上颌扩弓对颅面骨影响的研究进展
Progress on the Effect of Maxillary Arch Enlargement on Craniofacial Bone
DOI: 10.12677/acm.2024.1461923, PDF, HTML, XML, 下载: 11  浏览: 24 
作者: 张玲善:新疆医科大学第一附属医院,附属口腔医院,儿牙预防科,新疆 乌鲁木齐;刘奕杉*:新疆医科大学第一附属医院,附属口腔医院,儿牙预防科,新疆 乌鲁木齐;新疆维吾尔自治区口腔医学研究所,新疆 乌鲁木齐
关键词: 上颌缩窄上颌扩弓颅面骨CBCTMaxillary Coarctation Maxillary Extended Arch Craniofacial Bone CBCT
摘要: 颅面部的骨骼发育中,上颌缩窄是最普遍的问题之一,也是引起错颌畸形的主要原因。此外,这种情况还可能导致口呼吸、鼻通气困难、听力减退等多种功能性问题。在临床实践中,正畸医师经常采用上颌快速扩弓(rapid maxillary expansion, RME)这一手段来矫正上颌发育不足和上牙弓过窄的情况。这种方式可以打开正在成长阶段儿童的腭中缝,从而引起上颌骨板的移动,有助于减轻或消除上颌宽度不足。在正畸学中上颌扩弓对于面中部的影响一直在被研究,传统上是通过二维X线片,如头颅侧位和后前位X线片,或通过牙齿的模型,由于影像学资料获取的局限,在牙科领域锥束计算机断层扫描(CBCT)出现之前,关于上颌快速扩弓对面中部骨骼和牙弓的影响研究十分有限。CBCT出现以后,在三维上研究扩张效应成为可能,并且随着CBCT机器分辨率的提高,不仅可以测量颌面部骨骼的移动,而且可以测量对上颌和上颌周缝的影响。
Abstract: In the development of cranifacial bones, maxillary constriction is one of the most common problems and the main cause of malocclusion. In addition, this condition may also lead to many functional problems, such as oral breathing, nasal ventilation difficulties, and hearing loss. In clinical practice, orthodontists often use the rapid maxillary arch expansion (rapid maxillary expansion, RME) to correct the lack of maxillary development and the narrow upper dental arch. This way can open the palatal raphe of growing children, thus causing the movement of the maxillary plate, helping to reduce or eliminate the insufficient width of the maxilla. In orthodontics for the middle of the influence of the upper arch has been studied, traditionally through the two-dimensional X-ray, such as head lateral and posterior anterior X-ray, or through the tooth model, due to the limitation of imaging data acquisition, before the dental field cone beam computed tomography (CBCT), on the influence of rapid upper arch across the middle bone and tooth arch is very limited. After the advent of CBCT, it became possible to study the expansion effects in three dimensions, and with the improved resolution of the CBCT machine, it was possible to measure not only the maxillofacial bone movement but also the effects on the maxillary and perimaxillary suture.
文章引用:张玲善, 刘奕杉. 上颌扩弓对颅面骨影响的研究进展[J]. 临床医学进展, 2024, 14(6): 1371-1376. https://doi.org/10.12677/acm.2024.1461923

1. 引言

上颌缩窄(maxillary transverse deficiency, MTD)作为口腔临床上常见错颌畸形的一种情况,通常情况下表现为骨性或牙性后牙反合、腭盖高拱、前庭沟加宽、牙列不齐、听力下降、呼吸不畅,影响患者的牙颌面健康和美观。Angle医生最先提出上颌扩弓原理,即对扩弓器进行加力,使上颌骨及组织在短时间内聚集较大的矫形力,使处于腭中缝间的纤维连接被拉开,骨缝打开后,新骨沉积,达到上颌骨宽度的扩大效应。

上颌骨在扩弓矫形力作用下,腭中缝之间成骨细胞和破骨细胞产生互相作用,二者通过调节骨吸收和骨形成,进而最终形成新生骨组织,腭中缝的骨缝内成骨,这一过程即上颌扩弓的本质[1]。这也说明一般扩弓的最佳年龄是在青少年期,在腭中缝未完全钙化闭合之前进行扩弓效果显著。在这其中,成骨细胞源自间充质干细胞的分化过程,而破骨细胞则是来自单核—巨噬细胞系统。这也意味着上颌骨扩弓的过程也涉及到免疫系统和间充质干细胞系统,以及它们之间的相互作用。

2. 上颌扩弓的临床进展概况

1) 上颌扩弓原理:骨缝内新骨沉积是借助上颌腭中缝的扩展来完成,从而使得周围骨缝以及颅面部硬组织位置会产生相应的变化,错颌畸形的矫治某种程度上就是通过这些变化来实现的[2]。骨组织的适应性改建是由力的作用导致的,需要骨缝区受到力的刺激才能发生[3]。破骨与成骨是两种相互平衡的变化过程[4],当二者间稳态被破坏时就发生了骨组织的改建[5]。Kate-bi等[6]认为,骨膜细胞增殖能使骨和软骨的形成,而破骨细胞活化能增加骨吸收,上述过程需要扩弓对腭中缝施加力促使腭中缝的骨缝内成骨。成骨细胞在骨改建过程中发挥着关键作用,若施加合适的机械力还能够更有效的发生成骨反应。上颌快速扩弓(rapid maxillary expansion, RME)能够显著扩大牙弓的周长,并且,如果与固定矫治技术相结合,能够对由于骨性牙弓狭窄引发的后牙反合或中重度牙列拥挤的情况产生更显著的矫正效果[7] [8]

学者们近年来通过研究发现,慢速扩弓是更符合生理特性的扩弓方式,因为慢速扩弓相较快速扩弓具有以下优势:对腭部组织损伤更少;稳定性相对较高;不容易复发,最为重要的是对颊侧的骨质厚度影响更小[9] [10]

2) 上颌扩弓器的分类上颌扩弓矫治器主要包括活动扩弓矫治器,扩弓装置用螺旋扩弓簧或螺旋弹簧;不锈钢弯制的分裂簧式扩弓矫治器,如菱形分裂簧、U形分裂簧、W形弓、Coffin弓或四眼圈簧等矫治器;固定粘结或带环式螺旋扩弓簧矫治器[11]

3) 上颌扩弓在临床中的应用上颌快速扩弓是正畸临床上常用的矫正技术,被用于上颌牙弓狭窄、轻中度的牙列拥挤、安氏三类错颌畸形的矫治[12]。扩弓矫治的适应症包括:牙性上下牙弓宽度明显发育不足,腭盖高拱,上下磨牙直立或内倾的患儿;上颌发育不足,上牙弓狭窄的患儿;上牙弓宽度发育不足,单侧或双侧反合的患儿;上颌骨、鼻腔及上呼吸道狭窄,口呼吸、腺样体肥大的患儿;唇腭裂手术修复,牙弓横向发育不足的患儿等等。根据MacGinnis [13]等人的研究表明,上颌横向发育不足的患病率在混合牙列和乳牙列中在8%到23%之间,在成人中不到10%。另一项研究指出,9.4%的人口和约30%的成年正畸患者的上颌横向发育不足与后牙反合有关[13]上颌快速扩弓可改善上颌横向发育不足,协调上下牙列横向关系,重建颌面部组织,对改善周围组织功能有积极作用,有助于改善鼻通气不足、口呼吸[13] [14]、听力缺损[15] [16],所以上颌扩弓治疗在正畸临床中有重要意义。颅颌面复合体骨骼结构复杂,上颌骨通过骨缝与周围的颧骨、鼻骨等相连,研究表明牙列拥挤的矫正中,上颌快速扩弓可以打开腭中缝并激发邻骨骨缝区细胞产生反应[17] [18],此过程中,打开腭中缝的主要阻力可能不在于腭中缝本身,而在于上颌骨与之相连的周围结构,尤其是蝶骨和颧骨,因此,扩弓力可能影响上颌周围所有的骨缝:鼻颌缝、鼻额缝、额颌缝、翼颌缝、颧额缝和颧颞缝。颅面骨缝对外部矫形力的反应因其解剖位置和结合程度的不同而不同,不同的研究表明面中部骨骼受扩弓影响最大。尽管上颌快速扩弓的主要目的是纠正上颌牙弓发育不足,但其效果并不局限于上颌牙槽骨和腭中缝,还影响到面部和颅骨的其他几个相邻结构,除了蝶骨外,所有与上颌直接相连的颅面骨都产生了移位。颧骨以及鼻骨是颜面部重要支撑,对于面部的美观有重要的作用,颧骨以及鼻骨位置的改变将影响到面部容貌美观以及错颌畸形的矫正,上颌快速扩弓治疗可矫正上下颌牙列横向的错颌畸形,但在临床上引起的颧骨和鼻骨的移位对面部外观的影响尚不确定。

4) 上颌扩弓对颌面部组织影响Angle首先使用上颌快速扩弓来打开腭中缝[18],有效地矫正了上颌横向发育不足的患者[19]。临床研究表明[20],直接与上颌骨连接的骨缝比间接连接的骨缝变化更大。Jafari等[21]认为上颌快速扩弓使鼻底增宽,鼻中隔变直,气道增粗可改善鼻腔通气不足。因此,他们得出的结论为:冠状面所产生的侧方位移量大小与其靠近骨缝顶部还是底部有关,越靠近底部越远离限制从而产生更大位移,反之则相反。以颧颌缝为界,水平前后位移距离大小与距腭中缝远近有关,在颧颌缝之前水平前向位移与距它的远近呈负相关;而在颧颌缝之后则表现为正相关;扩弓前后对比,扩弓后的改变在冠状面上看,产生垂直向下位移的是中线附近的结构,而远离中线的结构则产生相反方向的位移。

在对于RME对其他颅面骨作用的研究中,潘虹海等[22]研究发现在矢状面上,向后位移最大的是颧骨额突。在垂直向上,向上位移最大的是颧骨体部。付雅丽等[23]研究发现与潘虹海相似,同样得出结论:上颌扩弓前后对比最大矢状方向位移为颧骨腭突水平向后移动;而鼻腔后上点垂直向下移动为最大垂直向位移;颧骨体部发生了最大垂直向上的位移。Iseri等[24]认为快速扩弓使鼻腔底部宽度显著增大,其后上部区域向内移动。

近年来很多学者们研究了在上颌快速扩弓作用下上颌骨的改变。Garrett团队[25]利用锥形束CT技术,对其横向扩张的效能进行了研究。研究结果显示:第一前磨牙、第二前磨牙以及第一磨牙的相关区域,腭中缝的展开范围,所占的总扩张范围的百分比是55%、45%以及38%,这个范围是一个前端较大,后端较小的三角形。这一结果说明腭中缝的后部打开程度较低与翼突和腭骨的锁结有密切相关性。Chung等学者[26]的研究表明:经过上颌快速扩弓的患者在发生上颌骨板宽度增加外还向前、向下移动,横向距离增加为总扩弓宽度增加的30.1%。另外还有学者[19] [27]在有关上颌快速扩弓前后骨改变研究的综述中得出结论:上颌骨的改变主要表现为横向距离的增加,占比为牙弓增宽的25%,在前后向和垂直向的改变甚微,无临床意义。

下颌骨在上颌快速扩弓前后的改变:有学者[26]研究表明:在上颌骨宽度增加的同时,下颌骨宽度也会略微增大。然而,一些学者[27]的研究表明,仅当髁突间的宽度扩大2~3 mm时,下颌骨的宽度并未发生显著的改变,同时,髁突宽度扩大的稳定性问题还没有进行过长期的实验验证[28]。处于生长发育期年龄的儿童在进行上颌扩弓治疗时,髁突软骨细胞不断增生,颞下颌关节骨组织改建十分活跃,促进髁突头和颈部发生形态学的改建[29] [30]。Melgaco团队[31]研究髁突的位置在扩弓前后发生的变化,研究表明髁突向侧方发生倾斜移位,并向前下方移动。Leonardi等专家[32]研究指出功能性反合患者原本不对称的双侧髁突在上颌扩弓后得到一定程度的纠正。这些研究说明髁突在受到上颌扩弓的矫形力作用时会发生骨组织改建,改善髁突形态并且使髁突和关节窝的位置关系达到更加协调的状态。颞下颌关节的结构中,下颌骨髁突和颞骨关节窝是形态不规则的解剖结构,关节盘在这二者之间关联构成颞下颌关节中的应力缓冲结构,使髁突与颞骨关节窝的接触面积增加,虽然应力明显增加,但应力分布区域更加均匀,上颌扩弓产生的矫形力诱导髁突发生组织改建,从而协调髁突和关节盘的关系。临床上对于牙弓狭窄的患者应该采用合适的手段进行扩弓矫治[33]

3. 总结与展望

通过打开腭中缝解除上颌缩窄,这种快速扩弓的方式对与上颌骨连接的面中部骨骼和颅骨也产生了影响,并产生位移,面中部的颧骨以及鼻骨在面中部起着重要支撑作用,对面部的美观有重要的作用,上颌扩弓治疗可矫正上颌骨横向发育不足的错颌畸形,但在临床上引起的颧骨和鼻骨的移位对面部外观的影响还有待我们深入研究。

NOTES

*通讯作者。

参考文献

[1] Hou, B., Fukai, N. and Olsen, B.R. (2007) Mechanical Force-Induced Midpalatal Suture Remodeling in Mice. Bone, 40, 1483-1493.
https://doi.org/10.1016/j.bone.2007.01.019
[2] Ngan, P., Wilmes, B., Drescher, D., Martin, C., Weaver, B. and Gunel, E. (2015) Comparison of Two Maxillary Protraction Protocols: Tooth-Borne versus Bone-Anchored Protraction Facemask Treatment. Progress in Orthodontics, 16, Article No. 26.
https://doi.org/10.1186/s40510-015-0096-7
[3] Peptan, A.I., Lopez, A., Kopher, R.A. and Mao, J.J. (2008) Responses of Intramembranous Bone and Sutures upon in Vivo Cyclic Tensile and Compressive Loading. Bone, 42, 432-438.
https://doi.org/10.1016/j.bone.2007.05.014
[4] Meijome, T.E., Ekwealor, J.T.B., Hooker, R.A., Cheng, Y., Ciovacco, W.A., Balamohan, S.M., et al. (2015) C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis. Journal of Cellular Biochemistry, 117, 959-969.
https://doi.org/10.1002/jcb.25380
[5] Sanchez-Fernandez, M.A., Gallois, A., Riedl, T., Jurdic, P. and Hoflack, B. (2008) Osteoclasts Control Osteoblast Chemotaxis via PDGF-BB/PDGF Receptor β Signaling. PLOS ONE, 3, e3537.
https://doi.org/10.1371/journal.pone.0003537
[6] Katebi, N., Kolpakova-Hart, E., Lin, C.Y. and Olsen, B.R. (2012) The Mouse Palate and Its Cellular Responses to Midpalatal Suture Expansion Forces. Orthodontics & Craniofacial Research, 15, 148-158.
https://doi.org/10.1111/j.1601-6343.2012.01547.x
[7] Mutinelli, S. and Cozzani, M. (2015) Rapid Maxillary Expansion in Early-Mixed Dentition: Effectiveness of Increasing Arch Dimension with Anchorage on Deciduous Teeth. European Journal of Paediatric Dentistry, 16, 115-122
[8] 赵桂芝, 郑栋, 柯杰, 等. 下颌螺旋扩弓器的改良制作和临床应用[J]. 中华口腔正畸学, 2015, 22(1): 20-23.
[9] Lagravère, M.O., Major, P.W. and Flores-Mir, C. (2005) Skeletal and Dental Changes with Fixed Slow Maxillary Expansion Treatment. The Journal of the American Dental Association, 136, 194-199.
https://doi.org/10.14219/jada.archive.2005.0141
[10] 冶录平, 陈菁菁, 丰鑫. Hyrax快速与慢速扩弓矫治替牙晚期上颌狭窄疗效对比研究[J]. 中国实用口腔科杂志, 2014, 12(7): 740-743.
[11] 李小兵. 当代儿童正畸矫治经典应用[M]. 成都: 四川大学出版社, 2021: 148.
[12] Haas, A.J. (1965) Treatment of Maxillary Deficiency by Opening the Midpalatal Suture. Angle Orthodontist, 35, 200-217.
[13] MacGinnis, M., Chu, H., Youssef, G., Wu, K.W., Machado, A.W. and Moon, W. (2014) The Effects of Micro-Implant Assisted Rapid Palatal Expansion (MARPE) on the Nasomaxillary Complex—A Finite Element Method (FEM) Analysis. Progress in Orthodontics, 15, Article No. 52.
https://doi.org/10.1186/s40510-014-0052-y
[14] Basciftci, F.A., Mutlu, N., Karaman, A.I., et al. (2002) Does the Timing and Method of Rapid Maxillary Expansion Have an Effect on the Changes in Nasal Dimensions? The Angle Orthodontist, 72, 118-123.
[15] Laptook, T. (1981) Conductive Hearing Loss and Rapid Maxillary Expansion. American Journal of Orthodontics, 80, 325-331.
https://doi.org/10.1016/0002-9416(81)90294-3
[16] Xinglin, Q. and Ping, C. (2012) The Effects of Rapid Maxillary Expansion on Maxillofaxcial Structures and Function. International Journal of Stomatology, 39, 132-135.
[17] Ngan, P., Hägg, U., Yiu, C., Merwin, D. and Wei, S.H.Y. (1996) Soft Tissue and Dentoskeletal Profile Changes Associated with Maxillary Expansion and Protraction Headgear Treatment. American Journal of Orthodontics and Dentofacial Orthopedics, 109, 38-49.
https://doi.org/10.1016/s0889-5406(96)70161-0
[18] Aloise, A.C., Pereira, M.D., Hino, C.T., Filho, A.G. and Ferreira, L.M. (2007) Stability of the Transverse Dimension of the Maxilla after Surgically Assisted Rapid Expansion. Journal of Craniofacial Surgery, 18, 860-865.
https://doi.org/10.1097/scs.0b013e3180a77237
[19] Lagravere, M.O., Major, P.W. and Flores-Mir, C. (2005) Long-Term Skeletal Changes with Rapid Maxillary Expansion: A Systematic Review. Angle Orthodontist, 75, 1046-1052.
[20] Lines, P.A. (1975) Adult Rapid Maxillary Expansion with Corticotomy. American Journal of Orthodontics, 67, 44-56.
https://doi.org/10.1016/0002-9416(75)90128-1
[21] Jafari, A., Shetty, K.S. and Kumar, M. (2003) Study of Stress Distribution and Displacement of Various Craniofacial Structures Following Application of Transverse Orthopedic Forces—A Three-Dimensional FEM Study. The Angle Orthodontist, 73, 12-20.
[22] 潘虹海, 杨四维. 两种不同支抗快速扩弓的三维有限元分析[J].中国美容医学杂志, 2014, 23(7): 575-578.
[23] 付雅丽, 王春玲, 寇波, 等. 上颌快速扩弓时骨缝标识性颅面骨三维有限元分析[J]. 临床口腔医学杂志, 2008, 24(4): 206-208.
[24] Baka, Z.M., Akin, M., Ucar, F.I. and Ileri, Z. (2015) Cone-beam Computed Tomography Evaluation of Dentoskeletal Changes After Asymmetric Rapid Maxillary Expansion. American Journal of Orthodontics and Dentofacial Orthopedics, 147, 61-71.
https://doi.org/10.1016/j.ajodo.2014.09.014
[25] Garrett, B.J., Caruso, J.M., Rungcharassaeng, K., Farrage, J.R., Kim, J.S. and Taylor, G.D. (2008) Skeletal Effects to the Maxilla After Rapid Maxillary Expansion Assessed with Cone-Beam Computed Tomography. American Journal of Orthodontics and Dentofacial Orthopedics, 134, 8.e1-8.e11.
https://doi.org/10.1016/j.ajodo.2007.11.024
[26] Chung, C. and Font, B. (2004) Skeletal and Dental Changes in the Sagittal, Vertical, and Transverse Dimensions after Rapid Palatal Expansion. American Journal of Orthodontics and Dentofacial Orthopedics, 126, 569-575.
https://doi.org/10.1016/j.ajodo.2003.10.035
[27] Lagravère, M.O., Heo, G., Major, P.W. and Flores-Mir, C. (2006) Meta-analysis of Immediate Changes with Rapid Maxillary Expansion Treatment. The Journal of the American Dental Association, 137, 44-53.
https://doi.org/10.14219/jada.archive.2006.0020
[28] 秦行林, 蔡萍. 上颌快速扩弓对颌面组织结构和功能的影响[J]. 国际口腔医学杂志, 2012, 39(1): 132-135.
[29] Papachristou, D., Pirttiniemi, P., Kantomaa, T., Agnantis, N. and Basdra, E.K. (2005) Fos-and Jun-Related Transcription Factors Are Involved in the Signal Transduction Pathway of Mechanical Loading in Condylar Chondrocytes. European Journal of Orthodontics, 28, 20-26.
https://doi.org/10.1093/ejo/cji101
[30] Lima Filho, R.M.A. and Ruellas, A.C.O. (2007) Mandibular Behavior with Slow and Rapid Maxillary Expansion in Skeletal Class II Patients. The Angle Orthodontist, 77, 625-631.
https://doi.org/10.2319/071406-294
[31] Melgaço, C.A., Neto, J.C., Jurach, E.M., Nojima, M.d.C.G. and Nojima, L.I. (2014) Immediate Changes in Condylar Position after Rapid Maxillary Expansion. American Journal of Orthodontics and Dentofacial Orthopedics, 145, 771-779.
https://doi.org/10.1016/j.ajodo.2014.01.024
[32] Leonardi, R., Caltabiano, M., Cavallini, C., Sicurezza, E., Barbato, E., Spampinato, C., et al. (2012) Condyle Fossa Relationship Associated with Functional Posterior Crossbite, before and After Rapid Maxillary Expansion. The Angle Orthodontist, 82, 1040-1046.
https://doi.org/10.2319/112211-725.1
[33] 徐文华, 董浩鑫, 王为, 等. 上颌扩弓对颞下颌关节应力影响的有限元分析[J]. 医用生物力学, 2022, 37(5): 940-945.
https://doi.org/10.16156/j.1004-7220.2022.05.026