的致瘤能力。他们得出结论:CD24+CD44+CD54+EpCAM+可用来鉴定胃癌干细胞。

4. CD44参与恶性肿瘤发生

在多种实体性肿瘤类型中,肿瘤组织和对应正常组织之间CD44蛋白表达存在差异。这表明CD44在肿瘤发生中起着至关重要的作用。Shriddha Awasthi团队[11] [15]研究显示CD44在口腔粘膜下纤维化和口腔鳞癌患者中表达阳性,这表明CD44在口腔恶性肿瘤及癌前病变中均表达。CD44在口腔粘膜下纤维化中的表达低于口腔鳞癌,提示CD44可能触发癌前状态向癌的恶性转化。Debanjan Dhar等[15]发现当肝细胞暴露于致癌物时,肝细胞中的CD44表达急剧上调,受损的肝细胞通过CD44激活AKT促进MDM2的磷酸化和核易位逃避p53介导的死亡,维持这种诱导的突变被并从亲本细胞传递到子细胞,这些子细胞进一步成为肝细胞癌干细胞,最终导致肿瘤的发生。Okuyama H等[16]人研究发现在结直肠癌异种移植小鼠中,与CD44细胞相比,CD44+细胞的肿瘤形成能力更显著。

5. CD44参与恶性肿瘤进展

CD44在结直肠癌[17]、肺癌[18]、尤文氏肉瘤[19]和胶质母细胞瘤[20]等多种肿瘤类型的肿瘤进展中发挥重要作用。Hao Zhang [20]团队研究发现CD44在恶性神经胶质瘤中过度表达,调节胶质瘤增殖和迁移。得出结论,CD44可作为预测免疫治疗反应和介导PD-L1表达的有前途的生物标志物。Shuangqing Liu [21]等人研究表明膀胱癌中CD44的高表达与患者不良预后相关。免疫组化和数据库的结果显示CD44表达与PD-L1表达呈正相关,CD44表达与CD68+巨噬细胞和CD163+巨噬细胞的数量呈正相关。结果表明CD44是膀胱癌PD-L1的正调节因子,可能是肿瘤巨噬细胞浸润的关键调节因子,并可能参与M2巨噬细胞极化,导致不良预后。ccRCC中CD44的高表达与转移、不良预后和巨噬细胞的高浸润水平相关。Junjie Ma等[22]研究发现肾透明细胞癌中CD44的高表达与肿瘤的转移、不良预后以及巨噬细胞的高浸润水平相关。

6. CD44与恶性肿瘤患者预后

CD44是预测恶性肿瘤患者预后的有希望的候选者。Weiyan Hou等[23]研究发现与正常组织相比,CD44在胃癌中高表达,并促进胃癌细胞的增殖、迁移。CD44低表达组的总生存期、无进展生存期和进展后生存期延长。这表明在胃癌中CD44高表达,是与免疫侵袭相关的独立预后因子,与胃癌不良预后相关。João Martins Gama [24]研究发现,在乳腺癌及其脑转移队列中,CD44的过表达与较差的总生存期相关。Mark Jakob等[25]在头颈部鳞癌的研究发现CD44的高表达可降低患者总生存期、无病生存期。研究发现口咽鳞癌患者组织和漱口液中CD44表达上调,并与患者不良无进展生存期和总生存期相关。

7. 结论

越来越多证据表明,CD44在不同的癌症类型中以CD44s或CD44v变异体的形式表达异常上调。本综述目的是概括CD44的结构功能和CD44在恶性肿瘤发生、进展中的研究进展。CD44主要在肿瘤增殖、凋亡、上皮–间充质转化和耐药过程中发挥重要作用。然而,不同的CD44变异体在恶性肿瘤发生和发展中的作用仍然缺乏进一步的广泛研究。大量研究表明,CD44是多种癌症的潜在治疗靶点。目前通过选择性抑制CD44、破坏CD44/透明质酸作用平衡、增加抗肿瘤药物的细胞浓度,靶向CD44阳性肿瘤的潜在治疗策略,具有重要的研究价值和广阔的前景。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Cao, W., Chen, H., Yu, Y., Li, N. and Chen, W. (2021) Changing Profiles of Cancer Burden Worldwide and in China: A Secondary Analysis of the Global Cancer Statistics 2020. Chinese Medical Journal, 134, 783-791.
https://doi.org/10.1097/cm9.0000000000001474
[3] Hassn Mesrati, M., Syafruddin, S.E., Mohtar, M.A. and Syahir, A. (2021) CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules, 11, Article No. 1850.
https://doi.org/10.3390/biom11121850
[4] Skandalis, S.S. (2023) CD44 Intracellular Domain: A Long Tale of a Short Tail. Cancers, 15, Article No. 5041.
https://doi.org/10.3390/cancers15205041
[5] Cirillo, N. (2023) The Hyaluronan/CD44 Axis: A Double-Edged Sword in Cancer. International Journal of Molecular Sciences, 24, Article No. 15812.
https://doi.org/10.3390/ijms242115812
[6] Chen, S., Zhang, S., Chen, S. and Ma, F. (2023) The Prognostic Value and Immunological Role of CD44 in Pan-Cancer Study. Scientific Reports, 13, Article No. 7011.
https://doi.org/10.1038/s41598-023-34154-3
[7] Shi, Z., Pang, K., Wu, Z., Dong, Y., Hao, L., Qin, J., et al. (2023) Tumor Cell Plasticity in Targeted Therapy-Induced Resistance: Mechanisms and New Strategies. Signal Transduction and Targeted Therapy, 8, Article No. 113.
https://doi.org/10.1038/s41392-023-01383-x
[8] Kong, W., Gao, Y., Zhao, S. and Yang, H. (2023) Cancer Stem Cells: Advances in the Glucose, Lipid and Amino Acid Metabolism. Molecular and Cellular Biochemistry.
https://doi.org/10.1007/s11010-023-04861-6
[9] Paul, R., Dorsey, J.F. and Fan, Y. (2022) Cell Plasticity, Senescence, and Quiescence in Cancer Stem Cells: Biological and Therapeutic Implications. Pharmacology & Therapeutics, 231, Article ID: 107985.
https://doi.org/10.1016/j.pharmthera.2021.107985
[10] Izadpanah, A., Mohammadkhani, N., Masoudnia, M., Ghasemzad, M., Saeedian, A., Mehdizadeh, H., et al. (2023) Update on Immune-Based Therapy Strategies Targeting Cancer Stem Cells. Cancer Medicine, 12, 18960-18980.
https://doi.org/10.1002/cam4.6520
[11] Awasthi, S., Ahmad, S., Gupta, R., et al. (2023) Differential Expression of Cancer Stem Cell Markers and Pro-Inflammatory Cytokine IL-1β in the Oral Squamous Cell Carcinoma and Oral Submucosal Fibrosis. International Journal of Health Sciences (Qassim), 17, 28-38.
[12] Escudero Mendez, L., Srinivasan, M., Hamouda, R.K., Ambedkar, B., Arzoun, H., Sahib, I., et al. (2022) Evaluation of CD44+/CD24 and Aldehyde Dehydrogenase Enzyme Markers in Cancer Stem Cells as Prognostic Indicators for Triple-Negative Breast Cancer. Cureus, 14, e28056.
https://doi.org/10.7759/cureus.28056
[13] Gómez-Gallegos, A.A., Ramírez-Vidal, L., Becerril-Rico, J., Pérez-Islas, E., Hernandez-Peralta, Z.J., Toledo-Guzmán, M.E., et al. (2023) CD24+CD44+CD54+EpCAM+ Gastric Cancer Stem Cells Predict Tumor Progression and Metastasis: Clinical and Experimental Evidence. Stem Cell Research & Therapy, 14, Article No. 16.
https://doi.org/10.1186/s13287-023-03241-7
[14] Chen, Q., Gu, M., Cai, Z., Zhao, H., Sun, S., Liu, C., et al. (2020) TGF-β1 Promotes Epithelial-to-Mesenchymal Transition and Stemness of Prostate Cancer Cells by Inducing PCBP1 Degradation and Alternative Splicing of CD44. Cellular and Molecular Life Sciences, 78, 949-962.
https://doi.org/10.1007/s00018-020-03544-5
[15] Dhar, D., Antonucci, L., Nakagawa, H., Kim, J.Y., Glitzner, E., Caruso, S., et al. (2018) Liver Cancer Initiation Requires P53 Inhibition by CD44-Enhanced Growth Factor Signaling. Cancer Cell, 33, 1061-1077.e6.
https://doi.org/10.1016/j.ccell.2018.05.003
[16] Okuyama, H., Nogami, W., Sato, Y., Yoshida, H., Tona, Y. and Tanaka, Y. (2019) Characterization of CD44-Positive Cancer Stem-Like Cells in COLO 201 Cells. Anticancer Research, 40, 169-176.
https://doi.org/10.21873/anticanres.13938
[17] Boman, B.M., Viswanathan, V., Facey, C.O.B., Fields, J.Z. and Stave, J.W. (2023) The V8-10 Variant Isoform of CD44 Is Selectively Expressed in the Normal Human Colonic Stem Cell Niche and Frequently Is Overexpressed in Colon Carcinomas during Tumor Development. Cancer Biology & Therapy, 24, Article ID: 2195363.
https://doi.org/10.1080/15384047.2023.2195363
[18] Huang, Q., Liu, L., Xiao, D., Huang, Z., Wang, W., Zhai, K., et al. (2023) CD44+ Lung Cancer Stem Cell-Derived Pericyte-Like Cells Cause Brain Metastases through GPR124-Enhanced Trans-Endothelial Migration. Cancer Cell, 41, 1621-1636.e8.
https://doi.org/10.1016/j.ccell.2023.07.012
[19] Fernández-Tabanera, E., García-García, L., Rodríguez-Martín, C., Cervera, S.T., González-González, L., Robledo, C., et al. (2023) CD44 Modulates Cell Migration and Invasion in Ewing Sarcoma Cells. International Journal of Molecular Sciences, 24, Article No. 11774.
https://doi.org/10.3390/ijms241411774
[20] Zhang, H., Cao, H., Luo, H., Zhang, N., Wang, Z., Dai, Z., et al. (2023) RUNX1/CD44 Axis Regulates the Proliferation, Migration, and Immunotherapy of Gliomas: A Single-Cell Sequencing Analysis. Frontiers in Immunology, 14, Article ID: 1086280.
https://doi.org/10.3389/fimmu.2023.1086280
[21] Liu, S., Liu, Z., Shang, A., Xun, J., Lv, Z., Zhou, S., et al. (2023) CD44 Is a Potential Immunotherapeutic Target and Affects Macrophage Infiltration Leading to Poor Prognosis. Scientific Reports, 13, Article No. 9657.
https://doi.org/10.1038/s41598-023-33915-4
[22] Ma, J., Wu, R., Chen, Z., Zhang, Y., Zhai, W., Zhu, R., et al. (2023) CD44 Is a Prognostic Biomarker Correlated with Immune Infiltrates and Metastasis in Clear Cell Renal Cell Carcinoma. Anticancer Research, 43, 3493-3506.
https://doi.org/10.21873/anticanres.16526
[23] Hou, W., Kong, L., Hou, Z. and Ji, H. (2022) CD44 Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Gastric Cancer. BMC Medical Genomics, 15, Article No. 225.
https://doi.org/10.1186/s12920-022-01383-w
[24] Martins Gama, J., Caetano Oliveira, R., Teixeira, P., Silva, F., Abrantes, C., Figueiredo, P., et al. (2023) An Immunohistochemical Study of Breast Cancer Brain Metastases: The Role of CD44 and AKT in the Prognosis. Applied Immunohistochemistry & Molecular Morphology, 31, 318-323.
https://doi.org/10.1097/pai.0000000000001119
[25] Jakob, M., Sharaf, K., Schirmer, M., Leu, M., Küffer, S., Bertlich, M., et al. (2020) Role of Cancer Stem Cell Markers ALDH1, BCL11B, BMI-1, and CD44 in the Prognosis of Advanced HNSCC. Strahlentherapie und Onkologie, 197, 231-245.
https://doi.org/10.1007/s00066-020-01653-5