呼吸道合胞病毒感染对慢性阻塞性肺疾病作用的研究现状
Research Status on the Role of Respiratory Syncytial Virus Infection in Chronic Obstructive Pulmonary Disease
DOI: 10.12677/acm.2024.1461900, PDF, HTML, XML, 下载: 13  浏览: 36 
作者: 李海韵, 童 瑾*:重庆医科大学附属第二医院呼吸与危重症医学科,重庆
关键词: 呼吸道合胞病毒慢性阻塞性肺疾病研究进展Respiratory Syncytial Virus Chronic Obstructive Pulmonary Disease Research Status
摘要: 慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)合并病毒感染越来越受到关注,呼吸道合胞病毒(Respiratory Syncytial Virus, RSV)是COPD急性发作中最常见的病毒。在RSV感染的COPD患者中,RSV通过多种TOLL样受体、细胞质视黄酸诱导基因-1样受体和核苷酸结合寡聚化结构域样受体三种模式识别受体参与COPD患者的先天性免疫,获得性免疫损伤反应引起Th1/Th2比例失调,产生细胞因子失衡。RSV的免疫逃逸增强了COPD患者的炎症反应,引起细胞凋亡及组织破坏。支持治疗仍是治疗RSV的主要手段,开发中的RSV疫苗集中在减毒活疫苗、载体疫苗、亚单位疫苗颗粒疫苗和mRNA疫苗。本文对RSV对COPD作用的发病机制、先天免疫、获得性免疫、免疫逃逸、治疗方案和疫苗研究进展等方面进行综述,旨在提高RSV对COPD发病影响的认识。
Abstract: Chronic obstructive pulmonary disease co-infections with viruses are of increasing concern, and respiratory syncytial virus is the most common virus in acute exacerbations of COPD. In RSV-infected COPD patients, RSV participates in the innate immunity of COPD patients through three modes of receptor recognition: Toll-like receptors, RIG-I like receptors and nucleotide-binding leucine-rich repeat receptors, acquired immune injury response causes a dysregulation of the Th1/Th2 ratio and generates cytokine imbalance. Immune escape of RSV enhances the inflammatory response in COPD patients, causing apoptosis and tissue destruction. Supportive therapy is still the mainstay of treatment for RSV infection, and RSV vaccines in development focus on live attenuated vaccines, vector vaccines, subunit vaccine particulate vaccines, and mRNA vaccines. This article provides a review of the pathogenesis, innate immunity, acquired immunity, immune escape, therapeutic options, and progress in vaccine research with the aim of improving the understanding of the impact of RSV on the pathogenesis of COPD.
文章引用:李海韵, 童瑾. 呼吸道合胞病毒感染对慢性阻塞性肺疾病作用的研究现状[J]. 临床医学进展, 2024, 14(6): 1218-1224. https://doi.org/10.12677/acm.2024.1461900

1. 引言

随着宏基因二代测序(metagenomic Next-Generation Sequencing, mNGS)的推广,病毒所致的慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)急性加重日益得以重视,呼吸道合胞病毒(Respiratory Syncytial Virus, RSV)最为常见。本文就RSV对COPD作用的发病机制、免疫逃逸、治疗方案和研究进展等方面加以阐述,为疾病的研究提供更多的基础与临床依据。

2. RSV与COPD的研究进展

2.1. RSV与COPD概述

RSV是非节段性和单股负链RNA病毒,主要感染呼吸道上皮细胞,基因组全长15.2 kbp,编码11种蛋白质,转录产生2种非结构蛋白(NS1和NS2)和9种结构蛋白,结构蛋白包括3种包膜糖蛋白(G,F和SH),G蛋白和F蛋白对RSV的传染和发病都至关重要[1]。G蛋白与宿主细胞膜的特异受体结合介导病毒与宿主细胞的黏附和免疫逃逸[2],F蛋白介导病毒与宿主细胞膜的融合,协助病毒附着[3]。RSV的F蛋白以跨膜三聚体形式存在,三个相同的单体部分相互缠绕,与硫酸乙酰肝素结合,促进病毒与宿主细胞的融合。F蛋白具有融合前F蛋白(pre-fusion F, pre-F)和融合后F蛋白(post-fusion F, post-F)两种构象,存在I-V和Ø共6种不同的抗原位点,II-IV抗原位点在pre-F、post-F构象均存在,Ø和V位点为仅存于pre-F构象中的中和抗体敏感位点,故pre-F构象可更有效的诱导中和抗体。

RSV感染严重时,可导致呼吸衰竭和住院时间延长等[4]。研究发现,RSV可通过has-miR-34b/c-5p/CXCL10轴诱导和加重COPD等气道高反应性疾病[5]。Wilkinson等[6]发现RSV与COPD气道炎症加重和FEV1加速下降有关。COPD患者感染RSV后,可通过拮抗抗病毒细胞因子、模拟趋化因子和抗原漂移等方式进入肺神经元细胞等免疫豁免细胞,从而逃避免疫检测,持续存在于COPD患者的肺部[7]

2.2. RSV与先天性免疫

RSV通过免疫反应和直接损伤共同导致病理损伤,上皮细胞的损害使肺功能恶化,引起COPD相关的肺组织炎症和结构重塑[8]。在病毒附着和进入时,模式识别受体(Pattern Recognition Receptors, PRRs)识别病原体的相关分子模式并引发信号级联反应,诱导细胞因子的表达[9]。三种主要类型的PRRs:多种Toll样受体(Toll-like receptors, TLRs)、细胞质视黄酸诱导基因-1样受体(RIG-I Like Receptors, RLRs)和核苷酸结合寡聚化结构域样受体(Nucleotide-binding leucine-rich repeat receptors, NLRs)在RSV参与上皮细胞的免疫应答中发挥作用。

2.2.1. RSV触发TLRs途径

TLRs是I型跨膜受体蛋白,其家族成员识别病原体的保守结构[10]。TLRs信号通路的激活增加了抗病毒细胞因子的产生。白细胞表达的TLR2、TLR3、TLR4、TLR6和TLR7均可与RSV相互作用,促进感染后的免疫应答。抗病毒感染的先天免疫主要由IFN-I介导,TLR3和TLR4介导干扰素调节因子3 (Interferon Regulatory Factors, IRF-3)的激活,诱导IFN-I的产生,增加INF-β的分泌,激活核因子κB (Nuclear Factor kappa-B, NF-κB)、干扰素刺激基因(Interferon Stimulated Genes, ISGs)的转录。NF-κB活化上调炎症性白细胞介素和TNF-α,ISGs转录上调炎性细胞因子[11] [12],引起继发性免疫损伤。同时,TLR3表达增加与COPD的肺功能下降有关,RSV-TLR3介导的免疫应答参与了此过程[13],可能是RSV诱导AECOPD的危险因素。

在气道上皮细胞上,TLR4/CD14复合物是识别RSV的主要细胞外受体,通过与RSV的F蛋白结合,激活NF-κB介导的细胞因子反应,促进IL-6、IL-8和IL-10等的分泌。据报道,在小鼠腹腔巨噬细胞中,F蛋白促进了依赖于TLR4/CD4信号传导的IL-6分泌[13]

TLR2在免疫细胞和组织上表达,通常与TLR1或TLR6形成异源二聚体,激活先天免疫。在RSV感染中,RSV G蛋白可激活TLR2/TLR6信号传导,产生IL-6、TNF-α等炎症介质,介导病毒的清除[14]

Lukacs [15]等研究发现,在RSV感染中,可通过TLR7介导表达的IL-7判断呼吸道上皮细胞是否存在呼吸道重塑。在RSV感染小鼠中,TLR7的表达促进了下呼吸道的慢性气道炎症和高反应性[16]。TLR的异常表达可能引起了COPD患者对RSV的高敏感性。

2.2.2. RSV触发RLRs途径

RLR家族包括视黄酸诱导基因-Ⅰ (Retinoic acidinduced gene I, RIG-I)与黑色素瘤分化相关基因5 (Melanoma differentiation-associated gene 5, MDA5)。它们是胞质RNA解旋酶和ATP酶,可识别胞质中致病性来源的单链RNA和短双链RNA,通过激活下游信号通道,募集肿瘤坏死因子受体相关因子(TNF Receptor Associated Factors, TRAFs)衔接蛋白成员,促进干扰素调节因子3或7 (IRF3/7)和NF-κB的激活,诱导IFN-I的产生,促进炎症基因的表达[17] [18]。RIG-I和MDA5是RSV NS1和NS2的已知靶标,激活后的RIG-I与MDA5可以与线粒体抗病毒信号转导蛋白结合,进一步激活下游信号转导和转录因子[19]。有研究报道,在RSV感染的哺乳动物细胞及小鼠模型中,激活RIG-I可抑制RSV病毒的复制与感染[20],RIG-I与MDA5衔接蛋白缺陷的小鼠感染RSV后产生更少的IFN-I及促炎因子[21]。这些研究表明,RIG-I与MDA-5参与了宿主防御RSV感染。

2.2.3. RSV触发NLRs途径

NLR家族是细胞内细胞质传感器,在抵抗病原体入侵的先天免疫反应中发挥作用。NLRs参与了炎症小体组装、信号转导、转录激活及自噬等细胞内活动。NLR家族成员NOD2通过激活IFN-I介导抗病毒先天免疫反应,RSV感染后,细胞内可迅速增加NOD2的表达。研究表明,与野生型小鼠相比,NOD2缺陷小鼠肺部对RSV易感性显著增强,IRF3的激活及IFN-I的产生减少[22]。NLRP3为NLR家族另一成员,通过将前CASP1募集到炎症小体,激活IL-1β和IL-18蛋白水解。据报道,在感染RSV小鼠骨髓来源的巨噬细胞中,NLRP3被激活[23]

2.3. RSV与获得性免疫

RSV感染的COPD患者中,Th1/Th2比例失调及由此产生的细胞因子失衡参与了机体的免疫损伤反应。RSV可通过CX3CR1感染新生儿B细胞,增加IL-10分泌和Th2反应[3]。在婴儿中,如TLR信号转导减少、抗原呈递细胞功能改变和调节性T细胞活化减少,可能导致适应性免疫反应偏向Th2和Th17,远离保护性Th1和CTL反应[24]。RSV可使Th1激活受损、B细胞减少和IFNγ抑制抗体产生,产生低滴度、低亲和力的抗体[25],可能使宿主免疫应答永久定向于喘息加重[26]。Th2激活增加,产生IL-13,促进机体向蛋白酶/抗蛋白酶失衡的COPD方向发展。

2.4. RSV与免疫逃逸

RSV与宿主的免疫存在相互作用:一方面,RSV感染上调宿主IFN-I及ISGs限制病毒复制,另一方面,RSV抑制IFN-I获得病毒复制及感染的机会。NS蛋白在抑制先天免疫信号传导中起着重要作用,感染同时存在NS1和NS2基因缺陷RSV病毒的人巨噬细胞和上皮细胞,比感染单个基因缺失RSV病毒的细胞能产生更多的IFN-I,表明RSV阻断IFN-I单链通路具有NS1和NS2之间的协同作用[27]。RSV的免疫逃逸可干扰RLRs途径中涉及的关键信号因子,如RIG-I受体[28]、MDA5受体,线粒体抗病毒信号蛋白衔接蛋白,转录因子IRF3与NF-κB等。NS1和NS2复合物转运到线粒体形成降解体,可降解IFN-I通路中的多种蛋白。免疫逃逸可能解释了RSV诱导促炎细胞因子持续损伤宿主,显著增强COPD炎症反应,引起细胞凋亡及组织破坏。了解RSV的免疫逃逸机制有助于我们设计相关的靶向治疗。

3. RSV与治疗

支持治疗仍是目前治疗RSV感染的主要手段,已经获得批准使用的预防性单克隆抗体包括Pallivizumab与Nirsevimab。目前能有效治疗RSV感染的药物较少,利巴韦林是治疗RSV的主要药物。已有两款RSV疫苗获批上市:2023年5月3日,美国食品药品监督管理局(FDA)批准了世界上第一种用于60岁及以上人群的RSV疫苗:由葛兰素史克(GSK)研制的AREXEVY,并于2023年6月7日获得欧盟批准。2023年6月1日,FDA批准了由辉瑞研制的用于预防60岁及以上人群中由RSV引起的下呼吸道疾病的RSV疫苗ABRYSVO。目前开发中的RSV疫苗集中在减毒活疫苗、载体疫苗、亚单位疫苗颗粒疫苗和mRNA疫苗中。

3.1. 减毒活疫苗

减毒活疫苗通过模拟自然感染来产生有效的免疫反应,主要为新生儿提供保护。减毒活疫苗必须保证安全性,并兼顾免疫原性[29]。美国国家过敏和传染病研究所研发的减毒活疫苗RSV/ΔNS2/Δ1313/I1314L包含NS2基因缺失及RSV聚合酶基因密码子1313缺失和稳定错义突变两种减毒方法。Cunningham等[30]报道了针对6~24个月龄血清阴性儿童减毒活疫苗RSV/ΔNS2/Δ1313/I1314L和RSV/276的研究,该实验证明该候选疫苗具有良好的安全性和免疫原性。目前,大多数减毒活疫苗仍处于研发阶段。

3.2. 载体疫苗

载体疫苗通过病毒载体感染细胞,表达外源基因,诱导机体增加细胞免疫应答,目前最常用的为腺病毒载体。Janssen Pharmaceuticals研发的Ad26 RSV pre-F候选疫苗以腺病毒为载体,该疫苗在I、II期临床试验中发现,在12~24月龄儿童Pre-F耐受性良好[31]。但在III期试验中,Janssen公司审查后决定停止开发该疫苗。Bavarian Nordic研发的基于痘苗安卡拉病毒(MVA)载体的MVA-BN RSV候选疫苗宣布未达到临床主要终点,在III期VANIR研究中未能显著降低下呼吸道疾病的发生率。VANIR研究的最终研究结果显示,MVA-BN RSV预防至少2种下呼吸道疾病症状发生的效力为59%,显著优于安慰剂组,然而预防更严重的至少3种LRTD症状发生的效力仅有42.9%,与安慰剂组的数据无显著性差异。

3.3. mRNA疫苗

mRNA疫苗通过将编码抗原蛋白的mRNA直接导入宿主细胞内,由宿主细胞翻译合成蛋白,进而产生免疫应答。在新冠流行期间,mRNA疫苗表现了其对SARS-CoV-2感染的安全性、高效性、低成本等优势[32]。Moderna开发了针对老年人、青壮年、孕产妇、血清阳性儿童的mRNA-1345疫苗,由单个mRNA序列组成,编码pre-F构象蛋白。目前,mRNA-1345处于III期临床研究,用于预防60岁及以上老年人的RSV感染。

3.4. 亚单位疫苗

由GSK研制的RSV pre-F3疫苗是一种基于pre-F构象蛋白的亚单位疫苗,该疫苗与GSK专有的AS01E佐剂结合。GSK将针对老年人的RSV pre-F3疫苗命名为AREXYY (NCT04886596),应用该疫苗的60岁及以上人群因RSV严重疾病发生下呼吸道感染的风险降低了94.1%。辉瑞公司也开发了基于pre-F抗原涉及的疫苗,基于添加二硫键(T103C-1148C)、非极性氨基酸空腔填充(S1901)、静电荷突变(D486S),筛选出了847构建体,并根据此研制出了一种二价预融合疫苗。根据该疫苗开发出的针对老年人的疫苗在RENOIR试验中显示出较高的疗效[33]

除疫苗外,下一代单克隆抗体也处于开发之中。Nirsevimab (MEDI-8897)是下一代单克隆抗体之一,该抗体靶向暴露于pre-F构象蛋白的高敏感抗原位点Ø。除Nirsevimab外,默沙东公司正在开发第二款下一代mAb,即Clesrovimab (MK1654),Clesrovimab是一种全人源抗RSV融合糖蛋白单克隆抗体,正处于临床3期实验。

4. 结语

COPD人群在RSV的感染下,启动了免疫反应,释放大量炎症因子,从而加快疾病的进程。RSV检出阳性的COPD患者在急性加重期表现出增加的炎症反应。近几十年随着生物技术的进步,关于RSV的各方面研究都取得了较大的进展,有多种RSV疫苗及单克隆抗体均处在开发之中,通过进一步研究,可以期待获得更突破性的进展。

NOTES

*通讯作者。

参考文献

[1] Rodriguez-Fernandez, R., Mejias, A. and Ramilo, O. (2021) Monoclonal Antibodies for Prevention of Respiratory Syncytial Virus Infection. Pediatric Infectious Disease Journal, 40, S35-S39.
https://doi.org/10.1097/inf.0000000000003121
[2] Ouyang, Y., Liao, H., Hu, Y., Luo, K., Hu, S. and Zhu, H. (2022) Innate Immune Evasion by Human Respiratory Syncytial Virus. Frontiers in Microbiology, 13, Article 865592.
https://doi.org/10.3389/fmicb.2022.865592
[3] Kopera, E., Czajka, H., Zapolnik, P. and Mazur, A. (2023) New Insights on Respiratory Syncytial Virus Prevention. Vaccines, 11, Article 1797.
https://doi.org/10.3390/vaccines11121797
[4] Dransfield, M.T., Kunisaki, K.M., Strand, M.J., Anzueto, A., Bhatt, S.P., Bowler, R.P., et al. (2017) Acute Exacerbations and Lung Function Loss in Smokers with and without Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 195, 324-330.
https://doi.org/10.1164/rccm.201605-1014oc
[5] Liu, D., Tang, Z., Bajinka, O., Dai, P., Wu, G., Qin, L., et al. (2023) miR-34b/c-5p/CXCL10 Axis Induced by RSV Infection Mediates a Mechanism of Airway Hyperresponsive Diseases. Biology, 12, Article 317.
https://doi.org/10.3390/biology12020317
[6] Wilkinson, T.M.A., Donaldson, G.C., Johnston, S.L., Openshaw, P.J.M. and Wedzicha, J.A. (2006) Respiratory Syncytial Virus, Airway Inflammation, and Fev1 Decline in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 173, 871-876.
https://doi.org/10.1164/rccm.200509-1489oc
[7] Sikkel, M.B., Quint, J.K., Mallia, P., Wedzicha, J.A. and Johnston, S.L. (2008) Respiratory Syncytial Virus Persistence in Chronic Obstructive Pulmonary Disease. Pediatric Infectious Disease Journal, 27, S63-S70.
https://doi.org/10.1097/inf.0b013e3181684d67
[8] Carty, M., Guy, C. and Bowie, A.G. (2021) Detection of Viral Infections by Innate Immunity. Biochemical Pharmacology, 183, Article ID: 114316.
https://doi.org/10.1016/j.bcp.2020.114316
[9] Sedeyn, K., Schepens, B. and Saelens, X. (2019) Respiratory Syncytial Virus Nonstructural Proteins 1 and 2: Exceptional Disrupters of Innate Immune Responses. PLOS Pathogens, 15, e1007984.
https://doi.org/10.1371/journal.ppat.1007984
[10] Fitzgerald, K.A. and Kagan, J.C. (2020) Toll-like Receptors and the Control of Immunity. Cell, 180, 1044-1066.
https://doi.org/10.1016/j.cell.2020.02.041
[11] Gao, W., Li, L., Wang, Y., Zhang, S., Adcock, I.M., Barnes, P.J., et al. (2015) Bronchial Epithelial Cells: The Key Effector Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease? Respirology, 20, 722-729.
https://doi.org/10.1111/resp.12542
[12] Chen, Y., Lin, J., Zhao, Y., Ma, X. and Yi, H. (2021) Toll-like Receptor 3 (TLR3) Regulation Mechanisms and Roles in Antiviral Innate Immune Responses. Journal of Zhejiang University-SCIENCE B, 22, 609-632.
https://doi.org/10.1631/jzus.b2000808
[13] Liu, D., Chen, Q., Zhu, H., Gong, L., Huang, Y., Li, S., et al. (2017) Association of Respiratory Syncytial Virus Toll-Like Receptor 3-Mediated Immune Response with COPD Exacerbation Frequency. Inflammation, 41, 654-666.
https://doi.org/10.1007/s10753-017-0720-4
[14] Alshaghdali, K., Saeed, M., Kamal, M.A. and Saeed, A. (2021) Interaction of Ectodomain of Respiratory Syncytial Virus G Protein with TLR2/TLR6 Heterodimer: An in Vitro and in Silico Approach to Decipher the Role of RSV G Protein in Pro-Inflammatory Response against the Virus. Current Pharmaceutical Design, 27, 4464-4476.
https://doi.org/10.2174/1381612827666210716160030
[15] Lukacs, N.W., Smit, J.J., Mukherjee, S., Morris, S.B., Nunez, G. and Lindell, D.M. (2010) Respiratory Virus-Induced TLR7 Activation Controls Il-17–associated Increased Mucus via IL-23 Regulation. The Journal of Immunology, 185, 2231-2239.
https://doi.org/10.4049/jimmunol.1000733
[16] Miles, M.A., Liong, S., Liong, F., Coward-Smith, M., Trollope, G.S., Oseghale, O., et al. (2023) TLR7 Promotes Chronic Airway Disease in RSV-Infected Mice. Frontiers in Immunology, 14, Article 1240552.
https://doi.org/10.3389/fimmu.2023.1240552
[17] Seth, R.B., Sun, L., Ea, C. and Chen, Z.J. (2005) Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein That Activates NF-κB and IRF 3. Cell, 122, 669-682.
https://doi.org/10.1016/j.cell.2005.08.012
[18] Rehwinkel, J. and Gack, M.U. (2020) RIG-I-like Receptors: Their Regulation and Roles in RNA Sensing. Nature Reviews Immunology, 20, 537-551.
https://doi.org/10.1038/s41577-020-0288-3
[19] Pei, J., Wagner, N.D., Zou, A.J., Chatterjee, S., Borek, D., Cole, A.R., et al. (2021) Structural Basis for IFN Antagonism by Human Respiratory Syncytial Virus Nonstructural Protein 2. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020587118.
https://doi.org/10.1073/pnas.2020587118
[20] Schwab, L.S.U., Farrukee, R., Eléouët, J., Rameix-Welti, M., Londrigan, S.L., Brooks, A.G., et al. (2022) Retinoic Acid-Inducible Gene I Activation Inhibits Human Respiratory Syncytial Virus Replication in Mammalian Cells and in Mouse and Ferret Models of Infection. The Journal of Infectious Diseases, 226, 2079-2088.
https://doi.org/10.1093/infdis/jiac295
[21] Demoor, T., Petersen, B.C., Morris, S., Mukherjee, S., Ptaschinski, C., De Almeida Nagata, D.E., et al. (2012) IPS-1 Signaling Has a Nonredundant Role in Mediating Antiviral Responses and the Clearance of Respiratory Syncytial Virus. The Journal of Immunology, 189, 5942-5953.
https://doi.org/10.4049/jimmunol.1201763
[22] Sabbah, A., Chang, T.H., Harnack, R., Frohlich, V., Tominaga, K., Dube, P.H., et al. (2010) Erratum: Corrigendum: Activation of Innate Immune Antiviral Responses by Nod2. Nature Immunology, 11, 969-969.
https://doi.org/10.1038/ni1010-969b
[23] Segovia, J., Sabbah, A., Mgbemena, V., Tsai, S., Chang, T., Berton, M.T., et al. (2012) TLR2/MyD88/NF-κB Pathway, Reactive Oxygen Species, Potassium Efflux Activates NLRP3/ASC Inflammasome during Respiratory Syncytial Virus Infection. PLOS ONE, 7, e29695.
https://doi.org/10.1371/journal.pone.0029695
[24] Sun, Y. and López, C.B. (2017) The Innate Immune Response to RSV: Advances in Our Understanding of Critical Viral and Host Factors. Vaccine, 35, 481-488.
https://doi.org/10.1016/j.vaccine.2016.09.030
[25] Varricchi, G., Harker, J., Borriello, F., Marone, G., Durham, S.R. and Shamji, M.H. (2016) T Follicular Helper (tfh) Cells in Normal Immune Responses and in Allergic Disorders. Allergy, 71, 1086-1094.
https://doi.org/10.1111/all.12878
[26] Blanken, M.O., Rovers, M.M., Molenaar, J.M., Winkler-Seinstra, P.L., Meijer, A., Kimpen, J.L.L., et al. (2013) Respiratory Syncytial Virus and Recurrent Wheeze in Healthy Preterm Infants. New England Journal of Medicine, 368, 1791-1799.
https://doi.org/10.1056/nejmoa1211917
[27] Spann, K.M., Tran, K., Chi, B., Rabin, R.L. and Collins, P.L. (2004) Suppression of the Induction of Alpha, Beta, and Gamma Interferons by the NS1 and NS2 Proteins of Human Respiratory Syncytial Virus in Human Epithelial Cells and Macrophages. Journal of Virology, 78, 4363-4369.
https://doi.org/10.1128/jvi.78.8.4363-4369.2004
[28] Thornhill, E.M. and Verhoeven, D. (2020) Respiratory Syncytial Virus’s Non-Structural Proteins: Masters of Interference. Frontiers in Cellular and Infection Microbiology, 10, Article 225.
https://doi.org/10.3389/fcimb.2020.00225
[29] 祖向阳, 高伟娜, 杜喆, 等. 呼吸道合胞病毒疫苗的研究进展[J]. 中国疫苗和免疫, 2018, 24(2): 237-242.
[30] Cunningham, C.K., Karron, R.A., Muresan, P., Kelly, M.S., McFarland, E.J., Perlowski, C., et al. (2022) Evaluation of Recombinant Live-Attenuated Respiratory Syncytial Virus (RSV) Vaccines RSV/δNS2/δ1313/I1314L and RSV/276 in RSV-Seronegative Children. The Journal of Infectious Diseases, 226, 2069-2078.
https://doi.org/10.1093/infdis/jiac253
[31] Stuart, A.S.V., Virta, M., Williams, K., Seppa, I., Hartvickson, R., Greenland, M., et al. (2022) Phase 1/2a Safety and Immunogenicity of an Adenovirus 26 Vector Respiratory Syncytial Virus (RSV) Vaccine Encoding Prefusion F in Adults 18-50 Years and RSV-Seropositive Children 12-24 Months. The Journal of Infectious Diseases, 227, 71-82.
https://doi.org/10.1093/infdis/jiac407
[32] Regev-Yochay, G., Gonen, T., Gilboa, M., Mandelboim, M., Indenbaum, V., Amit, S., et al. (2022) Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron. New England Journal of Medicine, 386, 1377-1380.
https://doi.org/10.1056/nejmc2202542
[33] Walsh, E.E., Pérez Marc, G., Zareba, A.M., Falsey, A.R., Jiang, Q., Patton, M., et al. (2023) Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. New England Journal of Medicine, 388, 1465-1477.
https://doi.org/10.1056/nejmoa2213836