光热超疏水材料在含油废水处理领域的研究进展
Research Progress of Photothermal Superhydrophobic Materials in the Field of Oily Wastewater Treatment
DOI: 10.12677/ms.2024.146106, PDF, HTML, XML, 下载: 35  浏览: 67 
作者: 李莹莹, 史雪婷*:兰州交通大学材料科学与工程学院,甘肃 兰州
关键词: 超疏水光热转换油水分离原油吸附Superhydrophobic Photothermal Conversion Oil/Water Separation Crude Oil Absorption
摘要: 工业制造及石油泄漏产生的含油废水含量越发增加,导致水体受污染程度越发严峻。具有特殊润湿性的界面材料成为处理含油废水的首选材料,但是对于高黏度油而言,具有光热性能的超疏水材料可对其进行处理。因此,基于光热转换的超疏水材料用于原油吸附和油水分离领域成为研究热点。本文先介绍了光热超疏水材料的润湿性原理及光热转换机理,然后综述了其用于油水分离和原油吸附的最新研究进展,最后提出了光热超疏水材料在油水分离和原油吸附领域的不足之处并展望了其后续发展进程和工业应用前景。
Abstract: Increasing levels of oily wastewater from industrial manufacturing and oil spills, leading to more and more serious levels of contamination of water bodies. Interfacial materials with special wettability have become the materials of choice for treating oily wastewater, but for highly viscous oils, superhydrophobic materials with photothermal properties can treat them. Therefore, superhydrophobic materials based on photothermal conversion for crude oil adsorption and oil/ water separation have become a research hotspot. In this paper, we first introduce the wettability principle of photothermal superhydrophobic materials and the mechanism of photothermal conversion, then summarized the recent research progress on its use for oil/water separation and crude oil adsorption, finally, the shortcomings of photothermal superhydrophobic materials in the field of oil/water separation and crude oil adsorption are proposed and their subsequent development process and industrial application prospects are anticipated.
文章引用:李莹莹, 史雪婷. 光热超疏水材料在含油废水处理领域的研究进展[J]. 材料科学, 2024, 14(6): 934-945. https://doi.org/10.12677/ms.2024.146106

1. 引言

随着科技的进步和工业化进程逐步推进,社会对于石油需求越来越大。石油在开采、运输和应用过程中会发生意外造成石油泄漏,导致海洋资源污染甚至破坏生态平衡[1] [2] [3]。此外,工业污水排放、生活含油污水都会对水资源造成一定程度的污染。在过去的几十年里,许多技术和方法被报道可以进行油水分离,如原位燃烧[4] [5]、生物降解[6] [7]和吸附分离[8] [9]等。具有超疏水–超亲油性能的材料作为新兴油水分离材料被广泛研究[10]。在实际处理油类污染物中,不同油类的处理方式不同。高黏度油因其黏度高难以被一般材料吸收,需要利用热能将其黏度降低才能被吸收,因此能将可再生清洁能源光能转换成热能的光热超疏水材料成为研究热点[11] [12]。目前光热超疏水材料存在制备要求高、制备工艺复杂、耐久性较差和实际应用效率不高等缺点。因此,需要一种简便安全的方法制备出具有高耐久性和高效率的光热超疏水材料以用于含油废水处理领域中。

2. 光热超疏水的基础原理

2.1. 润湿性原理

润湿性表述为液体在固体表面铺展的能力或者一种倾向性,决定润湿性的关键因素有两个即材料表面粗糙度和材料表面的化学组成[13] [14]。静态接触角(WCA)和滚动角(SA)可以评测固–液界面的静态润湿性。根据静态接触角的大小,润湿性被分为亲水性(WCA < 90˚)、疏水性(WCA > 90˚)和超疏水性(WCA > 150˚)。为了研究润湿性与表面粗糙度的关系,学者通过建立半球形密排模型进行研究,探索出3大经典理论模型,随着研究的深入新的理论模型也在不断构建。

2.1.1. Young’s方程

Thomas Young在1805年时提出接触角的概念并研究了流体内聚力[15]。为了深入研究润湿性,假定液滴落至化学组份分布均匀的光滑固体平面上,忽略液滴自身的重力和黏性等因素,当液滴静止时能量最低。接触角和表面能之间存在一个理论方程被称为Young’s方程,其方程表述如下:

cosθ= γ sv γ sl γ lv (1)

式(1)中,θ是固体表面与液体的接触角; γ sv 为固体与气体两相界面间的界面张力; γ sl 为固体与液体两相界面间的界面张力; γ lv 为液体与气体两相界面间的界面张力(图1)。

2.1.2. Wenzel模型

在实际应用中,理想状态下的Young’s方程并不适用,固体表面无法达到绝对光滑且化学组份分布均匀的状态。在20世纪30年代时,Wenzel首次研究了材料表面粗糙度与接触角之间的关系[16],引入变量r (粗糙度系数),提出可应用在相对粗糙表面上的Wenzel方程。其方程表述如下:

cos θ ω =rcos θ 0 (2)

式(2)中, θ ω 为接触角;r (粗糙度因子)为固液两相间实际接触面积与表观接触面积的比值。由于液体与粗糙表面充分接触,固液两相间的实际接触面积远远大于表面的几何接触面积,因此 r1 (图1)。

2.1.3. Cassic-Baxter模型

尽管Wenzel模型考虑了材料表面凹凸不平并非绝对平整,但并未考虑液体与固体接触部分并非完全润湿的情况。Cassic和Baxter在研究表面粗糙度与润湿性关系时发现液体与固体表面接触过程中固液两相之间存在空气,固体表面没有被完全润湿,形成了固–液–气三相共存的界面组合[17]。其方程表述如下:

cos θ c = f 1 cos θ 1 + f 2 cos θ 2 (3)

式(3)中,θc为接触角;θ1为固液两相间的接触角,θ2为气液两相间的接触角;f1f2分别为固液两相与气液两相占总面积的比值,因此 f 1 + f 2 =1 (图1)。

2.1.4. Partial Impalement模型

虽然上述Wenzel和Cassic-Baxter模型考虑了完全润湿和部分润湿这两种情况,但在实际应用中不可能出现极端情况[18]。实际上,液体并非仅与材料表面突起部分接触,还具备一定的润湿深度。经过学者们的深入研究,构建出了可实现Wenzel模型与Cassic-Baxter模型相互转换的模型。方程如下所示:

cos θ c =[ f+πdx ( d+b ) 1/2 ]cosθ+f1 (4)

式(4)中,θc为临界接触角;x为液体浸润深度;b为相邻凸起间距离;d为凸起直径;f为接触面积影响因子。对于亲水性表面,当0˚ < θ < θc时,液滴符合Cassic-Baxter模型,当θ < θc时,固体表面亲水性较低,固液两相接触情况符合Wenzel模型。对于疏水性表面,当90˚ < θ < θc时,固–液界面接触符合Wenzel模型,当θc < θ时固液两相未直接接触而是形成固–液、固–气和液–气三相共同存在的复合界面接触,符合Cassic-Baxter模型(图1)。

2.2. 光热转换机理

太阳能作为取之不尽用之不竭的可再生清洁能源,一直是研究学者的研究热点。太阳能热能系统被认为是为各种应用产生热能的潜在替代方案。能将光能转换成热能的材料被称为光热转换材料,是最直接实现光能转换为热能的一类物质,能使得太阳光能源实现更直接的利用。常用的光热转换材料包括金属、半导体、碳、聚合物等,不同类的光热材料拥有自己的光热转换机理。光热超疏水材料除了具有一般超疏水材料都具有的性能外,还具有将光能转换成热能的能力,从而扩展了材料的应用领域。

Figure 1. Wetted models: (a) Young’s model; (b) Wenzel model; (c) Cassie-Baxter model; (d) Partial impalement model

1. 润湿模型:(a) Young’s模型;(b) Wenzel模型;(c) Cassie-Baxter模型;(d) Partial impalement模型

1) 金属材料

金属材料具有吸收电磁辐射的能力,其吸收时会产生等离子共振效应,电子通过阻尼作用可将动能转化为热能,使材料局部产生热量,通过热传导实现金属材料升温[19]。常见的光热转换金属材料的有贵金属(如Au [20]、Ag [21]、Pd [22]和Pt [23])、Cu [24]等。

2) 碳材料

碳材料存在密度高且疏松的π电子云和Sp2与Sp3杂化,当材料受到太阳光照射后,会在可见光区产生较强的吸收,电子吸收大量光子变为激发态,从激发态回到基态将释放热量,从而实现光能转化为热能[25] [26]。常见的碳基光热转换材料有活性炭[27]、碳纳米管[28]等。

3) 聚合物材料

聚合物材料的光热转换性能是因为从最低空分子轨道(LUMO)弛豫到最高占据分子轨道(HOMO)的过程中可以产生热量,实现光能向热能的转变[29]。常见的聚合物光热转换材料有聚吡咯(PPy) [30]与聚多巴胺(PDA) [31]等。

4) 半导体材料

半导体材料光热转换的产生机理是当入射光能量大于或等于半导体的带隙时,其内部能够激发并产生电子–空穴对,这些被光激发的电子–空穴对可以回到基态,此过程可通过非辐射弛豫释放能量提升周围温度[32]。带隙较窄半导体更容易吸收光能激发电子产生热量,其光热转换效率更高。常见半导体光热转换材料有金属有机框架(MOFs) [33]、TiO2 [34]和CuS [35]等。

利用光热超疏水材料可以实现原油黏度的降低,使得溢油得到高效回收,同时还可以提高油水分离效率。Fan等[36]通过还原氧化石墨烯(rGO)和聚苯硫醚纤维膜(PPS)制备了具有光热超疏水性能的rGO@PPS。纤维膜在白天可见光条件下可以利用rGO实现光能向热能转变,提高纤维膜的温度从而实现原油吸附(图2)。通过对比,具有光热效应的超疏水纤维膜可以将原油吸附时间减少97.3%,提高吸附效率。rGO@PPS的油(二氯甲烷)/水分离通量达到12903 L·m−2·h−1,分离效率达到99.99%,经过10次循环后,rGO@PPS仍具有较高的分离通量和过滤效率。此外,rGO@PPS经酸碱处理后仍保持其高导电性、优异的过滤效率和稳定的疏水性。本文介绍了润湿性机理和光热转换机理,综述了光热超疏水材料在原油吸附和油水分离的研究进展,最后分析了本领域存在的问题和对其未来发展的美好展望。

Figure 2. (a) Schematic diagram of thelarge-scale fabrication of rGO@PPS fibrous membrane; (b) Schematic diagram of rGO@PPS membrane adsorbing crude oil all-weather. The membrane is heated by solar heat and Joule heat to reduce the viscosity of crude oil and realize all-weather operation; (c) rGO@PPS fibrous membrane with the water contact angle in the air and in n-hexane, dichloromethane contact angle in the air and under water

2. (a) 大规模制造rGO@PPS纤维膜的示意图;(b) rGO@PPS膜全天候吸附原油的示意图。该膜通过光热和焦耳热加热,降低原油粘度,实现全天候运作;(c) rGO@PPS纤维膜在空气中和正己烷中的水接触角,二氯甲烷在空气中和水下的接触角

3. 光热超疏水材料类别

在含油废水处理中,超疏水材料凭借其独特的超亲油–超疏水特性,可选择性地只吸油而拒水,已成为吸附油污染物和分离多种油水混合物的首选材料。但对于高粘度油,由于其粘度高导致流动性差,一般的超疏水材料无法直接吸附或过滤。光热超疏水材料可借助光热转换提高温度,降低油的粘度,从而实现对高粘度油的吸收。光热超疏水材料的基材一般为海绵、气凝胶和织物,表1列举了不同基材的光热超疏水材料的原油吸附能力。

Table 1. Comparative analysis of crude oil adsorption on different photothermal superhydrophobic materials

1. 不同种类光热超疏水材料的原油吸附对比

光热超疏水材料

光照强度
(kW/m2)

表面
温度(˚C)

原油吸附

参考文献

原油吸附量(g/g)

原油吸附时间(s)

光热超疏
水海绵

PDMS/CuS/CFs/RGO海绵

0.3

75.9

66.8

/

[39]

PDAS/CB@PU

1.0

84.7

44.7

/

[40]

PMPU

1.0

99.4

/

60

[41]

光热超疏
水气凝胶

PT-WA-3

1.5

85.0

10

/

[45]

PCM@WA

1.0

76.2

35.4

40

[46]

MEGA气凝胶

1.0

100.0

/

40

[47]

光热超疏
水棉织物

CF-SA-PPy

1.0

68.2

/

20

[50]

TA/Fe/HDS PET

1.0

72.0

/

10

[51]

CF@PDA/CNT-GPTMS-ODA

1.0

62.1

/

9

[10]

3.1. 光热超疏水海绵

海绵自身为柔性三维立体结构,具有高孔隙率、无毒、弹性好和易改性等特性并且拥有较大储存容量被广泛应用到吸油处理中[37]。对于含油废水而言,原始海绵同时具备吸水与吸油特性导致吸油效率低。因此表面修饰各种低表面能物质和无机化合物才能获得超疏水海绵,提高吸油效率。然而对于一些特殊油类,如原油等高黏度油,单纯超疏水材料无法降低其黏度,因此需要在超疏水海绵表面修饰具有光热效应的物质,实现较多种类油品的吸收[38]

Ma等[39]通过在海绵骨架上负载聚二甲基硅氧烷(PDMS)/CuS/碳化纤维素纤维(CFs)/RGO(还原氧化石墨烯)涂层制备出PDMS/CuS/CFs/RGO海绵。PDMS/CuS/CFs/RGO海绵的表面温度在光照强度为0.3 kW/m2的模拟阳光下可升高到75.9℃,有效降低原油粘度从而提高了原油的吸附效率(图3)。其对重质原油具有66.8 g/g的高吸附能力,对有机溶剂和低黏度油也具有13.8~26.1 g/g的出色吸收能力。Chen [40]等通过浸渍法将PDMS/CB(炭黑)包裹在聚氨酯海绵(PU)上制备了具有出色机械性能、可重复吸附性、油类吸附性和环境稳定的PDAS/CB@PU(PCPU)。PCPU吸附多种油类和有机溶剂28.5~68.7 g/g,可经受500次机械磨损和100次吸附循环。在模拟阳光下其表面温度升高至84.7℃,最大吸附原油容量为44.7 g/g。Yang等[41]利用水解甲基三甲氧基硅烷(MTMS)在PU上自组装氮化钛/聚多巴胺(TiN/PDA)纳米粒子,然后再浸涂PDMS制备出具有出色的机械和化学稳定性光热超疏水PMPU。TiN可与PDA涂层协同提高材

Figure 3. (a) (b) Permeation behavior of crude oil droplets on PDMS/CuS/CFs/RGO sponge with and without simulated sunlight; (c) Time-dependent adsorption capacity plots of PDMS/CuS/CFs/RGO sponge; (d) Cyclic compression curve and local amplification comparison of PDMS/CuS/CFs/RGO sponge; (e) The quality of PDMS/CuS/CFs/RGO sponge oil absorption-recovery cycles under 0.3 sun simulated irradiation

3. (a) (b) 原油液滴在模拟阳光下和未模拟阳光下在PDMS/CuS/CFs/RGO海绵上的渗透行为;(c) PDMS/CuS/CFs/ RGO海绵随时间变化的吸附容量图;(d) PDMS/CuS/CFs/RGO海绵的循环压缩曲线和局部放大比较;(e) PDMS/CuS/CFs/RGO海绵在0.3个太阳模拟辐照下的吸油–回收循环质量

料光热效应,PDA涂层可与MTMS的化学键合提高涂层的粘附力。PMPU的表面温度可在模拟阳光下照射3 min内达到99.4℃,0.5 mL原油被PMPU吸收只需60 s。PMPU对二氯乙烷具有100 g/g的吸收能力。

3.2. 光热超疏水气凝胶

气凝胶具有轻质量、高孔隙率、低密度和较高比表面积等特性,被广泛应用于隔热和储能等领域[42] [43] [44]。其具有的高孔隙率使其成为吸油领域的热点材料之一。研究人员通过对其进行疏水改性后可以广泛应用于工业含油废水处理中,被赋予光热性能的新型气凝胶在用于处理原油吸附问题中具有较大的潜力。

Zheng等[45]构建了一种太阳能辅助自热的木材气凝胶(WA)吸附剂。通过浸渍法将PDMS和Ti3C2Tx附着到木材气凝胶上,PDMS可降低基材表面能且增强涂层粘附力,Ti3C2Tx具有独特光学性能且气凝胶具有光阱结构,所制备的PT-WA具有优异的超疏水性、机械耐久性和光热转换能力。PT-WA的接触角为154˚ ± 2˚。在1.5个太阳光照强度下PT-WA表面温度在90 s内可升至85℃,有效地原位清理原油。在使用蠕动泵的前提下PT-WA可以在太阳照射下连续、动态地从水面上去除原油(图4)。Song等[46]将通过用PDMS、碳纳米管(CNTs)和二氧化钼(MoO2)改性木质素化木材,制备了一种双功能光热气凝胶(PCM@WA)。在一个太阳光照下可有效吸收原油35.4 g/g。通过对比有无太阳光照对PCM@WA吸附原油的表现,前者可在40 s内将原油吸附,而后者在3 min内还不能吸附原油。Hu等[47]采用水热、冻干和气相沉积方法成功制备了含金属有机框架(HKUTST-1)和PDMS负载的弹性石墨烯气凝胶(MEGA)。MEGA具有较高的光热转换性能,其表面温度在一个太阳强度下照射80 s时可上升至100℃,在40 s内可将原油(4 µm)完全吸附。此外,HKUST-1和PDMS的引入不仅改善了气凝胶的疏水性,增强了其吸油能力,并且还提高了其稳定性。MEGA其接触角为152.7˚,可吸收为自身重量的41~118倍的油类,在10次循环后对多类油的吸收能力仍保持90%以上。

Figure 4. (a) Light-assisted device for the continuous recovery of crude oil on water; (b) Photographs of the crude-oil recovery process via solar-heating (light intensity =1.5 sun) of a piece PT-WA-3 (25  × 25  × 5 mm3); (c) Mechanism of solar-associated crude oil cleanup

4. (a) 水上原油连续回收光辅助装置;(b) 通过1.5个太阳光照加热PT-WA-3 (25 × 25 × 5 mm3)的原油回收过程照片;(c) 太阳能辅助原油净化机制

3.3. 光热超疏水织物

棉织物因其环保、低成本、易获得、可生物降解、无毒和生物相容性而在过去十年中引起了相当大的关注。棉花中纤维素纤维的残留物通过糖苷键连接,使原始棉织物具有良好的透气性、吸湿性和舒适的柔软性[48]。最近,包括分子工程在内的新技术在棉织物改性方面取得了重大进展,并赋予其多种应用,包括自清洁、油水分离、抗紫外线、抗菌和抗病毒等。此外,具有光热效应或焦耳热效应的材料已在许多应用场景中显示出优越性,如电磁干扰屏蔽、原油净化、海水蒸馏和光电探测器[49]

Zeng等[50]利用气相沉积法将吡咯单体与吸附Fe离子和硬脂酸(SA)的织物进行聚合得到含聚吡咯(PPy)的光热超疏水织物(CF-SA-PPy)。CF-SA-PPy表面温度在太阳光照射2 min后可升至59.5℃,5 min内达到68.2℃。对不同黏度的油水混合物进行油水分离测试,其分离效率都很高,最高可达99.4% (图5)。在模拟阳光下,CF-SA-PPy将原油吸收效率从83.2%提高到91.8%。此外,CF-SA-PPy具有良好的耐磨

Figure 5. (a)~(c) Oil water separation using the skimmer, underwater oil adsorption, and peristaltic pump assisted adsorption for light oil, heavy oil, and crude oil, respectively. The oil phase was dyed red with Sudan III; (d) The separation efficiency of CF-SA-PPy for different organic solvents and crude oil under simulated sunlight and without sunlight

5. (a)~(c) 分别为使用收油机、水下油吸附和蠕动泵辅助吸附对轻油、重油和原油进行油水分离的光学照片,油相被苏丹III染成红色;(d) CF-SA-PPy在模拟日光和无日光条件下对不同有机溶剂和原油的分离效率

性和耐酸碱性。Chen等[51]利用天然多酚阿魏酸(FA)、七水硫酸亚铁和十六烷基三甲氧基硅烷(HDTMS)制备出光热超疏水聚酯(PET)织物(TA/Fe/HDS PET)。TA/Fe/HDS PET的接触角为161.3˚,滚动角为4˚。在重力驱动油水分离实验中TA/Fe/HDS PET经过10次循环后分离效率仍在95%以上。此外,在模拟阳光下TA/Fe/HDS PET的表面温度可在300 s内升至72℃,原油完全被吸附只需10 s。Wen等[10]通过在织物表面附着Fe-PDA涂层和碳纳米管(CNT)后接枝(3-缩水甘油氧基丙基)三甲氧基硅烷(GPTMS)和十八胺(ODA),制备了一种具有光热效应的超疏水棉织物(CF@PDA/CNT-GPTMS-ODA)。织物的水接触角为151.0˚,在模拟阳光(1 kW/m2)下其表面温度可升高至62.1℃,原油被完全吸附只需要9 s。此外,CF@PDA/CNT-GPTMS-ODA可高效分离油水混合物,通过自制装置和蠕动泵从进行油水分离测试,分离效率始终超过97%。

4. 结论

综上所述,光热超疏水材料是指能够将光能转变为热能并且具备优良拒水性的材料。因其具有优异超亲油–超疏水性以及光热转换能力,可以实现油水分离和原油吸附。但目前针对光热超疏水材料研究大都基于实验室阶段,并未真正在现实条件下进行性能探究,且材料所具备的超疏水性和光热转换性能多都依赖高成本或有毒性的试剂,不能被大批量制备用于现实环境中。而涂层与基团之间的结合力一直是研究热点,若结合力较差则无法应对雨水冲刷等复杂环境导致原油吸附和油水分离能力下降甚至消失。因此,对于应用于含油废水处理领域的光热超疏水材料,其设计应考虑:1) 实际制造成本,光热材料和疏水改性剂使用廉价易得的试剂;2) 现实制备规模,实际应用时不可能应用小尺寸材料处理含油废水,要优化材料制备方案实现大规模、大批次制备;3) 开发具有强结合力的涂层,延长材料在实际应用中的使用寿命。

NOTES

*通讯作者。

参考文献

[1] Li, K., Yu, H., Xu, Y. and Luo, X. (2022) Scheduling Optimization of Offshore Oil Spill Cleaning Materials Considering Multiple Accident Sites and Multiple Oil Types. Sustainability, 14, Article 10047.
https://doi.org/10.3390/su141610047
[2] Yang, X., Wang, B., Ma, S., Qi, J., Chen, Z., Feng, Y., et al. (2023) Multifunctional Magnetic Sponge with Outstanding Solar/Electro-Thermal Performance for High-Efficiency and All-Day Continuous Cleanup of Crude Oil Spills. Science of the Total Environment, 892, Article ID: 164601.
https://doi.org/10.1016/j.scitotenv.2023.164601
[3] Li, Z., Lin, Z., Qiu, F., Uyama, H. and Zhang, T. (2023) Energy-Optimized Oil Spill Cleanup: Joule-/Solar-Heating Copper Foam for Efficient All-Weather Recovery of Viscous Crude Oil. Industrial & Engineering Chemistry Research, 62, 13133-13143.
https://doi.org/10.1021/acs.iecr.3c01690
[4] Hu, G., Mohammadiun, S., Gharahbagh, A.A., Li, J., Hewage, K. and Sadiq, R. (2020) Selection of Oil Spill Response Method in Arctic Offshore Waters: A Fuzzy Decision Tree Based Framework. Marine Pollution Bulletin, 161, Article ID: 111705.
https://doi.org/10.1016/j.marpolbul.2020.111705
[5] Faksness, L., Leirvik, F., Taban, I.C., Engen, F., Jensen, H.V., Holbu, J.W., et al. (2022) Offshore Field Experiments with In-Situ Burning of Oil: Emissions and Burn Efficiency. Environmental Research, 205, Article ID: 112419.
https://doi.org/10.1016/j.envres.2021.112419
[6] Vergeynst, L., Wegeberg, S., Aamand, J., Lassen, P., Gosewinkel, U., Fritt-Rasmussen, J., et al. (2018) Biodegradation of Marine Oil Spills in the Arctic with a Greenland Perspective. Science of the Total Environment, 626, 1243-1258.
https://doi.org/10.1016/j.scitotenv.2018.01.173
[7] Aziz, Z.S., Jazza, S.H., Dageem, H.N., Banoon, S.R., Balboul, B.A. and Abdelzaher, M.A. (2024) Bacterial Biodegradation of Oil-Contaminated Soil for Pollutant Abatement Contributing to Achieve Sustainable Development Goals: A Comprehensive Review. Results in Engineering, 22, Article ID: 102083.
https://doi.org/10.1016/j.rineng.2024.102083
[8] Etkin, D.S. and Nedwed, T.J. (2021) Effectiveness of Mechanical Recovery for Large Offshore Oil Spills. Marine Pollution Bulletin, 163, Article ID: 111848.
https://doi.org/10.1016/j.marpolbul.2020.111848
[9] Piao, L., Park, C.J., Kim, S., Park, K., Lee, Y., Kim, H., et al. (2023) Development of Rapid and Effective Oil-Spill Response System Integrated with Oil Collection, Recovery and Storage Devices for Small Oil Spills at Initial Stage: from Lab-Scale Study to Field-Scale Test. Journal of Environmental Management, 345, Article ID: 118833.
https://doi.org/10.1016/j.jenvman.2023.118833
[10] Wen, H., Liang, L., Xu, N. and Liu, C. (2024) Multi-functional Self-Cleaning Superhydrophobic Cotton Fabric as Photothermal-Reinforced Crude Oil Separator, Oil Skimmer and Underwater Oil Absorbent. Separation and Purification Technology, 337, Article ID: 126258.
https://doi.org/10.1016/j.seppur.2023.126258
[11] Cui, X., Ruan, Q., Zhuo, X., Xia, X., Hu, J., Fu, R., et al. (2023) Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews, 123, 6891-6952.
https://doi.org/10.1021/acs.chemrev.3c00159
[12] Said, Z., Sohail, M.A., Pandey, A.K., Sharma, P., Waqas, A., Chen, W., et al. (2023) Nanotechnology-Integrated Phase Change Material and Nanofluids for Solar Applications as a Potential Approach for Clean Energy Strategies: Progress, Challenges, and Opportunities. Journal of Cleaner Production, 416, Article ID: 137736.
https://doi.org/10.1016/j.jclepro.2023.137736
[13] Chi, J., Zhang, X., Wang, Y., Shao, C., Shang, L. and Zhao, Y. (2021) Bio-Inspired Wettability Patterns for Biomedical Applications. Materials Horizons, 8, 124-144.
https://doi.org/10.1039/d0mh01293a
[14] Elzaabalawy, A. and Meguid, S.A. (2019) Effect of Surface Topology on the Wettability of Superhydrophobic Surfaces. Journal of Dispersion Science and Technology, 41, 470-478.
https://doi.org/10.1080/01932691.2019.1587299
[15] Muhammed, N.S., Haq, B. and Al Shehri, D.A. (2023) Hydrogen Storage in Depleted Gas Reservoirs Using Nitrogen Cushion Gas: A Contact Angle and Surface Tension Study. International Journal of Hydrogen Energy, 48, 38782-38807.
https://doi.org/10.1016/j.ijhydene.2023.06.208
[16] Wenzel, R.N. (1936) Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry, 28, 988-994.
https://doi.org/10.1021/ie50320a024
[17] Cassie, A.B.D. and Baxter, S. (1944) Wettability of Porous Surfaces. Transactions of the Faraday Society, 40, 546-551.
https://doi.org/10.1039/tf9444000546
[18] Lafuma, A. and Quéré, D. (2003) Superhydrophobic States. Nature Materials, 2, 457-460.
https://doi.org/10.1038/nmat924
[19] Liu, S., Liang, H. and Yin, Y. (2024) Site-Selective Reprogrammable Actuators for Soft Robotic Systems Using Plasmonic Photothermal Conversion. Device, 2, Article ID: 100330.
https://doi.org/10.1016/j.device.2024.100330
[20] Xu, C. and Pu, K. (2021) Second Near-Infrared Photothermal Materials for Combinational Nanotheranostics. Chemical Society Reviews, 50, 1111-1137.
https://doi.org/10.1039/d0cs00664e
[21] Zhang, G., Hu, H., Deng, S., Xiao, X., Xiong, Y., Peng, J., et al. (2023) An Integrated Colorimetric and Photothermal Lateral Flow Immunoassay Based on Bimetallic Ag-Au Urchin-Like Hollow Structures for the Sensitive Detection of E. coli O157: H7. Biosensors and Bioelectronics, 225, Article ID: 115090.
https://doi.org/10.1016/j.bios.2023.115090
[22] Chen, Y., Chen, Z., Yang, D., Zhu, L., Liang, Z., Pang, Y., et al. (2022) Novel Microbial Palladium Nanoparticles with a High Photothermal Effect for Antibacterial Applications. ACS Omega, 8, 1534-1541.
https://doi.org/10.1021/acsomega.2c07037
[23] Seifikar, F., Azizian, S., Eslamipanah, M. and Jaleh, B. (2022) Efficient Photo-Thermal Conversion Using Pt Nanofluid Prepared by Laser Ablation in Liquid. Solar Energy Materials and Solar Cells, 238, Article ID: 111581.
https://doi.org/10.1016/j.solmat.2022.111581
[24] Sun, M., Yang, D., Fanqi, W., Wang, Z., Ji, H., Liu, Z., et al. (2020) SiO2@Cu7S4 Nanotubes for Photo/Chemodynamic and Photo-Thermal Dual-Mode Synergistic Therapy under 808 nm Laser Irradiation. Journal of Materials Chemistry B, 8, 5707-5721.
https://doi.org/10.1039/d0tb00696c
[25] Qi, K., Sun, B., Liu, S. and Zhang, M. (2023) Research Progress on Carbon Materials in Tumor Photothermal Therapy. Biomedicine & Pharmacotherapy, 165, Article ID: 115070.
https://doi.org/10.1016/j.biopha.2023.115070
[26] Zhu, J., Huang, L., Bao, F., Chen, G., Song, K., Wang, Z., et al. (2024) Carbon Materials for Enhanced Photothermal Conversion: Preparation and Applications on Steam Generation. Materials Reports: Energy, 4, Article ID: 100245.
https://doi.org/10.1016/j.matre.2023.100245
[27] Fillet, R., Nicolas, V., Celzard, A. and Fierro, V. (2023) Solar Evaporation Performance of 3D-Printed Concave Structures Filled with Activated Carbon under Low Convective Flow. Chemical Engineering Journal, 457, Article ID: 141168.
https://doi.org/10.1016/j.cej.2022.141168
[28] Zheng, D., Shi, L., Zhang, M., Jiang, W., An, C., Huang, W., et al. (2024) Easily Constructed HNs/CNTs Photothermal Membrane with High-Temperature Resistance for Efficient Solar Desalination and Dye-Polluted Water Purification. Journal of Environmental Chemical Engineering, 12, Article ID: 112004.
https://doi.org/10.1016/j.jece.2024.112004
[29] Pham, T.D., Phan, L.M.T., Nam, S., Hoang, T.X., Nam, J., Cho, S., et al. (2024) Selective Photothermal and Photodynamic Capabilities of Conjugated Polymer Nanoparticles. Polymer, 294, Article ID: 126689.
https://doi.org/10.1016/j.polymer.2024.126689
[30] Maity, S., Yadav, M. and Patra, A.K. (2023) Polypyrrole Coated Textiles as Photothermal Material for Interfacial Solar Evaporation. Fibers and Polymers, 24, 3591-3600.
https://doi.org/10.1007/s12221-023-00343-0
[31] Sang, H., Tang, C., Ma, K. and Li, X. (2023) Sustainable Production of Clean Water: 1 T-MoS2/PDA Composite Enhanced the Photothermal Conversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 674, Article ID: 131838.
https://doi.org/10.1016/j.colsurfa.2023.131838
[32] Warrier, A.R. and Vijayakumar, K.P. (2023) Chapter 11-Photothermal Studies in Semiconductor Materials. In: Thakur, S.N., Rai, V.N. and Singh, J.P., Eds., Photoacoustic and Photothermal Spectroscopy, Elsevier, 245-262.
https://doi.org/10.1016/B978-0-323-91732-2.00015-X
[33] Zhao, X., Jiang, Y., Wang, T., Lu, Q., Zhao, K. and Pan, J. (2023) Photothermal-Photocatalytic Route of MOF-Based Membrane with Nanosheet Array Structures for Solar-Driven Water Purification. Chemical Engineering Journal, 475, Article ID: 146268.
https://doi.org/10.1016/j.cej.2023.146268
[34] Tryba, B., Miądlicki, P., Rychtowski, P., Trzeciak, M. and Wróbel, R.J. (2023) The Superiority of TiO2 Supported on Nickel Foam over Ni-Doped TiO2 in the Photothermal Decomposition of Acetaldehyde. Materials, 16, Article 5241.
https://doi.org/10.3390/ma16155241
[35] Colak, B., Cihan, M.C. and Ertas, Y.N. (2023) 3D-Printed, Implantable Alginate/CUS Nanoparticle Scaffolds for Local Tumor Treatment via Synergistic Photothermal, Photodynamic, and Chemodynamic Therapy. ACS Applied Nano Materials, 6, 16076-16085.
https://doi.org/10.1021/acsanm.3c03433
[36] Fan, T., Su, Y., Fan, Q., Li, Z., Cui, W., Yu, M., et al. (2021) Robust Graphene@PPS Fibrous Membrane for Harsh Environmental Oil/water Separation and All-Weather Cleanup of Crude Oil Spill by Joule Heat and Photothermal Effect. ACS Applied Materials & Interfaces, 13, 19377-19386.
https://doi.org/10.1021/acsami.1c04066
[37] He, X., Lu, J., Liu, J., Wu, Z., Li, B., Chen, Z., et al. (2024) Superhydrophobic CO-MOF-Based Sponge for Efficient Oil-Water Separation Utilizing Photothermal Effect. Journal of Hazardous Materials, 469, Article ID: 134090.
https://doi.org/10.1016/j.jhazmat.2024.134090
[38] 张静静, 李艳香, 李望良, 等. 三聚氰胺基疏水海绵的制备及其吸油性能[J]. 石油学报(石油加工), 2024, 40(2): 534-545.
[39] Ma, J., Ma, S., Xue, J., Xu, M., Zhang, J., Li, J., et al. (2023) Synthesis of Elastic Hydrophobic Biomass Sponge for Rapid Solar-Driven Viscous Crude-Oil Cleanup Absorption, Oil-Water Separation and Organic Pollutants Treating. Separation and Purification Technology, 305, Article ID: 122512.
https://doi.org/10.1016/j.seppur.2022.122512
[40] Chen, J., Sun, M., Ni, Y., Zhu, T., Huang, J., Li, X., et al. (2023) Superhydrophobic Polyurethane Sponge for Efficient Water-Oil Emulsion Separation and Rapid Solar-Assisted Highly Viscous Crude Oil Adsorption and Recovery. Journal of Hazardous Materials, 445, Article ID: 130541.
https://doi.org/10.1016/j.jhazmat.2022.130541
[41] Yang, Y., Guo, Z. and Liu, W. (2024) Robust Mussel-Inspired Superhydrophobic Sponge with Eco-Friendly Photothermal Effect for Crude Oil/Seawater Separation. Journal of Hazardous Materials, 461, Article ID: 132592.
https://doi.org/10.1016/j.jhazmat.2023.132592
[42] Cai, C., Wei, Z., Huang, Y. and Fu, Y. (2021) Wood-Inspired Superelastic Mxene Aerogels with Superior Photothermal Conversion and Durable Superhydrophobicity for Clean-Up of Super-Viscous Crude Oil. Chemical Engineering Journal, 421, Article ID: 127772.
https://doi.org/10.1016/j.cej.2020.127772
[43] 户晶荣, 李欣聪. 改性碳气凝胶/石蜡复合相变储热材料的研究[J]. 无机盐工业, 2024, 56(5): 58-63.
[44] 林铭增, 许银超, 张学金, 等. 阻燃纤维素气凝胶研究进展[J]. 中国造纸, 2024, 43(4): 25-36.
[45] Zheng, D., Yao, W., Sun, C., Chen, X., Wang, Z., Wang, B., et al. (2022) Solar-Assisted Self-Heating Ti3C2Tx-Decorated Wood Aerogel for Adsorption and Recovery of Highly Viscous Crude Oil. Journal of Hazardous Materials, 435, Article ID: 129068.
https://doi.org/10.1016/j.jhazmat.2022.129068
[46] Song, C., Chen, X., Xu, G., Jiang, Z., Xu, W., Liu, X., et al. (2023) Bifunctional Cellulose-Based Aerogel for In-Situ Solar-Driven Crude Oil Recovery and Desalination: An Effective Approach towards Marine Life Protection. Cellulose, 30, 7265-7276.
https://doi.org/10.1007/s10570-023-05330-5
[47] Hu, Y., Jiang, Y., Ni, L., Huang, Z., Liu, L., Ke, Q., et al. (2023) An Elastic MOF/Graphene Aerogel with High Photothermal Efficiency for Rapid Removal of Crude Oil. Journal of Hazardous Materials, 443, Article ID: 130339.
https://doi.org/10.1016/j.jhazmat.2022.130339
[48] 陈春晖, 许多, 李治江, 等. 疏水亲油复合棉织物的制备及其性能[J]. 现代纺织技术, 2022, 30(4): 115-123.
[49] Sun, S., Xu, P., Chen, Z., Xiao, Q., Qiang, X. and Shi, X. (2023) “One Stone Three Birds”: A Multifunctional Cotton Fabric with Favorable Self-Cleaning, Photothermal Effect and Joule Heating Properties. Applied Surface Science, 623, Article ID: 156961.
https://doi.org/10.1016/j.apsusc.2023.156961
[50] Zeng, H., Wang, P., Liang, L., Hu, H., Peng, Y., Li, X., et al. (2022) Facile Preparation of Superhydrophobic Cotton Fabric with a Photothermal Conversion Effect via Polypyrrole Deposition for Oil/water Separation. Journal of Environmental Chemical Engineering, 10, Article ID: 106915.
https://doi.org/10.1016/j.jece.2021.106915
[51] Chen, X., Wang, J., Xie, A., Wang, B., Wu, J., Chen, G., et al. (2023) Fabrication of Robust Superhydrophobic Polyester Fabrics with Photothermal Conversion and Oil-Water Separation Performance through Deposition of Natural Polyphenols. Langmuir, 39, 15817-15827.
https://doi.org/10.1021/acs.langmuir.3c02508