广义CEV模型下分数阶BS方程的亚式期权定价及反问题
Pricing and Inverse Problem of Asian Options for Fractional Order BS Equations under the Generalized CEV Model
DOI: 10.12677/AAM.2024.136286, PDF, 下载: 53  浏览: 82  国家自然科学基金支持
作者: 沈诺晨, 许作良*:中国人民大学数学学院,北京
关键词: 广义CEV模型分数阶BS方程期权定价反问题Generalized CEV Model Fractional Order BS Equation Option Pricing Counterproblem
摘要: 本文主要研究广义CEV模型下分数阶 Black-Scholes 方程的亚式期权定价及反问题。首先介绍了广义CEV模型下分数阶 Black-Scholes方程结合亚式期权的定价问题,根据Cox和Jumarie提出的带有分红的广义CEV波动率模型,推导出算术平均亚式期权满足的定价公式,其次在空间和时间上进行差分离散,并根据数值模拟验证了模型有效性。最后研究了时间分数阶广义CEV模型下亚式期权定价的反问题,在正问题的基础上,结合一种稳健的预测 -校正线性化算法,对波动率进行反演,根据数值实验验证算法的有效性及稳定性。
Abstract: This article mainly studies the pricing and inverse problem of Asian options for frac- tional order Black Scholes equations under the generalized CEV model. Firstly, the pricing problem of fractional order Black Scholes equations combined with Asian op- tions under the generalized CEV model is introduced. Based on the generalized CEV volatility model with dividends proposed by Cox and Jumarie, the pricing formula satisfied by arithmetic mean Asian options is derived. Secondly, the difference is separated in space and time, and the effectiveness of the model is verified through numerical simulation. Finally, the inverse problem of Asian option pricing under the time fractional generalized CEV model was studied. Based on the forward problem, a robust prediction correction linearization algorithm was combined to invert volatil- ity. The effectiveness and stability of the algorithm were verified through numerical experiments.
文章引用:沈诺晨, 许作良. 广义CEV模型下分数阶BS方程的亚式期权定价及反问题[J]. 应用数学进展, 2024, 13(6): 2996-3014. https://doi.org/10.12677/AAM.2024.136286

参考文献

[1] Edeki, S., Ugbebor, O. and Owoloko, E. (2015) Analytical Solutions of the Black-Scholes Pricing Model for European Option Valuation via a Projected Differential Transformation Method. Entropy, 17, 7510-7521.
https://doi.org/10.3390/e17117510
[2] An, X., Liu, F., Zheng, M., Anh, V.V. and Turner, I.W. (2021) A Space-Time Spectral Method for Time-Fractional Black-Scholes Equation. Applied Numerical Mathematics, 165, 152-166.
https://doi.org/10.1016/j.apnum.2021.02.009
[3] 姜礼尚. 金融衍生产品定价的数学模型与案例分析 [M]. 北京: 高等教育出版社, 2008.
[4] Wyss, W. (2000) The fractional Black-Scholes Equation. Fractional Calculus and Applied Anal- ysis, 3, 51-61.
[5] Kumar, S., Yildirim, A., Khan, Y. and Jafari, H. (2012) Analytical Solution of Fractional Black-Scholes European Option Pricing Equation by Using Laplace Transform. Fractional Calculus and Applied Analysis, 2, 1-9.
[6] Cartea, Á. (2013) Derivatives Pricing with Marked Point Processes Using Tick-by-Tick Data. Quantitative Finance, 13, 111-123.
https://doi.org/10.1080/14697688.2012.661447
[7] Leonenko, N.N., Meerschaert, M.M. and Sikorskii, A. (2013) Fractional Pearson Diffusions. Journal of Mathematical Analysis and Applications, 403, 532-546.
https://doi.org/10.1016/j.jmaa.2013.02.046
[8] Cox, J.C. and Ross, S.A. (1976) The Valuation of Options for Alternative Stochastic Processes. Journal of Financial Economics, 3, 145-166.
https://doi.org/10.1016/0304-405x(76)90023-4
[9] Jo, S., Yang, M. and Kim, G. (2016) On Convergence of Laplace Inversion for the American Put Option under the CEV Model. Journal of Computational and Applied Mathematics, 305, 36-43.
https://doi.org/10.1016/j.cam.2016.03.030
[10] Wang, Y., Rong, X. and Zhao, H. (2018) Optimal Investment Strategies for an Insurer and a Reinsurer with a Jump Diffusion Risk Process under the CEV Model. Journal of Computational and Applied Mathematics, 328, 414-431.
https://doi.org/10.1016/j.cam.2017.08.001
[11] Jumarie, G. (2008) Stock Exchange Fractional Dynamics Defined as Fractional Exponential Growth Driven by (Usual) Gaussian White Noise. Application to Fractional Black-Scholes Equations. Insurance: Mathematics and Economics, 42, 271-287.
https://doi.org/10.1016/j.insmatheco.2007.03.001
[12] 许作良, 马青华. 金融中的反问题及数值方法 [M]. 北京: 科学出版社, 2018.
[13] Bouchouev, I. and Isakov, V. (1997) The Inverse Problem of Option Pricing. Inverse Problems, 13, L11-L17.
https://doi.org/10.1088/0266-5611/13/5/001
[14] Jiang, X. and Xu, X. (2020) On Implied Volatility Recovery of a Time-Fractional Black-Scholes Equation for Double Barrier Options. Applicable Analysis, 100, 3145-3160.
https://doi.org/10.1080/00036811.2020.1712369
[15] Flint, E.J. and Mare, E. (2016) Fractional Black-Scholes Option Pricing, Volatility Calibration and Implied Hurst Exponents. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.2793927
[16] Djeutcha, E. and Kamdem, J.S. (2021) Local and Implied Volatilities with the Mixed-Modified- Fractional-Dupire Model. Chaos, Solitons & Fractals, 152, Article 111328.
https://doi.org/10.1016/j.chaos.2021.111328
[17] Haentjens, T. and Hout, K. (2010) ADI Finite Difference Discretization of the Heston-Hull- White PDE. AIP Conference Proceedings, 1281, 1995-1999.
https://doi.org/10.1063/1.3498329
[18] Jin, Y., Wang, J., Kim, S., Heo, Y., Yoo, C., Kim, Y., et al. (2018) Reconstruction of the Time-Dependent Volatility Function Using the Black-Scholes Model. Discrete Dynamics in Nature and Society, 2018, 1-9.
https://doi.org/10.1155/2018/3093708