中性粒细胞在UC中炎症机制的研究进展
Advances in Inflammatory Mechanisms of Neutrophils in UC
摘要: 溃疡性结肠炎(Ulcerative Colitis, UC)是一种自身免疫性、弥漫性、非消退性肠道粘膜炎症性肠病。目前中性粒细胞(Neutrophils, NEU)浸润在UC发生过程中的作用被越来越多的学者所研究,其可释放活性氧、嗜中性粒细胞陷阱、中性粒细胞弹性蛋白酶及相关炎性因子从而导致组织损伤。同时,中性粒细胞及其相关炎症因子在疾病诊断、评估活动性、预测临床预后等方面有着重要参考价值。本文就NEU在UC发生、发展过程中的作用及机制作一综述。
Abstract: Ulcerative colitis (UC) is an autoimmune, diffuse, non-recessive inflammatory bowel disease of the intestinal mucosa. The role of neutrophils (NEU) infiltration in the development of UC, which can release reactive oxygen species (ROS), neutrophil traps, neutrophil elastase, and related inflammatory factors leading to tissue damage, has been increasingly studied. Meanwhile, neutrophils and their associated inflammatory factors have important reference value in disease diagnosis, assessment of activity, and prediction of clinical prognosis. This article provides a review of the role and mechanism of NEU in the process of UC occurrence and development.
文章引用:陈瑶, 黄维莉. 中性粒细胞在UC中炎症机制的研究进展[J]. 临床医学进展, 2024, 14(6): 1485-1489. https://doi.org/10.12677/acm.2024.1461939

1. 引言

溃疡性结肠炎(Ulcerative Colitis, UC)是某种重点累及结肠、直肠黏膜,以腹痛、腹泻、黏液脓血便为主要症状的,由免疫介导的,具有非消退性肠道粘膜炎症模式的慢性炎症性肠病。病变侵及范围具有弥漫性及连续性的特点,同时可以长期反复出现缓解及复发交替的现象。在21世纪,溃疡性结肠炎已成为一种全球性疾病,发病率不断上升,给社会带来了巨大的经济负担,也对现代医疗保健系统构成了重大挑战[1]。溃疡性结肠炎是人类常见的炎症性肠病之一[2]。虽然该病的病因目前尚不明确,但大多数学者认为,溃疡性结肠炎常发生在具有遗传易感性的群体上,原因是他们对管腔抗原的免疫反应异常,导致炎症持续存在且不受控制[3]。中性粒细胞(Neutrophils, NEU)浸润是UC的一个重要显微组织学特征,密集的中性粒细胞渗入和隐窝脓肿结构的形成在UC患者肠道黏膜中形成独特的病理学特征。NEU在UC发生、疾病变化中起关键性作用,与疾病复发率密切相关[4]

2. 中性粒细胞的防护性机制

在炎症发生后,中性粒细胞通过多步粘附级联在炎症部位迅速聚集。受伤后,P-选择素被内皮细胞迅速表达,促使中性粒细胞与内皮细胞发生粘附。然后,粘附的中性粒细胞与血管粘连蛋白、血小板粘附分子-1、ICAM-1和连接粘附分子家族成员相互作用,穿透血管内皮并迁移到炎症部位。到达炎症部位的中性粒细胞通过吞噬病原微生物、产生活性氧(ROS)、中性粒细胞弹性蛋白酶(NE)的分泌和细胞外中性粒细胞捕获(NET)等一系列过程来对抗病原微生物[5] [6]。值得注意的是,嗜中性粒细胞协同工作,通过释放NE、烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶和髓过氧化物酶(MPO)以及ROS来消化微生物。简而言之,NE可以作为中性粒细胞消灭病原微生物的硬武器[5] [6]

3. 中性粒细胞在UC中的致病性机制

中性粒细胞的持续活化和过度募集是许多炎性疾病的共同特征。中性粒细胞可以释放大量蛋白酶、促炎细胞因子和介质,如基质金属蛋白酶、中性粒细胞弹性蛋白酶(NE)、IL-8、TNF-α和白三烯B4,以损伤上皮屏障并将单核细胞和更多的中性粒细胞募集到肠道,以及直接破坏细胞膜的氧化爆发,直接引起组织损伤[7] [8]。钙卫蛋白是IBD中最广泛使用的生物标志物,占嗜中性粒细胞胞质蛋白的60% [9] [10]。此外,大部分学者已经提出了更多嗜中性粒细胞衍生的UC生物标志物。

4. 中性粒细胞释放嗜中性粒细胞胞外陷阱

嗜中性粒细胞是最丰富的免疫细胞,约占人体血液中白细胞的70%左右,大量研究证实其是最先对先天性免疫系统做出反应的细胞[11]。中性粒细胞作为第一个被招募到炎症部位的免疫细胞,它们通过产生具有抗菌潜力的活性氧、从颗粒中释放溶解酶和释放中性粒细胞胞外陷阱[NET],识别、吞噬和杀死病原体,这一过程被称为“NETosis”[12]。此过程无论有或没有细胞死亡的情况下都可以发生[13]。NET是活化的中性粒细胞膜上网状结构,包含染色质、DNA和抗菌肽。在中性粒细胞活化后,会出现一种去致密染色质和酶(如中性粒细胞弹性蛋白酶(NE)和髓过氧化物酶(MPO))的胞吐作用的现象(蛋白质精氨酸脱亚胺酶-4 (PAD 4)促进组蛋白瓜氨酸酶分泌)这种现象之后这些酶随即产生NET纤维网络。颗粒蛋白[如MPO和NE]和染色质(主要是瓜氨酸化组蛋白H3 [citH3])的共表达被认为是NET释放的证据。

5. 中性粒细胞释放活性氧

1) 活性氧:组织中ROS主要由线粒体和NADPH氧化酶两个来源产生[14],ROS是一种需氧细胞,在结肠炎症疾病的发展中扮演着至关重要的角色[15] [16]。ROS既是信号分子的同时也是炎症介质。中性粒细胞释放的活性氧(ROS)会加剧肠道炎症,其中包括超氧阴离子自由基、羟自由基、单线态氧和过氧化氢等非自由基,氧化自由基的寿命很短,且能迅速与其他分子发生反应[17]。大量学者认为,正常生理情况下,ROS不会对人体造成伤害;当体内ROS持续维持在较低水平或中等水平时,对机体是有益的,ROS可作为机体第二信使,具有调节信号通路的功能。ROS即可参与免疫炎症反应[18]引起炎症小体活化,刺激炎症细胞因子和趋化因子的分泌,从而协调免疫过程[19]。当ROS的存在过量且无法及时消除时,比如当机体被外源病原微生物感染时,高数值的ROS会造成多种生物学危害,比如蛋白质的损伤(ROS与蛋白质反应并破坏蛋白质折叠[20])、DNA的氧化损伤、脂质的过氧化、细胞的凋亡,从而进一步导致UC发病过程中的肠道炎症发展、黏膜损伤和黏膜溃疡。

2) 活性氧的病理学效应:中性粒细胞在UC肠道炎症中可以产生高水平的活性氧(ROS) [21],其引起上皮屏障损伤并可激活氧化还原敏感性炎症通路。其作用机制主要是通过氧化DNA、蛋白质和脂质等各种细胞成分,导致细胞死亡,造成组织损伤和炎症[22]。某些细菌、微粒物质和可溶性刺激物在被NEU吞噬的过程中会产生许多ROS [23]。一旦机体防御能力下降、对ROS的清除能力降低,无法从人体排除、发生肠道黏膜中的NEU过度分泌时可导致ROS在病灶的累积[24] [25]。ROS能加速氧化应激的发生和蛋白酶的活化,从而增加肠粘膜上皮细胞的通透性,使腔内病原体侵入肠粘膜,加重肠粘膜的炎症反应和炎性损伤,导致肠粘膜细胞坏死和溃疡,从而发展成溃疡性结肠炎[23]。ROS可以经由激活NF-kB信号通路,诱发炎性因子的表达,引起炎性因子聚集产生,从而产生炎症反应,导致肠道黏膜组织的破坏。NF-kB是一系列生化反应敏感的转录因子,蛋白IkB可以调节其活性。H2O2可加快IkB的降解从而激活NF-kB [26],活化之后的NF-kB诱导炎性因子IL-1β、IL-6以及肿瘤坏死因子α (Tumor Necrosisfactor-α TNF-α)孵化,启动局部肠道炎症反应[27]。研究表明,ROS可通过触发JNK信号,降低钙黏蛋白E的表达水平,继而破坏结合上皮,为病原微生物提供入侵机体的途径[19]从而引起细胞损伤。

6. 中性粒细胞释放弹性蛋白酶

中性粒细胞弹性蛋白酶(Neutrophil Elastase, NE)在原代中性粒细胞中表达,分解多种物质,包括弹性蛋白,胶原蛋白和纤维蛋白。NE水解约占人体总蛋白酶水解活性的80%,NE的水平和活性反映疾病状态和严重程度[28]

NE是中性粒细胞分泌的众多蛋白酶中最重要的一种,也是最具破坏性的酶之一,因为它几乎可以裂解所有细胞外基质和许多重要的血浆蛋白。NE还具有防御、组织损伤、诱导分泌和炎症反应的作用。大量研究发现,NE与多种人类疾病有关,如急性肺损伤、肺气肿、囊性纤维化、急性呼吸衰竭综合征(ARDS)、心肌炎、类风湿性关节炎(RA)、脑外伤、癌症和慢性肠道疾病[29] [30],并具有促进病毒和细菌入侵以及肿瘤细胞增殖转移的能力。中性粒细胞聚集在组织中,激活并分泌NE,参与组织损伤。目前最重要的研究课题之一是NE活化对组织损伤的影响及其在UC中的重要性,而人们对这一问题的了解还很不够。大量研究认为,UC的原发性和继发性肠道病变都会增加NE的水平,因此NE与IBD的发病机制密切相关。另一项研究[31]强调,中性粒细胞是各种病变的早期诱因,在溃疡性结肠炎(UC)的发病过程中发挥着重要作用。

1) NE的结构NE是一种单链糖蛋白,有218个氨基酸残基和4个二硫键。丝氨酸蛋白酶有一个保守的活性中心,由三个氨基酸残基(组氨酸-41、天冬氨酸-88和丝氨酸-173)组成,其中丝氨酸具有高度亲核性,对低电荷氨基酸具有高亲和力。

2) NE的病理学效应在生理条件下,NE不会对机体产生危害。但是当NE不能被机体分解,引起NE过度富集时。在炎症反应状态下,各种细胞因子和细菌细胞壁降解产物等可诱导中性粒细胞大量分泌NE。Michael等[32]证实蛋白酶参与了多种生物炎症过程,尤其在炎症和组织损伤中较为重要,在保持组织完整性和维持平衡方面始终发挥着非常重要的作用,一旦平衡被打破,就会诱发炎症反应。

7. 总结及展望

UC是一种需要长期管理的自身免疫性、炎症性疾病。此病的病程较长,且伴随症状较多,对患者的生活造成严重影响。因此明确其发病机制对其诊疗过程有重大意义。NEU主要通过释放ROS、NE、NET等相关炎症因子相互作用从而导致肠道粘膜损伤及溃疡的发生。随着医学研究不断进步,对溃疡性结肠炎的病因、病机、诊断及治疗的认识均有较大进步,虽然大多数文章认为环境和遗传因素是其重要的发病机制,但尚未完全阐明UC的发病机理[33]。内镜活检的组织学中性粒细胞活性及中性粒细胞相关生物标志物对于诊断溃疡性结肠炎、评估疾病活动性和预测临床预后非常重要。深度剖析UC发病机制还对研发新的靶向治疗药物具有重大意义。

NOTES

*通讯作者。

参考文献

[1] Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., et al. (2017) Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. The Lancet, 390, 2769-2778.
https://doi.org/10.1016/s0140-6736(17)32448-0
[2] Ungaro, R., Mehandru, S., Allen, P.B., Peyrin-Biroulet, L. and Colombel, J. (2017) Ulcerative Colitis. The Lancet, 389, 1756-1770.
https://doi.org/10.1016/s0140-6736(16)32126-2
[3] de Souza, H.S.P. and Fiocchi, C. (2015) Immunopathogenesis of IBD: Current State of the Art. Nature Reviews Gastroenterology & Hepatology, 13, 13-27.
https://doi.org/10.1038/nrgastro.2015.186
[4] Magro, F. and Estevinho, M.M. (2020) Do Neutrophils Contribute to Development of Crohn’s Disease and Ulcerative Colitis? Clinical Gastroenterology and Hepatology, 18, 2430-2431.
https://doi.org/10.1016/j.cgh.2020.01.032
[5] Schauer, C., Janko, C., Munoz, L.E., Zhao, Y., Kienhöfer, D., Frey, B., et al. (2014) Aggregated Neutrophil Extracellular Traps Limit Inflammation by Degrading Cytokines and Chemokines. Nature Medicine, 20, 511-517.
https://doi.org/10.1038/nm.3547
[6] Liew, P.X. and Kubes, P. (2019) The Neutrophil’s Role during Health and Disease. Physiological Reviews, 99, 1223-1248.
https://doi.org/10.1152/physrev.00012.2018
[7] Wéra, O., Lancellotti, P. and Oury, C. (2016) The Dual Role of Neutrophils in Inflammatory Bowel Diseases. Journal of Clinical Medicine, 5, Article 118.
https://doi.org/10.3390/jcm5120118
[8] Zhou, G.X. and Liu, Z.J. (2017) Potential Roles of Neutrophils in Regulating Intestinal Mucosal Inflammation of Inflammatory Bowel Disease. Journal of Digestive Diseases, 18, 495-503.
https://doi.org/10.1111/1751-2980.12540
[9] Fukunaga, S., Kuwaki, K., Mitsuyama, K., Takedatsu, H., Yoshioka, S., Yamasaki, H., et al. (2017) Detection of Calprotectin in Inflammatory Bowel Disease: Fecal and Serum Levels and Immunohistochemical Localization. International Journal of Molecular Medicine, 41, 107-118.
https://doi.org/10.3892/ijmm.2017.3244
[10] Egea Valenzuela, J., Ródenas, G.A. and Sánchez Martínez, A. (2019) Use of Biomarkers in Inflammatory Bowel Disease. Medicina Clínica (English Edition), 152, 310-316.
https://doi.org/10.1016/j.medcle.2018.10.018
[11] Jorch, S.K. and Kubes, P. (2017) An Emerging Role for Neutrophil Extracellular Traps in Noninfectious Disease. Nature Medicine, 23, 279-287.
https://doi.org/10.1038/nm.4294
[12] Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535.
https://doi.org/10.1126/science.1092385
[13] Delgado-Rizo, V., Martínez-Guzmán, M.A., Iñiguez-Gutierrez, L., García-Orozco, A., Alvarado-Navarro, A. and Fafutis-Morris, M. (2017) Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Frontiers in Immunology, 8, Article 81.
https://doi.org/10.3389/fimmu.2017.00081
[14] Herb, M. and Schramm, M. (2021) Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants, 10, Article 313.
https://doi.org/10.3390/antiox10020313
[15] Zhu, H. and Li, Y.R. (2012) Oxidative Stress and Redox Signaling Mechanisms of Inflammatory Bowel Disease: Updated Experimental and Clinical Evidence. Experimental Biology and Medicine, 237, 474-480.
[16] Guo, H., Callaway, J.B. and Ting, J.P.Y. (2015) Inflammasomes: Mechanism of Action, Role in Disease, and Therapeutics. Nature Medicine, 21, 677-687.
[17] Bansal, A.K. and Bilaspuri, G.S. (2011) Impacts of Oxidative Stress and Antioxidants on Semen Functions. Veterinary Medicine International, 2011, Article ID: 686137.
https://doi.org/10.4061/2011/686137
[18] Checa, J. and Aran, J.M. (2020) reactive Oxygen Species: Drivers of Physiological and Pathological Processes. Journal of Inflammation Research, 13, 1057-1073.
https://doi.org/10.2147/jir.s275595
[19] Lee, G., Kim, H.J. and Kim, H.M. (2015) RhoA-JNK Regulates the E-Cadherin Junctions of Human Gingival Epithelial Cells. Journal of Dental Research, 95, 284-291.
https://doi.org/10.1177/0022034515619375
[20] Máté, G., Bernstein, L.R. and Török, A.L. (2018) Endometriosis Is a Cause of Infertility. Does Reactive Oxygen Damage to Gametes and Embryos Play a Key Role in the Pathogenesis of Infertility Caused by Endometriosis? Frontiers in Endocrinology, 9, Article 725.
https://doi.org/10.3389/fendo.2018.00725
[21] Biasi, F., Leonarduzzi, G., Oteiza, P.I. and Poli, G. (2013) Inflammatory Bowel Disease: Mechanisms, Redox Considerations, and Therapeutic Targets. Antioxidants & Redox Signaling, 19, 1711-1747.
https://doi.org/10.1089/ars.2012.4530
[22] Wang, Z., Li, S., Cao, Y., Tian, X., Zeng, R., Liao, D., et al. (2016) Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 9875298.
https://doi.org/10.1155/2016/9875298
[23] Patlevič, P., Vašková, J., Švorc, P., Vaško, L. and Švorc, P. (2016) Reactive Oxygen Species and Antioxidant Defense in Human Gastrointestinal Diseases. Integrative Medicine Research, 5, 250-258.
https://doi.org/10.1016/j.imr.2016.07.004
[24] Guazelli, C.F.S., Fattori, V., Ferraz, C.R., Borghi, S.M., Casagrande, R., Baracat, M.M., et al. (2021) Antioxidant and Anti-Inflammatory Effects of Hesperidin Methyl Chalcone in Experimental Ulcerative Colitis. Chemico-Biological Interactions, 333, Article ID: 109315.
https://doi.org/10.1016/j.cbi.2020.109315
[25] Gupta, R.A., Motiwala, M.N., Dumore, N.G., Danao, K.R. and Ganjare, A.B. (2015) Effect of Piperine on Inhibition of FFA Induced TLR4 Mediated Inflammation and Amelioration of Acetic Acid Induced Ulcerative Colitis in Mice. Journal of Ethnopharmacology, 164, 239-246.
https://doi.org/10.1016/j.jep.2015.01.039
[26] Lepetsos, P., Papavassiliou, K.A. and Papavassiliou, A.G. (2019) Redox and NF-κB Signaling in Osteoarthritis. Free Radical Biology and Medicine, 132, 90-100.
https://doi.org/10.1016/j.freeradbiomed.2018.09.025
[27] Araújo, A.A.d., Pereira, A.D.S.B.F., Medeiros, C.A.C.X.D., Brito, G.A.D.C., Leitão, R.F.D.C., Araújo, L.D.S., et al. (2017) Effects of Metformin on Inflammation, Oxidative Stress, and Bone Loss in a Rat Model of Periodontitis. PLOS ONE, 12, e0183506.
https://doi.org/10.1371/journal.pone.0183506
[28] Voynow, J.A. and Shinbashi, M. (2021) Neutrophil Elastase and Chronic Lung Disease. Biomolecules, 11, Article 1065.
https://doi.org/10.3390/biom11081065
[29] Hagio, T., Kishikawa, K., Kawabata, K., Tasaka, S., Hashimoto, S., Hasegawa, N., et al. (2008) Inhibition of Neutrophil Elastase Reduces Lung Injury and Bacterial Count in Hamsters. Pulmonary Pharmacology & Therapeutics, 21, 884-891.
https://doi.org/10.1016/j.pupt.2008.10.002
[30] Matsuoka, T., Jin, E., Tachihara, A., Ghazizadeh, M., Nakajima, A., Yoshino, S., et al. (2008) Induction of Pulmonary Thromboembolism by Neutrophil Elastase in Collagen-Induced Arthritis Mice and Effect of Recombinant Human Soluble Thrombomodulin. Pathobiology, 75, 295-305.
https://doi.org/10.1159/000151710
[31] Hanauer, S.B. (2006) Inflammatory Bowel Disease: Epidemiology, Pathogenesis, and Therapeutic Opportunities. Inflammatory Bowel Diseases, 12, S3-S9.
https://doi.org/10.1097/01.mib.0000195385.19268.68
[32] Schmid, M., Fellermann, K., Fritz, P., Wiedow, O., Stange, E.F. and Wehkamp, J. (2007) Attenuated Induction of Epithelial and Leukocyte Serine Antiproteases Elafin and Secretory Leukocyte Protease Inhibitor in Crohn’s Disease. Journal of Leukocyte Biology, 81, 907-915.
https://doi.org/10.1189/jlb.0906581
[33] Nakov, R. (2019) New Markers in Ulcerative Colitis. Clinica Chimica Acta, 497, 141-146.
https://doi.org/10.1016/j.cca.2019.07.033