色氨酸及其代谢产物与微生物–肠–脑轴的研究进展
Research Progress of Tryptophan and Its Metabolites in the Microbial-Gut-Brain Axis
摘要: 色氨酸是人体必需氨基酸之一,其可在体内通过三条途径代谢,生成多种生物活性分子,通过神经–内分泌、免疫和迷走神经途径参与中枢神经信号传递和宿主肠道内生理功能的调节。胃肠道与肠神经系统、中枢神经系统之间的双向交流被称为肠–脑轴。目前,肠道菌群基于“微生物–肠–脑轴”这一理论,通过影响色氨酸代谢从而对宿主的认知功能和行为产生影响得到广泛关注。本文就色氨酸及其代谢产物通过“微生物–肠–脑轴”途径影响宿主大脑发育的作用机制、内在联系作一综述,以期为临床改善认知功能提示新思路、新靶点。
Abstract: Tryptophan is one of the essential amino acids in the human body. It can be metabolized in the body through three pathways to produce a variety of bioactive molecules. The bidirectional communication between the GI tract and the enteric nervous system as well as the central nervous system is referred to as the gut-brain axis. At present, based on the theory of “microbiota-gut-brain axis”, gut microbiota has been widely concerned to affect the host's cognitive function and behavior by affecting tryptophan metabolism. This article reviews the mechanism and internal relationship of tryptophan and its metabolites on host brain development through the “microbiota-gut-brain axis” pathway, in order to suggest new ideas and new targets for clinical improvement of cognitive function.
文章引用:唐婕, 高进. 色氨酸及其代谢产物与微生物–肠–脑轴的研究进展[J]. 临床医学进展, 2024, 14(6): 1225-1232. https://doi.org/10.12677/acm.2024.1461901

1. 引言

色氨酸(tryptophan, TRP)是一种人体必需氨基酸,必须由外界饮食摄入,参与人体蛋白质的合成以及各种代谢的调节,对人体的生长和健康至关重要[1]。色氨酸在人体内降解主要通过三条途径:5-羟色氨酸途径、犬尿氨酸途径以及色氨酸吲哚衍生物途径,这些途径的代谢产物大部分具有重要的生物活性,可作为信号转导分子在中枢传导通路中发挥关键作用。胃肠道和肠神经系统、中枢神经系统之间通过神经、内分泌和免疫途径进行的双向交流被称为肠–脑轴。肠道微生物是肠–脑轴的重要组成部分,越来越多研究证明肠道菌群通过直接或间接的影响代谢产物从而在肠–脑轴中发挥作用[2] [3]。有研究证明,肠道菌群对色氨酸代谢的调节可以改变宿主的行为和认知。例如,在无特定条件下,无菌小鼠比无特定病原体小鼠表现更少抑郁样行为,然而,在外界干预设定为色氨酸急性耗竭的情况下,无菌小鼠抑郁样行为增多,而无特定病原体小鼠却没什么变化[4]。Lindseth等研究结果提示,⼈类饮食中富含色氨酸可能会减轻抑郁症状、改善情绪状态;而摄⼊较低水平色氨酸则会导致易怒和焦虑[5]。因此可见,色氨酸及其代谢产物作为重要的信号分子,基于“微生物–肠–脑轴”这一理论对宿主行为和认知产生的影响不容忽视。本⽂就肠道菌群对色氨酸降解途径的调节,从而干扰神经活动影响大脑发生发展发育这一路径着手,对近年来的相关研究进行综述,以期为临床改善患者行为和认知提供新思路和新靶点。

2. 色氨酸代谢的三条途径

色氨酸代谢产物大多具有重要的生物活性,可作为信号分子在肠–脑轴各个环节发挥关键作用[6]。其色氨酸在动物体内的代谢途径如图1所示[7],色氨酸是合成5-HT的唯一前体物质,5-HT是一种能够调节神经活动的单胺类递质,在肠神经系统和中枢神经系统中发挥重要作用[8]。色氨酸–犬尿氨酸途径代谢产物可以通过血脑屏障从而参与神经系统炎症反应和神经退行性病变,造成宿主认知受损[9]。也有研究表明,色氨酸吲哚衍生物可破坏肠道屏障,引发肠道炎症,进而影响脑部活动[10]。因此,肠道菌群基于肠–脑轴的架构上,直接或间接的干扰色氨酸代谢来改变宿主行为和认知这一理论值得重点关注。

Figure 1. The metabolic pathways of tryptophan breakdown in animal organisms [7]

1. 色氨酸在动物机体内的分解代谢途径[7]

2.1. 色氨酸5-羟色胺途径代谢

色氨酸从肠道吸收后,超过95%的5-HT是由肠嗜铬细胞通过限速酶色氨酸羟化酶1 (Trp Hydroxylase 1 Enzyme, TPH1)的作用下降解产生[11]。其余可以由L型氨基酸转运体转运穿过血脑屏障,通过限速酶TPH2转化,参与神经系统5-HT的合成。在正常生理条件下,5-HT不能穿过血脑屏障,这就意味着中枢与外周的5-HT并不相通,是独立存在的。无论色氨酸的降解位于肠–脑轴的哪个环节,其转化为5-HT的方式都是相似的。色氨酸首先在TPH的作用下生成5-羟色胺酸,然后其可通过芳香族氨基酸脱羧酶转化为5-HT。5-羟色胺可以进一步在松果体中转化为褪黑激素,将昼夜节律控制添加到Trp代谢物的生物学作用列表中[12]。剩下微量的5-HT被单胺氧化酶(MAO)转化为5-羟基吲哚乙醛,然后被醛脱氢酶氧化为5-羟基吲哚乙酸,并在尿液中排泄[13]

TPH1的表达与肠道菌群关系密切,例如,用广谱抗生素处理小鼠后,其肠道菌群结构发生变化,Tph1基因表达量降低[14];正常小鼠和定植了⼈体肠道菌群的小鼠的结肠黏膜Tph1基因表达量⽐无菌小鼠显著增多[15]。因此可知,肠道菌群能够通过调节TPH1的含量,影响外周色氨酸合成5-HT的水平。

2.2. 色氨酸犬尿氨酸途径代谢

5-HT途径仅占色氨酸代谢的1%~2% [16],其余超过95%的色氨酸在⼈体内生理降解是通过犬尿氨酸途径来实现的[17]。色氨酸可通过两条途径降解为犬尿氨酸(KYN),其主要途径是通过肝脏产生的色氨酸-2,3-双加氧酶(TDO)降解[18],次要途径是包括肠道在内的大多数组织产生吲哚胺-2,3-双加氧酶(IDO)的作用下生成。犬尿氨酸形成于外周,约60%经转运体通过血脑屏障,参与中枢系统神经活性代谢物的合成。经研究发现,TDO可被糖皮质激素、雌激素和色氨酸本身诱导产生[17];而IDO可由炎症因子刺激而产生,具有免疫反应性[19],其中,INF-γ是其最有效的诱导剂[20]。犬尿氨酸进一步代谢也有两种途径,其一是生成犬尿烯酸(Kyna),Kyna是甘氨酸位点的α7-烟酰乙酰胆碱受体(α7-NACH-R)拮抗剂和N-甲基-D-天冬氨酸(NMDA)受体拮抗剂,同时还可以激活G蛋白偶联受体GPR35和芳香烃受体[21] [22]。其二是生成喹啉酸(Quin),Quin是NMDA-R激动剂。

在中枢神经系统中,Quin可由小胶质细胞产生,Quin可以通过多种机制产生神经兴奋性毒性作用,包括活性氧的产生、破坏血脑屏障、破坏细胞骨架、促进tau蛋白磷酸化和破坏自噬等[23] [24]。Kyna可由星形胶质细胞产生,具有阻断神经元兴奋和清除自由基和抗氧化作用,被广泛认为具有神经保护作用[25]。因此,这两种Kyna代谢产物与神经元兴奋性毒性的产生密切相关[26]

2.3. 色氨酸吲哚衍生物途径代谢

色氨酸除了转化为5-HT和犬尿氨酸的代谢途径外,色氨酸吲哚衍生物在肠道菌群和宿主之间的串扰也越来越被认为是至关重要的[6]。血清中的吲哚主要由含有色氨酸酶的肠道菌群通过降解色氨酸产生,而且可以根据不同的菌群产生特定的吲哚衍生物[27]。例如,吲哚-3-乙酸(IAA)主要由拟杆菌属合成,吲哚-3-醛(I3A)主要由嗜酸乳杆菌鼠乳杆菌和罗伊氏乳杆菌合成,吲哚丙酸(IPA)主要由产孢梭菌来源的吲哚在肝脏合成[10]。Poeggeler等研究发现,在给予L-色氨酸后,小鼠脑中IPA和其他吲哚类物质增加[28]。大量研究证明,由肠道菌群产生的某些吲哚分子具有必要的生物学活性。吲哚分子通过激活CPR30/AMPK/SIRT通路可产生神经保护和抗氧化的作用[29]

3. 肠道微生物与肠–脑轴

正如前文所述,肠–脑轴是胃肠道和神经系统之间双向交流的通信系统。肠道产生的神经递质和其他活性物质通过迷走神经–脊髓–中枢神经通路操控大脑的认知、功能和情绪状态等,同时,大脑也可以通过中枢神经系统调节肠道分泌和运动。这种双向调节作用使肠–脑轴达到一种动态平衡。

肠道菌群是指定植在⼈体肠道内的微生物群,近年来,通过宏基因组测序法得知胃肠道中的微生物数量是人体内细胞的10倍,其中包含的基因是人体基因组的150倍[30],种类繁多,数量巨大,构成了人体肠道内复杂的微生态系统。越来越多的证据表明肠道菌群的组成和代谢活动的改变与宿主大脑功能和认知密切相关[3],而肠道菌群也被认为是肠–脑轴的关键节点。Gareau [31]等研究发现,肠道菌群可影响小鼠形成记忆的能力,急性应激会导致感染小鼠的记忆功能障碍。Zhu [32]等将未使用过药物的精神分裂症患者的粪便微生物群移植到伪无菌小鼠肠道中,发现这会导致其的行为异常,例如精神运动亢进,受体小鼠的学习和记忆受损等。

4. 色氨酸代谢产物在微生物–肠–脑轴中的作用

最近的证据表明,色氨酸和相关代谢物在肠道微生物群和大脑之间的串扰中发挥着核心作用。虽然宿主从外界摄入的色氨酸大多数在小肠被吸收,但仍有一定量的色氨酸可以在大肠被肠道微生物降解[1]。肠道菌群可以调节色氨酸的摄取从而改变宿主中枢神经系统中神经递质的表达[33] [34]。本文从色氨酸的三条代谢途径着手,探讨其在肠脑轴中发挥作用的机制。

4.1. 5-HT与微生物–肠–脑轴

在中枢神经系统发育过程中,5-HT在调节神经元的分化和迁移,以及轴突、突触和髓鞘形成方面起着重要作用[13]。5-HT是海马体、内嗅皮层和其他对学习和记忆至关重要的大脑结构中的一种重要神经递质,其通过调节谷氨酸、GABA、DA和乙酰胆碱等物质,直接或间接的影响认知功能[35]。基于小鼠模型的研究,无菌小鼠肠道菌群失衡,色氨酸降解为5-HT平衡被打破,无菌小鼠会持续表现出由海马体介导的视觉和记忆缺陷[36];无菌小鼠⽐常规饲养的小鼠表现出更多的焦虑样行为,无菌小鼠即使在断奶后重新在肠道种植微生物群,这种行为仍难以改善[37]。基于临床试验结果表明,⼈体通过摄取某些益生菌制剂激活5-羟色胺能神经元作用的脑部区域,可改变⼈体认知能力[38];AD与遗忘型轻度认知障碍患者经色氨酸合成5-羟色胺途径中所产生的5-HTP较健康对照组减少呈正相关[39]。由此可知,肠道微生物可以通过调节5-HT及其中间代谢产物的合成进而影响神经系统认知功能的作用不可忽视。

4.2. 犬尿氨酸途径与微生物–肠–脑轴

近年来大量试验研究表明犬尿氨酸途径代谢产物可对神经系统疾病产生重要影响,犬尿氨酸代谢失衡是神经炎症的重要因素。在慢性应激状态下,下丘脑–垂体–肾上腺皮质轴激活,导致糖皮质激素、炎症介质的释放。TDO和IDO的活性增高,犬尿酸合成途径代谢增加,犬尿氨酸代谢途径因过度激活而失衡,影响神经精神疾病的发生发展[40]。NMDA-R在神经元可塑性、学习和记忆过程发挥重要作用[41]。大脑海马区的神经细胞突触后膜存在大量的NMDA-R,Kyna是NMDA-R拮抗剂,说明Kyna与认知密切相关。Kyna同时也是α7-NACH-R的⾮竞争性抑制剂,α7-NACH-R参与调节细胞间信号转导和神经递质释放,与认知和学习记忆密切相关[42],这也进一步说明了Kyna与认知的相关性。Quin具有神经毒性作用,一方面可激活NMDA-R造成损伤,另一方面可以诱导或促进氧自由基的产生,导致细胞坏死。Quin转化途径中可合成朱砂酸(Cinnabarinic, Ca),是一种正构体激动剂,使代谢性谷氨酸受体4 (Metabotropic glutamate receptors 4, mGluR4)激活,产生神经保护作用[43]

此外,犬尿氨酸是一种芳香烃受体激动剂(AhR):多项研究表明,激活AhR可调控与炎症和免疫相关的基因,其中包括IL-6、IL-22、CYP1A1、VEGFA和PTGS2等,这种受体在神经炎症过程和神经精神疾病中发挥重要作用[44]。目前已证明,抑制AhR可以降低通过谷氨酸受体(影响记忆功能)介导的皮质神经元的兴奋性毒性[45]。IDO1抑制剂已被证明可以减缓AD小鼠模型的认知障碍[46],Ca可与AhR反应,抑制IDO1活性,从而抑制大脑炎症[47]。AhR还可通过负反馈通路抑制IL-17介导的炎症反应,从而改善炎症性肠病的发生发展[48]

微生物代谢产物短链脂肪酸(SCFAs),特别是丁酸盐,在调节犬尿氨酸途径中同样发挥了重要的作用。丁酸盐被认为是下调肠IDO酶表达的关键因素[49],其可以从两方面发挥作用。首先,丁酸盐能降低信号转导和转录激活因子1 (STAT1)的表达,从而抑制INF-γ依赖性的STAT1磷酸化,进而抑制STAT1驱动的IDO转录活性。其次,丁酸盐作为组蛋白去乙酰化酶(HDAC)抑制剂可下调IDO转录。丁酸盐通过降低IDO活性,抑制色氨酸降解为犬尿氨酸,从而影响神经活性代谢物犬尿氨酸的形成,直接或间接影响肠–脑轴通讯和脑功能[50]。SCFAs还可以通过提高脑内5-HT浓度,增强血脑屏障免疫功能而对应激小鼠起到神经保护作用[51]

4.3. 色氨酸吲哚衍生物与微生物–肠–脑轴

L-色氨酸的细菌代谢产生的不同吲哚衍生物可以导致宿主生理不同变化。吲哚已被证明能影响宿主肠道上皮屏障的完整性,调节肠道炎症,积极影响宿主的寿命等。IPA和吲哚3-丙酰胺(IPAM),可穿过血脑屏障,通过减少线粒体电子漏和中和羟基自由基的机制来防止退行性神经变性[28]。就中和自由基的作用而言,IPA和IPAM的效力是褪黑素的两倍。无菌小鼠通过移植肠道菌群后可发现其海马区能量代谢基因表达增加以及线粒体增多,用抗生素根除肠道菌群的小鼠的神经保护作用减弱,但在补充IPA后,可发现该类小鼠的认知功能得到了改善[52]。还有大量研究表明,I3A也可作用于肠道免疫细胞中的AhR,AhR的重要作用前⽂已述。Rothhammer [53]等在研究MS患者中枢神经系统病变中发现,色氨酸的肠道代谢产物可与中枢神经系统产生的INF-1结合,可以激活星型胶质细胞中的AhR信号传导通路,进而抑制中枢神经系统炎症。微生物吲哚衍生物与AhR之间的相互作用可引起复杂的下游免疫调节现象,形成促炎或抗炎反应,这取决于不同配体和各种其他因素对AhR的作用程度。虽然IPA已被证明可通过与AhR的相互作用而产生明显的神经保护效果,但目前的研究而言,对这些相互作用的理解尚不完整,需要进一步研究。

5. 结语

随着对“微生物–肠–脑轴”的深⼊研究,我们应意识到宿主神经系统病理生理的改变不仅是局限于大脑的调控,同样涉及肠道菌群的影响。色氨酸三条代谢途径相互独立但又相互串扰,机制错综复杂,未来临床研究可进一步关注色氨酸及其代谢产物通过肠道代谢的调节改善大脑功能的相关应用。

NOTES

*通讯作者。

参考文献

[1] Kałużna-Czaplińska, J., Gątarek, P., Chirumbolo, S., Chartrand, M.S. and Bjørklund, G. (2017) How Important Is Tryptophan in Human Health? Critical Reviews in Food Science and Nutrition, 59, 72-88.
https://doi.org/10.1080/10408398.2017.1357534
[2] Davidson, M., Rashidi, N., Hossain, M.K., Raza, A., Nurgali, K. and Apostolopoulos, V. (2023) Tryptophan and Substance Abuse: Mechanisms and Impact. International Journal of Molecular Sciences, 24, Article 2737.
https://doi.org/10.3390/ijms24032737
[3] Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., et al. (2019) The Microbiota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013.
https://doi.org/10.1152/physrev.00018.2018
[4] Lukić, I., Getselter, D., Koren, O. and Elliott, E. (2019) Role of Tryptophan in Microbiota-Induced Depressive-Like Behavior: Evidence from Tryptophan Depletion Study. Frontiers in Behavioral Neuroscience, 13, Article 123.
https://doi.org/10.3389/fnbeh.2019.00123
[5] Lindseth, G., Helland, B. and Caspers, J. (2015) The Effects of Dietary Tryptophan on Affective Disorders. Archives of Psychiatric Nursing, 29, 102-107.
https://doi.org/10.1016/j.apnu.2014.11.008
[6] Roth, W., Zadeh, K., Vekariya, R., Ge, Y. and Mohamadzadeh, M. (2021) Tryptophan Metabolism and Gut-Brain Homeostasis. International Journal of Molecular Sciences, 22, Article 2973.
https://doi.org/10.3390/ijms22062973
[7] 郭子涵, 赵娜, 王彬, 等. 色氨酸及其代谢产物在动物肠-脑轴中的作用研究进展[J]. 中国畜牧杂志, 2021, 57(9): 15-21.
[8] Margolis, K.G., Cryan, J.F. and Mayer, E.A. (2021) The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology, 160, 1486-1501.
https://doi.org/10.1053/j.gastro.2020.10.066
[9] Park, L.T., Kadriu, B., Gould, T.D., Zanos, P., Greenstein, D., Evans, J.W., et al. (2020) A Randomized Trial of the N-Methyl-D-Aspartate Receptor Glycine Site Antagonist Prodrug 4-Chlorokynurenine in Treatment-Resistant Depression. International Journal of Neuropsychopharmacology, 23, 417-425.
https://doi.org/10.1093/ijnp/pyaa025
[10] Lee, J. and Lee, J. (2010) Indole as an Intercellular Signal in Microbial Communities. FEMS Microbiology Reviews, 34, 426-444.
https://doi.org/10.1111/j.1574-6976.2009.00204.x
[11] Bader, M. (2020) Inhibition of Serotonin Synthesis: A Novel Therapeutic Paradigm. Pharmacology & Therapeutics, 205, Article ID: 107423.
https://doi.org/10.1016/j.pharmthera.2019.107423
[12] Minich, D.M., Henning, M., Darley, C., Fahoum, M., Schuler, C.B. and Frame, J. (2022) Is Melatonin the “Next Vitamin D”?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients, 14, Article 3934.
https://doi.org/10.3390/nu14193934
[13] O’Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G. and Cryan, J.F. (2015) Serotonin, Tryptophan Metabolism and the Brain-Gut-Microbiome Axis. Behavioural Brain Research, 277, 32-48.
https://doi.org/10.1016/j.bbr.2014.07.027
[14] Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., et al. (2017) Antibiotics-induced Depletion of Mice Microbiota Induces Changes in Host Serotonin Biosynthesis and Intestinal Motility. Journal of Translational Medicine, 15, Article No. 13.
https://doi.org/10.1186/s12967-016-1105-4
[15] Reigstad, C.S., Salmonson, C.E., III, J.F.R., Szurszewski, J.H., Linden, D.R., Sonnenburg, J.L., et al. (2014) Gut Microbes Promote Colonic Serotonin Production through an Effect of Short‐Chain Fatty Acids on Enterochromaffin Cells. The FASEB Journal, 29, 1395-1403.
https://doi.org/10.1096/fj.14-259598
[16] Xue, C., Li, G., Zheng, Q., Gu, X., Shi, Q., Su, Y., et al. (2023) Tryptophan Metabolism in Health and Disease. Cell Metabolism, 35, 1304-1326.
https://doi.org/10.1016/j.cmet.2023.06.004
[17] Cervenka, I., Agudelo, L.Z. and Ruas, J.L. (2017) Kynurenines: Tryptophan’s Metabolites in Exercise, Inflammation, and Mental Health. Science, 357, eaaf9794.
https://doi.org/10.1126/science.aaf9794
[18] Too, L.K., Li, K.M., Suarna, C., Maghzal, G.J., Stocker, R., McGregor, I.S., et al. (2016) Deletion of TDO2, IDO-1 and IDO-2 Differentially Affects Mouse Behavior and Cognitive Function. Behavioural Brain Research, 312, 102-117.
https://doi.org/10.1016/j.bbr.2016.06.018
[19] Salminen, A. (2023) Activation of Aryl Hydrocarbon Receptor (AhR) in Alzheimer’s Disease: Role of Tryptophan Metabolites Generated by Gut Host-Microbiota. Journal of Molecular Medicine, 101, 201-222.
https://doi.org/10.1007/s00109-023-02289-5
[20] Gao, K., Mu, C., Farzi, A. and Zhu, W. (2020) Tryptophan Metabolism: A Link between the Gut Microbiota and Brain. Advances in Nutrition, 11, 709-723.
https://doi.org/10.1093/advances/nmz127
[21] Agudelo, L.Z., Ferreira, D.M.S., Cervenka, I., Bryzgalova, G., Dadvar, S., Jannig, P.R., et al. (2018) Kynurenic Acid and Gpr35 Regulate Adipose Tissue Energy Homeostasis and Inflammation. Cell Metabolism, 27, 378-392.E5.
https://doi.org/10.1016/j.cmet.2018.01.004
[22] Lin, C., Chou, C., Lee, Y. and Hung, C. (2022) Curcumin Facilitates Aryl Hydrocarbon Receptor Activation to Ameliorate Inflammatory Astrogliosis. Molecules, 27, Article 2507.
https://doi.org/10.3390/molecules27082507
[23] Hestad, K., Alexander, J., Rootwelt, H. and Aaseth, J.O. (2022) The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules, 12, Article 998.
https://doi.org/10.3390/biom12070998
[24] Guillemin, G.J. (2012) Quinolinic Acid, the Inescapable Neurotoxin. The FEBS Journal, 279, 1356-1365.
https://doi.org/10.1111/j.1742-4658.2012.08485.x
[25] Lovelace, M.D., Varney, B., Sundaram, G., Lennon, M.J., Lim, C.K., Jacobs, K., et al. (2017) Recent Evidence for an Expanded Role of the Kynurenine Pathway of Tryptophan Metabolism in Neurological Diseases. Neuropharmacology, 112, 373-388.
https://doi.org/10.1016/j.neuropharm.2016.03.024
[26] Müller, N. and Schwarz, M.J. (2007) The Immune-Mediated Alteration of Serotonin and Glutamate: Towards an Integrated View of Depression. Molecular Psychiatry, 12, 988-1000.
https://doi.org/10.1038/sj.mp.4002006
[27] McDew-White, M., Lee, E., Premadasa, L.S., Alvarez, X., Okeoma, C.M. and Mohan, M. (2023) Cannabinoids Modulate the Microbiota–gut–brain Axis in HIV/SIV Infection by Reducing Neuroinflammation and Dysbiosis While Concurrently Elevating Endocannabinoid and Indole-3-Propionate Levels. Journal of Neuroinflammation, 20, Article No. 62.
https://doi.org/10.1186/s12974-023-02729-6
[28] Poeggeler, B., Sambamurti, K., Siedlak, S.L., Perry, G., Smith, M.A. and Pappolla, M.A. (2010) A Novel Endogenous Indole Protects Rodent Mitochondria and Extends Rotifer Lifespan. PLOS ONE, 5, e10206.
https://doi.org/10.1371/journal.pone.0010206
[29] Yin, J., Zhang, Y., Liu, X., Li, W., Hu, Y., Zhang, B., et al. (2023) Gut Microbiota‐Derived Indole Derivatives Alleviate Neurodegeneration in Aging through Activating GPR30/AMPK/SIRT1 Pathway. Molecular Nutrition & Food Research, 67, e2200739.
https://doi.org/10.1002/mnfr.202200739
[30] Joseph, T.A. and Pe’er, I. (2021) An Introduction to Whole-Metagenome Shotgun Sequencing Studies. Methods in Molecular Biology, 2243, 107-122.
https://doi.org/10.1007/978-1-0716-1103-6_6
[31] Gareau, M.G., Wine, E., Rodrigues, D.M., Cho, J.H., Whary, M.T., Philpott, D.J., et al. (2010) Bacterial Infection Causes Stress-Induced Memory Dysfunction in Mice. Gut, 60, 307-317.
https://doi.org/10.1136/gut.2009.202515
[32] Zhu, F., Guo, R., Wang, W., Ju, Y., Wang, Q., Ma, Q., et al. (2019) Transplantation of Microbiota from Drug-Free Patients with Schizophrenia Causes Schizophrenia-Like Abnormal Behaviors and Dysregulated Kynurenine Metabolism in Mice. Molecular Psychiatry, 25, 2905-2918.
https://doi.org/10.1038/s41380-019-0475-4
[33] Gao, K., Pi, Y., Mu, C., Farzi, A., Liu, Z. and Zhu, W. (2019) Increasing Carbohydrate Availability in the Hindgut Promotes Hypothalamic Neurotransmitter Synthesis: Aromatic Amino Acids Linking the Microbiota-Brain Axis. Journal of Neurochemistry, 149, 641-659.
https://doi.org/10.1111/jnc.14709
[34] Gao, K., Pi, Y., Mu, C., Peng, Y., Huang, Z. and Zhu, W. (2018) Antibiotics‐induced Modulation of Large Intestinal Microbiota Altered Aromatic Amino Acid Profile and Expression of Neurotransmitters in the Hypothalamus of Piglets. Journal of Neurochemistry, 146, 219-234.
https://doi.org/10.1111/jnc.14333
[35] Bombardi, C., Grandis, A., Pivac, N., et al. (2021) Serotonin Modulation of Hippocampal Functions: From Anatomy to Neurotherapeutics. Progress in Brain Research, 261, 83-158.
[36] Ogbonnaya, E.S., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F. and O’Leary, O.F. (2015) Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biological Psychiatry, 78, e7-e9.
https://doi.org/10.1016/j.biopsych.2014.12.023
[37] Jameson, K.G. and Hsiao, E.Y. (2018) Linking the Gut Microbiota to a Brain Neurotransmitter. Trends in Neurosciences, 41, 413-414.
https://doi.org/10.1016/j.tins.2018.04.001
[38] Romo-Araiza, A., Gutiérrez-Salmeán, G., Galván, E.J., Hernández-Frausto, M., Herrera-López, G., Romo-Parra, H., et al. (2018) Probiotics and Prebiotics as a Therapeutic Strategy to Improve Memory in a Model of Middle-Aged Rats. Frontiers in Aging Neuroscience, 10, Article 416.
https://doi.org/10.3389/fnagi.2018.00416
[39] Wu, L., Han, Y., Zheng, Z., Peng, G., Liu, P., Yue, S., et al. (2021) Altered Gut Microbial Metabolites in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Signals in Host-Microbe Interplay. Nutrients, 13, Article 228.
https://doi.org/10.3390/nu13010228
[40] Deng, Y., Zhou, M., Wang, J., Yao, J., Yu, J., Liu, W., et al. (2021) Involvement of the Microbiota-Gut-Brain Axis in Chronic Restraint Stress: Disturbances of the Kynurenine Metabolic Pathway in Both the Gut and Brain. Gut Microbes, 13, Article ID: 1869501.
https://doi.org/10.1080/19490976.2020.1869501
[41] Marcantoni, A., Cerullo, M.S., Buxeda, P., Tomagra, G., Giustetto, M., Chiantia, G., et al. (2020) Amyloid β42 Oligomers Up‐Regulate the Excitatory Synapses by Potentiating Presynaptic Release While Impairing Postsynaptic NMDA Receptors. The Journal of Physiology, 598, 2183-2197.
https://doi.org/10.1113/jp279345
[42] Nakaizumi, K., Ouchi, Y., Terada, T., Yoshikawa, E., Kakimoto, A., Isobe, T., et al. (2018) In Vivo Depiction of Α7 Nicotinic Receptor Loss for Cognitive Decline in Alzheimer’s Disease. Journal of Alzheimers Disease, 61, 1355-1365.
https://doi.org/10.3233/jad-170591
[43] Domin, H. (2022) Group III Metabotropic Glutamate Receptors as Promising Targets for Neuroprotective Therapy: Particular Emphasis on the Role of mGlu4 and mGlu7 Receptors. Pharmacology Biochemistry and Behavior, 219, 173452.
https://doi.org/10.1016/j.pbb.2022.173452
[44] Barroso, A., Mahler, J.V., Fonseca-Castro, P.H. and Quintana, F.J. (2021) The Aryl Hydrocarbon Receptor and the Gut-Brain Axis. Cellular & Molecular Immunology, 18, 259-268.
https://doi.org/10.1038/s41423-020-00585-5
[45] Silva-Parra, J., Sandu, C., Felder-Schmittbuhl, M., Hernández-Kelly, L.C. and Ortega, A. (2023) Aryl Hydrocarbon Receptor in Glia Cells: A Plausible Glutamatergic Neurotransmission Orchestrator. Neurotoxicity Research, 41, 103-117.
https://doi.org/10.1007/s12640-022-00623-2
[46] Yu, D., Tao, B., Yang, Y., Du, L., Yang, S., He, X., et al. (2014) The IDO Inhibitor Coptisine Ameliorates Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. Journal of Alzheimers Disease, 43, 291-302.
https://doi.org/10.3233/jad-140414
[47] 郭丽. 菊粉通过肠道菌群调节色氨酸代谢干预精神分裂症小鼠神经炎症的作用及机制研究[D]: [博士学位论文]. 银川: 宁夏医科大学, 2023.
[48] Ye, J., Qiu, J., Bostick, J.W., Ueda, A., Schjerven, H., Li, S., et al. (2017) The Aryl Hydrocarbon Receptor Preferentially Marks and Promotes Gut Regulatory T Cells. Cell Reports, 21, 2277-2290.
https://doi.org/10.1016/j.celrep.2017.10.114
[49] Martin-Gallausiaux, C., Larraufie, P., Jarry, A., Béguet-Crespel, F., Marinelli, L., Ledue, F., et al. (2018) Butyrate Produced by Commensal Bacteria Down-Regulates Indolamine 2, 3-Dioxygenase 1 (IDO-1) Expression via a Dual Mechanism in Human Intestinal Epithelial Cells. Frontiers in Immunology, 9, Article 2838.
https://doi.org/10.3389/fimmu.2018.02838
[50] Israelyan, N. and Margolis, K.G. (2018) Serotonin as a Link between the Gut-Brain-Microbiome Axis in Autism Spectrum Disorders. Pharmacological Research, 132, 1-6.
https://doi.org/10.1016/j.phrs.2018.03.020
[51] Brushett, S., Gacesa, R., Vich Vila, A., Brandao Gois, M.F., Andreu-Sánchez, S., Swarte, J.C., et al. (2023) Gut Feelings: The Relations between Depression, Anxiety, Psychotropic Drugs and the Gut Microbiome. Gut Microbes, 15, Article ID: 2281360.
https://doi.org/10.1080/19490976.2023.2281360
[52] Liu, Z., Dai, X., Zhang, H., Shi, R., Hui, Y., Jin, X., et al. (2020) Gut Microbiota Mediates Intermittent-Fasting Alleviation of Diabetes-Induced Cognitive Impairment. Nature Communications, 11, Article No. 855.
https://doi.org/10.1038/s41467-020-14676-4
[53] Rothhammer, V., Mascanfroni, I.D., Bunse, L., Takenaka, M.C., Kenison, J.E., Mayo, L., et al. (2016) Type I Interferons and Microbial Metabolites of Tryptophan Modulate Astrocyte Activity and Central Nervous System Inflammation via the Aryl Hydrocarbon Receptor. Nature Medicine, 22, 586-597.
https://doi.org/10.1038/nm.4106