Cu和Cl掺杂GaN光电性质的第一性原理研究
First Principles Study on the Optoelectronic Properties of Copper and Chlorine Doped Gallium Nitride
DOI: 10.12677/app.2024.146055, PDF, HTML, XML, 下载: 42  浏览: 71  科研立项经费支持
作者: 李 萍:新疆理工学院理学院,新疆 阿克苏;俞利瑞:新疆工程学院数理学院,新疆 乌鲁木齐
关键词: 掺杂GaN电子结构光催化性能Doping GaN Electronic Structure Photocatalytic Performance
摘要: 基于第一性原理的方法,本研究对金属原子Cu和非金属原子Cl掺杂GaN的电子结构和光学性能等进行了系统的计算。结果显示:掺杂后GaN的形成能较低且声子结构稳定,说明掺杂体系的结构稳定。与未掺杂GaN相比,掺杂后的GaN体系的带隙均有所改变,仍保持直接带隙,在费米能级附近均有所贡献,对载流子的迁移大有裨益。掺杂后体系在低能区的吸收系数较高且有新峰产生,这可以拓宽体系对光谱的响应范围,可能会提高体系的光催化活性,这为相关的实验探索奠定了理论基础。
Abstract: Based on the first-principle approach, the stability of GaN doped with metal atoms Cu and non-metal atoms Cl and its optoelectronic properties, etc. are systematically calculated and analyzed in this study. Compared with the undoped GaN, the bandgap of the doped GaN system is changed and still maintains the direct bandgap, which contributes near the Fermi energy level, which is beneficial to the carrier migration. The absorption coefficients of the doped system in the low-energy region are higher and new peaks are generated, which can broaden the response range of the system to the spectrum and may improve the photocatalytic activity of the system, which provides some theoretical basis for related experimental studies.
文章引用:李萍, 俞利瑞. Cu和Cl掺杂GaN光电性质的第一性原理研究[J]. 应用物理, 2024, 14(6): 501-507. https://doi.org/10.12677/app.2024.146055

1. 引言

随着工业技术的不断发展,环境问题日趋严重,因此降低环境污染成了人们亟待解决的问题[1]。半导体光催化剂因无污染、易制备且具有高效的催化率等优点,在降解环境污染物方面得到了广泛运用[2] [3]。光催化剂诸如ZnO [4]、g-C3N4 [5]及GaN [6]等,其中GaN不仅具有优良的稳定性,还能有效地分离光生电子–空穴对,在光催化材料领域深受研究者们的青睐,但GaN属于宽禁带半导体(约3.39 eV),对可见光的响应范围较窄[7]。经调研,掺杂在调控体系的电子结构及拓宽光谱的吸收范围等方面起着重要的作用[8]。如:Wang等人[9]借助第一性原理的方法,探究了La和Y掺杂GaN的光电特性,结果表明La-Y掺杂可以有效调控GaN的带隙及类型,同时能显著提高体系在低能区的静介电常数及反射率等,使光生电子的跃迁能力增强,从而显著增强了光生电子的跃迁能力。Ueno [10]和Wei [11]等人在实验上制备了Si掺杂GaN及Mg掺杂GaN体系,发现掺杂体系具有很高的电子迁移率且复合中心减少,有效的提高了载流子的寿命。因此,在GaN中进行元素掺杂以获得所需性能的策略是可行的。而共掺杂不仅能提高载流子迁移率还能增强掺杂剂的稳定性,提供比单掺杂材料更好的光电化学活性[12]。如:Zaman等人[12]探究了C和Fe掺杂GaN体系的电子结构及光学性质等。研究发现,与单掺杂相比,共掺杂体系展现出最窄的带隙、最显著的红移及最优的性能。Ke等人[13]研究了C-Ge掺杂GaN以及C-Sn掺杂GaN,研究揭示了共掺杂体系具备理想的带隙和带边位置,同时还展现出更宽的可见光吸收范围,可能成为光催化水裂解生成氢的潜在候选体系。此外,还有许多研究组对C-Ti [14]、Ag-O [15]及C-Al [16]共掺杂GaN等体系进行了研究,发现掺杂后体系的性能均有所提高。

因此,本工作首先选择了金属元素Cu和非金属元素Cl对GaN体系进行掺杂,构建了未掺杂GaN、Cu单掺GaN、Cl掺杂GaN及Cu-Cl共掺杂GaN四个体系,然后计算了四种结构的稳定性和光电性能等,探讨其微观机理,以期为相关的实验探索积累些许理论基础。

2. 理论模型与计算方法

本工作选择了纤锌矿GaN作为研究对象,空间群为P63mc,晶格常数分别为a = b = 3.189 Å,c = 5.185 Å,晶格角度分别为α = β = 90˚,γ = 120˚ [17]。通过收敛性测试构建了2 × 2 × 2的超胞,图1是原子掺杂位置。价电子组态分别为N (2s22p3)、Cl (3s23p5)、Ga (4s24p1)和Cu (3d104s1)。

本工作使用了Material Studio软件包,采用基于密度泛函理论的广义梯度近似下的Perdew-Burke- Ernzerhof作为电子交换–关联泛函,对掺杂前后的GaN体系的四个模型进行了结构优化[18]。考虑到GGA方法会低估带隙,与实验结果有偏差,因此采用GGA + U的方法以弥补GGA的不足。以GaN的带隙为基准,确定Ga-3d及N-2p的U值分别为UGa-3d = 0.38 eV、UN-2p = 4.85 eV,与刘纪博等人[2]的结果相近。据Monkhorst-Pack方案[19],K格点设为4 × 4 × 2,截断能为670 eV。迭代过程中,能量收敛至1 × 106 eV/atom,单原子受力收敛至0.04 eV/Å,公差偏移量小于0.002 Å,内应力低于0.05 GPa。

Figure 1. Crystal cell structure diagram: (a) GaN; (b) Cu doped GaN; (c) Cl doped GaN; (d) Cu-Cl doped GaN

1. 晶胞结构图:(a) GaN;(b) Cu掺杂GaN;(c) Cl掺杂GaN;(d) Cu-Cl掺杂GaN

3. 结果与讨论

3.1. 结构优化

本研究首先优化了掺杂前后的GaN体系,优化后的参数见表1。由于原子半径的不同,掺杂后GaN的晶格常数发生微小改变,不会影响体系的基本结构。观察表1可知,掺杂体系的键长(最小和最大键长)均有变动,使原有结构的对称性被打破,导致电荷中心不再重合,进而促进载流子数量的增加[19]。本研究用形成能(Eform)来推断Cu和Cl掺入GaN结构的相对难易程度,公式如下[20]

E form = E defect E perfect +  μ i μ j

其中,EperfectEdefect是指本征/掺杂GaN结构的总能量;μiμj用于描述替换/被替换原子的化学式。结果显示,掺杂结构的形成能较低,表明掺杂原子对晶体结构的影响较小。图2是Cu-Cl掺杂GaN结构的声子谱。声子谱是描述结构中晶格振动的方式之一,判断结构稳定性的依据[21]。声子谱的横、纵坐标分别为布里渊区高对称点和声子谱频率。当声子谱的频率低于零时为虚频,表明结构动态稳定性较差;若声子谱均为正值,则说明结构动态稳定。由图2可知,Cu-Cl掺杂GaN结构的声子频率均为正值,没有出现任何虚频,表明这该结构在动力学上是稳定的。综合声子谱和形成能的结果可知,Cu-Cl掺杂GaN的结构稳定。

Table 1. Lattice constants, bond lengths, and formation energy of Cu and Cl doped GaN

1. Cu和Cl掺杂GaN的晶格常数、键长及形成能

模型

a = b

c

Ga-Nmin

Ga-Nmax

Eform/eV

GaN

3.218

5.245

1.967

1.976

/

Cu-GaN

3.214

5.259

1.945

1.985

−0.875

Cl-GaN

3.266

5.362

1.940

2.040

−1.652

Cu-Cl-GaN

2.263

5.322

1.926

2.100

−0.391

Figure 2. Phonon spectra of Cu-Cl doped GaN

2. Cu-Cl掺杂GaN的声子谱

3.2. 电子结构

Figure 3. Band structure diagram: (a) GaN; (b) Cu doped GaN; (c) Cl doped GaN; (d) Cu-Cl doped GaN

3. 能带结构图:(a) GaN;(b) Cu掺杂GaN;(c) Cl掺杂GaN;(d) Cu-Cl掺杂GaN

图3为Cu和Cl掺杂GaN体系的能带图。本研究将能量零点设为费米能级,选择了−6~6 eV为研究范围。图3(a)是未掺杂GaN的能带图,GaN的带隙宽度为3.390 eV并且是直接带隙半导体,这与实验结果一致,表明本文参数设置合理[22]。导带主要是由Ga的4s及4p态贡献,价带主要是由Ga的4p和N的2p态所贡献,如图4(a)。由图3(b)可知,Cu掺杂GaN体系的带隙减小为1.908 eV,且价带穿过费米能级,这主要源于Cu的3d和N的2p态贡献(图4(b)),可成为极具潜力的p型半导体材料。图3(c)是Cl掺杂GaN体系的能带图,Cl掺杂GaN的带隙宽度为3.62 eV。值得注意的是,在导带底出现了一条杂质能级,有效降低了电子跃迁需要的能量,带隙约为2.279 eV。图3(d)图4(d)分别是Cu-Cl共掺杂GaN的能带结构及态密度图。Cu-Cl共掺杂GaN的能带明显向低能区移动,导带底出现了多条杂质能级,电子由价带跃迁至杂质能级仅需1.786 eV,使电子跃迁更加容易,这有效的抑制了光生电子–空穴对复合。综上所述,与未掺杂GaN相比,掺杂后的GaN体系的带隙均有所改变,仍保持直接带隙,在费米能级附近均有所贡献,对载流子的迁移大有裨益,可能会提高体系的光催化活性。

Figure 4. Density of States diagram: (a) GaN; (b) Cu doped GaN; (c) Cl doped GaN; (d) Cu-Cl doped GaN

4. 态密度图:(a) GaN;(b) Cu掺杂GaN;(c) Cl掺杂GaN;(d) Cu-Cl掺杂GaN

3.3. 光学性质

图5(a)是未掺杂GaN、Cu掺杂GaN、Cl掺杂GaN以及Cu-Cl掺杂GaN体系的光吸收图。与未掺杂GaN相比,掺杂后的体系发生了明显的红移,并且在低能区均有新峰产生,有效地拓宽了体系对光谱的响应范围。这可能归因于Cu和Cl的掺杂引入了杂质能级,使得电子跃迁较为容易,减少了光生电子–空穴对的复合,增加了体系对光的利用率。由图5(a)可知,在低能区掺杂体系的吸收系数也均高于未掺杂GaN,可推测Cu和Cl掺杂能提升GaN体系的光吸收能力[23]

图5(b)探讨了Cu和Cl掺杂GaN结构的介电函数实部。介电函数实部的纵坐标是静介电常数,静介电常数的大小反映了材料的极化能力[24]。未掺杂及Cu-Cl掺杂GaN体系的静介电常数分别为1.993、3.426、2.188、5.031 eV,可知掺杂后的GaN体系相较于未掺杂GaN拥有更高的静介电常数。其中,共掺杂GaN的静介电常数最高,表明Cu-Cl掺杂GaN具备较强的极化能力,预示着其在光利用率上的优势。

据报道,介电函数虚部可反映体系对光子的吸收能力[25]。由图5(c)可知,与未掺杂GaN相比,掺杂体系均向低能区移动,并在1.261、2.412、0.792 eV处出现峰值,其中Cu-Cl共掺GaN红移最明显且峰值最大,拓展了可见光的响应范围,有利于提高体系的光催化活性。上述分析与吸收光谱图相对应。

综上所述,Cu与Cl的掺入对GaN体系而言,能够显著扩展其光谱响应的区间,并有效增强其对光子的吸收能力。

Figure 5. (a) Absorption spectra of Cu and Cl doped GaN; (b) Real part of dielectric function; (c) Imaginary part of dielectric function

5. (a) Cu和Cl掺杂GaN的吸收光谱图;(b) 介电函数实部图;(c) 介电函数虚部图

4. 结论

本工作基于密度泛函理论,研究了纯GaN、Cu-GaN、Cl-GaN以及Cu-Cl-GaN结构的稳定性、电子结构及光学性质。结果表明:掺杂后体系的形成能均较低,说明Cu和Cl掺杂GaN体系的结构较稳定。与未掺杂体系相比,掺杂后体系的带隙有所改变,且在费米能级附近均有所贡献,对载流子的迁移大有裨益,这主要是由Cu-3d及Cl-2p态所致。Cu和Cl掺杂后体系的光吸收图谱在低能区的吸收系数及介电函数虚部均高于未掺杂体系,并且有新峰产生,说明Cu和Cl掺杂能有效提高体系对光子的吸收能力。因此,可推测Cu和Cl掺杂可作为提高GaN光催化性能的手段之一。

基金项目

新疆维吾尔自治区自然科学基金(2021D01B46,2023D01C220)资助。

参考文献

[1] Liu, C., Dai, Z., Hou, J., Zhang, L. and Gu, S. (2023) First-Principles Study for the Electric Field Influence on Electronic and Optical Properties of AlN/g-C3N4 Heterostructure. Journal of Applied Physics, 133, Article ID: 164902.
https://doi.org/10.1063/5.0145052
[2] Ju, L., Bie, M., Tang, X., Shang, J. and Kou, L. (2020) Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 12, Article No. 29335.
https://doi.org/10.1021/acsami.0c06149
[3] Ismael, M. (2020) A Review and Recent Advances in Solar-to-Hydrogen Energy Conversion Based on Photocatalytic Water Splitting over Doped-TiO2 Nanoparticles. Solar Energy, 211, 522-546.
https://doi.org/10.1016/j.solener.2020.09.073
[4] Kumaran, V., Reshmawhahini, V.R. and Gomathipriya, P. (2021) Effect of Cu Dopant on ZnO Photocatalyst in the Degradation of Navy Blue Textile Dye from Synthetic Wastewater. Chemical Engineering & Technology, 44, 942-947.
https://doi.org/10.1002/ceat.202000458
[5] Li, J.F., Zhang, T.Y. and Zhao, R. (2023) First Principles Study on Boron Doping Enhanced Performance of g-C3N4 Based Single Atom Catalysts. Journal of Atomic and Molecular Physics, 40, 65-70. (In Chinese)
[6] Senevirathne, K., Pitigala, S., Ramaraj, S., Lachgar, A. and Williams, R. (2017) Solution-Phase Synthesis of Zn-Doped GaN Photocatalysts: Morphology, Composition, and Catalytic Activity towards Methylene Blue Degradation and 4-Nitroaniline Conversion. American Journal of Nanomaterials, 5, 43-50.
https://doi.org/10.12691/ajn-5-2-1
[7] Ma, L., Liu, C.X., Pan, D.Q., et al. (2022) First Principles Study on the Electronic Structure and Optical Properties of Se and Cd Doped GaN. Electronic Components and Materials, 41, 149-156. (In Chinese)
[8] Fan, X., Jiang, J., Li, R. and Mi, W. (2021) Half-Metallicity and Magnetic Anisotropy in Transition-Metal-Atom-Doped Graphitic Germanium Carbide (g-GeC) Monolayers. The Journal of Physical Chemistry C, 125, 13688-13695.
https://doi.org/10.1021/acs.jpcc.1c04139
[9] Wang, K., Xiao, Q.Q., Zhang, J.M., et al. (2020) First Principles Calculations of Rare Earth Element (La, Y) Doped GaN. Journal of Atomic and Molecular Physics, 37, 453-459. (In Chinese)
[10] Ueno, K., Masuda, Y., Kobayashi, A. and Fujioka, H. (2023) Electrical Properties of N-Polar Si-Doped Gan Prepared by Pulsed Sputtering. Applied Physics Express, 16, Article ID: 011002.
https://doi.org/10.35848/1882-0786/acb2b1
[11] Wei, S., Gao, X., Wang, X., Pan, Y., Zeng, X., Chen, J., et al. (2023) Influence of Polarities on Optical Properties of Mg-Doped GaN Films Grown on GaN Free-Standing Substrates by MOCVD. Journal of Luminescence, 257, Article ID: 119740.
https://doi.org/10.1016/j.jlumin.2023.119740
[12] Zaman, A., Mumu, H.T., Aunkon, R.H., Bhuiyan, F.H. and Sharif, A. (2022) Improving Optical Properties of Wurtzite GaN with C and Fe Co-Doping: A DFT+U Study. Journal of Physics Communications, 6, Article ID: 105007.
https://doi.org/10.1088/2399-6528/ac9884
[13] Ke, C., Tian, C. and Gan, Y. (2020) Tailoring the Band Gap in Codoped GaN Nanosheet from First Principle Calculations. Frontiers in Materials, 7, Article No. 124.
https://doi.org/10.3389/fmats.2020.00124
[14] Khan, M.J.I., Kanwal, Z., Latif, A., Ahmad, J., Akhtar, P., Yousaf, M., et al. (2021) Investigations on Electronic Structure, Magnetic and Optical Properties of C and Ti Co-Doped Zincblende GaN for Optoelectronic Applications. Optik, 231, Article ID: 166425.
https://doi.org/10.1016/j.ijleo.2021.166425
[15] Xiong, M.Y., Zhang, R., Wen, D.L., et al. (2022) First Principles Study on the Electronic Structure and p-Type Properties of Ag-O Co-Doped GaN Nanotubes. Micro Nano Electronic Technology, 59, 410-416. (In Chinese)
[16] Wang, X.D., Pan, D.Q., Liu, L.Z., et al. (2023) Study on the Electronic Structure and Optical Properties of C-Al Doped GaN Using GGA+U Method. Journal of Atomic and Molecular Physics, 40, 143-149. (In Chinese)
[17] Xu, Y. and Ching, W.Y. (1993) Electronic, Optical, and Structural Properties of Some Wurtzite Crystals. Physical Review B, 48, 4335-4351.
https://doi.org/10.1103/physrevb.48.4335
[18] Jin, Q., Dai, X., Song, J., Pu, K., Wu, X., An, J., et al. (2021) High Photocatalytic Performance of g-C3N4/WS2 Heterojunction from First Principles. Chemical Physics, 545, Article ID: 111141.
https://doi.org/10.1016/j.chemphys.2021.111141
[19] Liu, C.X., Pang, G.W., Pan, D.Q., et al. (2023) First Principles Study on the Electronic Structure and Optical Properties of S and Al Doped Monolayer g-C3N4. Material Guide, 37, 14-19. (In Chinese)
[20] Liu, C., Shi, L., Pang, G., Pan, D., Liu, J., Ma, L., et al. (2023) First-Principles Study of Electronic Structure and Magnetic Properties of Sno2co-Doped with Transition Metals (Mo, Ru, Rh, and Pd) and Oxygen Vacancies (Vo). Journal of Physics: Conference Series, 2468, Article ID: 012004.
https://doi.org/10.1088/1742-6596/2468/1/012004
[21] Liu, C., Dai, Z., Hou, J., Liu, W., Ren, X. and Gu, S. (2024) Tunable Electronic and Optical Properties of GeC/g-C3N4 vdWH by Electric Field and Biaxial Strain. Journal of Physics and Chemistry of Solids, 185, Article ID: 111782.
https://doi.org/10.1016/j.jpcs.2023.111782
[22] Liu, L.Z., Shi, L.Q., Wang, X.D., et al. (2022) First Principles Study on the Electronic Structure and Optical Properties of C-Mg Doped GaN. Journal of Atomic and Molecular Physics, 39, 137-143. (In Chinese)
[23] Liu, C.X., Pang, G.W., Pan, D.Q., et al. (2022) First Principles Study on the Influence of Electric Field on the Electronic Structure and Optical Properties of GaN/g-C3N4 Heterojunction. Journal of Physics, 71, 288-296. (In Chinese)
[24] Fu, S.S., Xiao, Q.Q., Yao, Y.M., et al. (2024) First Principles Study on the Optoelectronic Properties of GaN Doped with Rare Earth Elements Lu and Sc. Journal of Atomic and Molecular Physics, 41, 167-173. (In Chinese)
[25] Liu, C.X., Pan, D.Q., Pang, G.W., et al. (2022) Theoretical Study on the Photocatalytic Activity of X/g-C3N4 (X = g-C3N4, AlN, and GaN) Heterojunction. Journal of Artificial Crystals, 51, 450-458. (In Chinese)