自身免疫性结节病诊疗进展
Progress in the Diagnosis and Treatment of Autoimmune Nodopathies
DOI: 10.12677/acm.2024.1461892, PDF, HTML, XML, 下载: 29  浏览: 64 
作者: 黄渝窈, 蒋 莉*:重庆医科大学附属儿童医院神经内科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,重庆
关键词: 自身免疫性结节病慢性炎性脱髓鞘性多发性神经根神经病儿童Autoimmune Nodopathies Chronic Inflammatory Demyelinating Polyneuropathy Children
摘要: 既往在自身免疫性神经病患者中发现针对结旁蛋白的特异性自身抗体。这些特定抗体与特定的临床病理特征相关,不同于经典的慢性炎症性脱髓鞘多神经根神经病。这些患者目前被单独归类为自身免疫性结节病(Autoimmune Nodopathies, AN)。儿童自身免疫性结节病作为从慢性炎症性脱髓鞘多神经病变演变出的独立新型疾病概念,对其认识尚不足。本研究旨在归纳自身免疫性结节病的临床特征及治疗方案选择,以提高对其疾病的认识。
Abstract: Specific autoantibodies against paraprotein have previously been found in patients with autoimmune neuropathies. These specific antibodies have been associated with specific clinicopathological features, distinct from the classical chronic inflammatory demyelinating polyradiculoneuropathy. These patients are now classified separately as autoimmune nodopathies (AN). Autoimmune nodopathies in children are poorly understood as a separate novel disease concept evolving from chronic inflammatory demyelinating polyneuropathy. This study aimed to summarize the clinical features of autoimmune nodopathies and the choice of a therapeutic regimen to improve the understanding of their disease.
文章引用:黄渝窈, 蒋莉. 自身免疫性结节病诊疗进展[J]. 临床医学进展, 2024, 14(6): 1157-1165. https://doi.org/10.12677/acm.2024.1461892

1. 引言

针对结旁蛋白的致病性自身抗体使人们认识到一组新的抗体介导的神经病,其临床特征和疾病机制与经典的炎症性神经病不同[1]。目前已有临床报道在部分符合慢性炎症性脱髓鞘多神经病变的临床和电生理标准的患者中可发现自身抗体。相较于典型CIDP,其具有相对特定不同的临床特征及治疗用药选择[2]。最近发表的欧洲神经学会/周围神经学会(European Academy of Neurology/Peripheral Nerve Society, EAN/PNS)诊断和治疗CIDP指南为这些结旁抗体介导的神经病制定了一个新的诊断类别,称为“自身免疫性结节病”[3]。为此,本文综述自身免疫性结节病不同抗体的临床特点及治疗方案选择的相关研究进展,旨在对临床工作提供参考。

2. 慢性炎症性脱髓鞘多神经病变与自身免疫性结节病

慢性炎性脱髓鞘性多发性神经根神经病(Chronic Inflammatory Demyelinating Polyradiculoneuropathy, CIDP)是一类由免疫介导的脱髓鞘性周围神经病,病情进展达8周以上,可有缓解复发过程;电生理表现为周围神经传导速度减慢、远端潜伏期延长、运动神经传导阻滞、异常波形离散以及F波异常等脱髓鞘改变,大部分患者免疫治疗有效。但在一小部分符合CIDP患者中发现了针对结旁细胞粘附分子(抗接触蛋白1,Contactin-1 [CNTN1]) [4]、抗神经束蛋白155 (Neurofascin-155 [NF155]) [5]、抗接触蛋白相关蛋白1 (Contactin-Associated Protein 1 [Caspr1]) [6]、抗神经束蛋白异型140/186 (NF140/186) [7]的抗体。具有这些抗体的患者通常具有特定的临床特征:没有明显的炎症或巨噬细胞介导的脱髓鞘,并且对CIDP治疗反应不佳,尤其是静脉输注免疫球蛋白(Intravenous Immunoglobulin, IVIG),利妥昔单抗及血浆置换可能有效。因此2021EFNS/PNS提议将这些病症命名为“自身免疫性郎飞氏结病”,而不是将它们视为CIDP变异型。

3. 自身免疫性结节病发病机制

众所周知,有髓纤维的跳跃性快速传导功能依赖于郎飞结重要结构的完整性。在有髓轴突中,郎飞结充当中继器,在动作电位沿轴突以跳跃方式传播到神经末梢时再产生动作电位,从而提高动作电位传播的速度。朗飞结包括结区、结旁区、近结旁区及结间区4个区域,特异性的细胞黏附分子、离子通道、细胞骨架及细胞外基质在这些区域有序地排列[8]。NF155、Caspr1和CNTN1结合形成复合体将髓鞘与轴突相连接,同时形成一个屏障,将相邻区域的Na+通道和K+通道隔离开来[9]。此复合体非常重要,但也很容易成为免疫抗体攻击的靶点。一旦结旁区结构破坏,便引起髓鞘袢与轴膜脱离,结旁区扩张,影响此区域K+通道,同时降低了结旁区的横向电阻,使电流回流到结旁区,从而导致轴膜去极化异常,最终致使神经传导障碍[10]。后续进一步耗竭结旁区Na/K三磷酸腺苷酶(Adenosine Triphosphatase, ATP),Na/K泵失调,细胞内钙超载,进而激活钙蛋白酶,引起组成神经轴索重要成分神经丝蛋白和线粒体等重要细胞器水解破坏,从而发生轴索变性坏死[11]

除此之外,朗飞结的组装始于施万细胞和轴突之间的接触。施万细胞分泌的细胞因子与轴突表面的NF186和其他粘附分子相互作用,促进郎飞结的组装[12],并参与钠通道聚集。

在NF155、CNTN1和CASPR1致病抗体中,以IgG4亚型最常见,其致病作用在动物模型中已经得到验证。在成年大鼠中,慢性鞘内注射抗体会引发结旁NF155的丢失和结旁区结构异常,并导致运动神经传导速度(Motor Nerve Conduction Velocity, MCV)减慢和复合肌肉动作电位(Compound Muscle Action Potential, CMAP)波幅降低[13]。其他研究者将CNTN1-IgG4和CASPR1-IgG4抗体注射到大鼠坐骨神经后,发现其通过结区向结旁区扩散,并沉积在结旁区,大鼠可出现步态不稳,电生理检查也显示MCV减慢和CMAP波幅减低[14] [15]

IgG4亚型抗体可干扰轴膜–髓鞘之间的连接,从而破坏结旁区结构。由于IgG4其铰链区独特的结构特征,具有非炎症特性,无法参与靶抗原的交联和内化。与二价和单特异性的IgG1亚类相反,IgG4不激活补体,也不能与抑制性Fcγ受体(Fcγ Receptor, FcγRIIb)结合以激活细胞和补体介导的免疫反应,而这些关键功能可被IVIg抑制。这一定程度解释了IgG4亚类对IVIG治疗反应欠佳的原因。相比之下,利妥昔单抗通过靶向记忆B细胞和产生IgG4的CD20阳性短命浆细胞,可带来持久的临床益处[16]。而IgG1或IgG3抗体亚型,是通过诱导补体反应、免疫细胞介导的细胞毒性反应以及交联和内化抗原而发挥其致病作用[17]

4. 自身免疫性结节病病理

据已有文献报道,具有NF155阳性和CNTN1的患者神经活检的光学和电子显微镜具有特征性表现:有髓纤维密度略有降低,髓磷脂卵泡散在,并且不存在巨噬细胞介导的脱髓鞘或洋葱球样病变[18]。除脱髓鞘损伤外,还包括结旁区水肿、郎飞结延长、神经束膜下水肿,部分可见轴索变性,免疫荧光染色结旁染色丢失。电镜下髓鞘袢施万细胞与轴膜分离,结旁区隔膜样横带连接破坏丢失,结旁区间隔增大。有研究提出,NF155阳性患者结节旁轴突胶质细胞脱失与轴突变性呈正相关[18]

与CNTN1不同,NF155阳性患者带II类人类白细胞抗原(Human Leukocyte Antigen, HLA) HLA DRB1*15等位基因的频率显着高于自身抗体阴性CIDP患者和正常人群(77% vs 14% vs 17%) [19]。因此,HLA DRB1*15是发生抗NF155阳性自身免疫性结节病的遗传风险因素。

目前对NF140/186研究较少,文献基于病例报道为主。在光镜下可检测到大量有髓纤维损伤并且无细胞浸润。此外,有1例NF140-186阳性病例对其进行超微结构研究发现在电镜下,神经结节区域微绒毛被雪旺细胞胞质延长延伸后替代,使得结节间隙闭塞[20]

5. 自身免疫性结节病的临床特征

自身免疫性结节病的临床谱系包括急性、亚急性或慢性起病的感觉运动神经病变,类似吉兰巴雷综合征(Guillain-Barre Syndrome, GBS)和慢性炎症性脱髓鞘多发性神经病,但它们对IVIG的反应可能不同[21]。神经生理学研究显示大多数AN患者有获得性脱髓鞘,少数患者可能主要表现为轴突受累[22]。神经病理活检中AN患者可无典型脱髓鞘表现。然而,在腰骶神经丛的MRI检查中,他们通常表现出明显的神经根的增强或增厚,脑脊液蛋白水平升高,肌电图可有远端和F波潜伏期延长[23]。随着多种针对结旁蛋白的特异性自身抗体被发现,各个抗体阳性的自身免疫性结节病患者的临床表现存在些许差异。不同抗体阳性自身免疫性结节病相关临床特征总结见表1

Table 1. Clinical features of autoimmune nodopathies

1. 自身免疫性结节病临床特征

抗体

抗体亚类

起病方式

受累部位

临床表现

CNTN1

IgG4

急性/亚急性

对称,近/远端均
可受累

共济失调

IgG3

震颤

(急性期)

肾病综合征

NF155

IgG1

急性/亚急性

对称,远端为主

共济失调

IgG2

震颤

IgG4

颅神经受累

NF140/NF186

IgG4

急性/亚急性

对称,近/远端均
可受累

少见共济失调、震颤

IgG3

Caspr1

IgG4

急性/亚急性

对称,远端为主

共济失调

IgG3

颅神经受累

(急性期)

神经性疼痛

5.1. NF155

NF155抗体阳性患者可出现步态异常、远端获得性脱髓鞘对称性神经病表现、感觉性共济失调、震颤,神经传导检查显示远端和F波潜伏期更显著延长,以及静脉注射免疫球蛋白及皮质醇的效果欠佳表现。除上述常见表现外,过去几年也描述了与NF155抗体相关的其他临床特征,包括头部、声音[24]和舌震颤[25]。在NF155抗体阳性CIDP患者中也观察到颅神经受累表现[26]。目前已有文献报道NF155抗体存在NF155-IgM [27]、NF155-IgG1、NF155-IgG2和NF155-IgG4 [5]阳性抗体亚类。一项研究表明,NF155-IgG阳性、NF155-IgG4阴性(其余NF155-IgG阳性)和NF155-IgM阳性患者NF155-IgG4血清阳性患者在临床表型上存在差异。与其他亚型相比,NF155-IgG4阳性患者中感觉性共济失调、神经性疼痛和小脑功能障碍表现更为常见[27]。具体抗体亚类与临床表现差异机制尚不明确,抗体亚类是否对临床治疗方案及预后具有指导意义仍有待进一步大样本随机对照研究。

NF155抗体阳性患者可同时合并中枢神经系统脱髓鞘,称为中枢和周围神经系统联合脱髓鞘疾病(Combined Central and Peripheral Demyelination, CCPD) [28],而在CCPD患者中NF155抗体阳性比例也明显增高[29] [30]。此外,还有研究发现,CIDP患者出现中枢神经系统症状前,可在外周血中检测到NF155特异性T细胞反应,提示NF155抗体可能参与CCPD的启动[31]

NF155-AN患者脑脊液蛋白含量显著高于抗体阴性的CIDP患者[32]。大部分NF155-AN患者的MRI检查示颈、腰骶神经根和(或)神经丛均有增粗,部分患儿可见三叉神经增粗[33]。Ogata等[33]发现神经增粗的程度与病程呈正相关。因此神经增粗程度有作为评估疾病严重程度及预后的指标可能。神经传导检查中NF155IgG4-AN患者末端潜伏期(Distal Motor Latency, DML)延长的异常率较阴性者更高[5],CMAP波幅及腓肠神经感觉传导速度显著低于抗体阴性患者[34]

5.2. CNTN1

CNTN1抗体是第一个与CIDP患者特定临床特征相关的结节旁抗体[4]。CNTN1阳性患者临床表现类似于NF155阳性患者,以急性或亚急性发作,可出现共济失调、震颤的表现[26]此外,CNTN1抗体阳性患者还可观察到颅神经受累表现(如面部无力和呼吸衰竭) [35] [36]。CNTN1抗体存在CNTN1 IgG3和CNTN1 IgG4阳性抗体亚类。CNTN1 IgG3抗体可以在疾病急性期检测到,并且与IVIG的良好反应相关[37]。有动物模型研究支持IgG3亚类的抗CNTN1抗体可能介导疾病的急性发作,并预测急性期对IVIG的短暂反应[17]。但CNTN1 IgG3的临床指导意义还需要临床队列研究进一步证实。电生理检查可发现CNTN1阳性患者存在DML延长、F波潜伏期延长、运动和感觉神经传导速度(Nerve Conduction Velocity, NCV)减慢,且在疾病早期可检测到轴索受累证据[38]。除神经系统表现之外,患者可出现蛋白尿、低蛋白血症等肾病综合征表现[39]。初步证据表明与含有CNTN1的免疫复合物沉积介导可能有关,但具体关联机制尚不清楚,有待进一步研究。

5.3. Caspr1

Caspr1阳性患者以远端感觉运动神经受累、感觉共济失调、面瘫、眼肌麻痹、吞咽困难、呼吸衰竭为主要表现[36] [39]-[41]。部分患者可出现神经痛[40],其可能与Caspr1在神经根结旁区的表达相关。脑脊液检查中蛋白水平与抗体阴性患者相比显著升高。电生理检查较CIDP无明显特异性,以脱髓鞘为主要表现[40] [41]。Caspr1抗体最初在少数诊断为GBS (IgG3亚类)和CIDP (主要是IgG4亚类)的患者中检测到[4] [17]。Caspr1阳性患者可因急性或亚急性发作易被诊断为GBS,可出现神经性疼痛、共济失调以及颅神经受累表现。神经传导检查可见轴突受累及急性去神经支配。有研究认为携带Caspr1/CNTN1复合物抗体的患者表现出相似的血清学和临床特征,构成CIDP综合征中的一个亚组[6]。此外,有文献报道了CNTN1/Caspr1复合物的抗体的存在,认为不存在单独的Caspr1的抗体[4]。因此,该抗体是否应与CNTN1抗体合并为一个抗体尚存在争议,有待进一步研究。

5.4. NF140/186

NF140/186抗体阳性患者多以急性及亚急性起病,远端肢体无力和/或麻木最为常见。相比于其他结旁抗体,NF140/186抗体阳性患者少见共济失调、震颤和中枢神经系统脱髓鞘表现。对于急性起病的患者,早期运动和感觉受累很容易被误诊为GBS [42],该抗体在早期识别GBS和AN中可能具有一定临床意义,但仍需进一步大样本对照研究证实。神经传导检查主要为脱髓鞘伴/不伴轴突损失。同样,在NF140/186中常见IgG3和IgG4抗体亚类[15] [20],但对于NF140/186抗体亚类不同患者临床表现是否存在差异性目前尚无相关研究。

6. 自身免疫性结节病诊断

目前尚无自身免疫性结节病系统性诊断标准,作为从CIDP变型中新分出的疾病概念,部分患儿以急性或亚急性起病,尚不满足CIDP临床诊断标准。目前大多仍以脑脊液或血液中发现结旁抗体阳性并结合患者临床表现进行诊断,但对于CNTN1、NF155、Caspr1和NF140/186抗体诊断价值尚未得到正式评估。脑脊液或血液中发现相关抗体阳性是否能成为自身免疫性结节病的诊断金标准仍待研究。目前已有多项研究支持,抗体滴度与轴突损伤标志物呈正相关,并在治疗后下降[43]-[45]。因此,相关抗体滴度测定在协助评估疾病严重程度及预后可能具有临床指导意义,未来仍需更多大样本对照试验为抗体滴度测定提供循证医学证据。若患者有类似GBS或CIDP临床症状以及相应的确诊抗体实验阳性可能会在一定程度上协助诊断自身免疫性结节病,避免误诊,必要时应对抗体亚类进行测定。

7. 自身免疫性结节病治疗

自身免疫性结节病患者通常对IVIG具有抵抗力,并且对皮质类固醇仅有部分反应[5] [26] [46]。有研究指出血浆置换可在短期内显著改善症状[46],此外Querol [43]等发现对IVIG及皮质类固醇反应欠佳患者可考虑使用利妥昔单抗。然而,由于侵入性操作、静脉通路相关并发症、高成本和设备可用性有限,血浆置换并不是维持治疗的良好选择。利妥昔单抗由于常规静脉给药成本高且潜在的感染风险较高,限制了临床长期应用[47]。目前对于利妥昔单抗治疗自身免疫性结节病的研究仅限于小样本或病例报道。具体不同治疗方案对于自身免疫性结节病治疗效果评价总结见表2。除此之外,有文献报道Caspr1阳性患者使用他克莫司联合皮质醇治疗可较单用皮质醇有更好的预后结局[48]。因此对于自身免疫性结节病的治疗方案效果评价及副作用还需要更多大样本研究。

Table 2. Evaluation of therapeutic effects for autoimmune nodopathies

2. 自身免疫性结节病治疗方法效果评估

抗体

皮质醇

静脉输注免疫球蛋白

血浆置换

利妥昔单抗

CNTN1

部分反应

反应欠佳

反应佳

反应佳

NF155

部分反应

反应欠佳

反应佳

反应佳

NF140/186

部分反应

部分反应

反应佳

反应佳

Caspr1

部分反应

反应欠佳

反应佳

反应佳

8. 自身免疫性结节病预后

已有回顾性研究发现,AN患者抗体滴度与改良Rankin量表(Modified Rankin Scale, mRS)评分呈负相关,血清神经丝蛋白轻链(Serum Neurofilament Light, sNfL)水平与抗体滴度呈正相关[44]

9. 结论

综上,AN作为一种从CIDP中演变出的新型疾病概念,相比与CIDP具有相对独特的临床特征及病理改变,并对传统CIDP治疗方案效果欠佳。相关结旁抗体检测及滴度检测在一定程度上可以协助诊断并进行病情严重程度评估及预后疗效评价。目前对于自身免疫性结节病的诊断及治疗方案选择仍基于CIDP既往经验治疗,认识和了解较少,尚无系统性研究,缺乏大样本前瞻性研究,有待进一步研究和分析。

NOTES

*通讯作者。

参考文献

[1] Pascual-Goñi, E., Martín-Aguilar, L. and Querol, L. (2019) Autoantibodies in Chronic Inflammatory Demyelinating Polyradiculoneuropathy. Current Opinion in Neurology, 32, 651-657.
https://doi.org/10.1097/wco.0000000000000725
[2] Broers, M.C., Wieske, L., Erdag, E., Gürlek, C., Bunschoten, C., van Doorn, P.A., et al. (2023) Clinical Relevance of Distinguishing Autoimmune Nodopathies from CIDP: Longitudinal Assessment in a Large Cohort. Journal of Neurology, Neurosurgery & Psychiatry, 95, 52-60.
https://doi.org/10.1136/jnnp-2023-331378
[3] Van den Bergh, P.Y.K., van Doorn, P.A., Hadden, R.D.M., Avau, B., Vankrunkelsven, P., Allen, J.A., et al. (2021) European Academy of Neurology/Peripheral Nerve Society Guideline on Diagnosis and Treatment of Chronic Inflammatory Demyelinating Polyradiculoneuropathy: Report of a Joint Task Force—Second Revision. European Journal of Neurology, 28, 3556-3583.
https://doi.org/10.1111/ene.14959
[4] Querol, L., Nogales-Gadea, G., Rojas-Garcia, R., Martinez-Hernandez, E., Diaz-Manera, J., Suárez-Calvet, X., et al. (2012) Antibodies to Contactin-1 in Chronic Inflammatory Demyelinating Polyneuropathy. Annals of Neurology, 73, 370-380.
https://doi.org/10.1002/ana.23794
[5] Ogata, H., Yamasaki, R., Hiwatashi, A., Oka, N., Kawamura, N., Matsuse, D., et al. (2015) Characterization of IgG4 Anti-Neurofascin 155 Antibody-Positive Polyneuropathy. Annals of Clinical and Translational Neurology, 2, 960-971.
https://doi.org/10.1002/acn3.248
[6] Pascual-Goñi, E., Fehmi, J., Lleixà, C., Martín-Aguilar, L., Devaux, J., Höftberger, R., et al. (2021) Antibodies to the Caspr1/Contactin-1 Complex in Chronic Inflammatory Demyelinating Polyradiculoneuropathy. Brain, 144, 1183-1196.
https://doi.org/10.1093/brain/awab014
[7] Wang, L., Pan, J., Meng, H., Yang, Z., Zeng, L. and Liu, J. (2022) Anti-NF155/NF186 IgG4 Antibody Positive Autoimmune Nodopathy. Brain Sciences, 12, Article 1587.
https://doi.org/10.3390/brainsci12111587
[8] Gao, Y., Kong, L., Liu, S., Liu, K. and Zhu, J. (2021) Impact of Neurofascin on Chronic Inflammatory Demyelinating Polyneuropathy via Changing the Node of Ranvier Function: A Review. Frontiers in Molecular Neuroscience, 14, Article 779385.
https://doi.org/10.3389/fnmol.2021.779385
[9] Rasband, M.N. and Peles, E. (2020) Mechanisms of Node of Ranvier Assembly. Nature Reviews Neuroscience, 22, 7-20.
https://doi.org/10.1038/s41583-020-00406-8
[10] Uncini, A. and Vallat, J. (2017) Autoimmune Nodo-Paranodopathies of Peripheral Nerve: The Concept Is Gaining Ground. Journal of Neurology, Neurosurgery & Psychiatry, 89, 627-635.
https://doi.org/10.1136/jnnp-2017-317192
[11] Uncini, A. and Kuwabara, S. (2015) Nodopathies of the Peripheral Nerve: An Emerging Concept. Journal of Neurology, Neurosurgery & Psychiatry, 86, 1186-1195.
https://doi.org/10.1136/jnnp-2014-310097
[12] Zhang, Y., Bekku, Y., Dzhashiashvili, Y., Armenti, S., Meng, X., Sasaki, Y., et al. (2012) Assembly and Maintenance of Nodes of Ranvier Rely on Distinct Sources of Proteins and Targeting Mechanisms. Neuron, 73, 92-107.
https://doi.org/10.1016/j.neuron.2011.10.016
[13] Manso, C., Querol, L., Lleixà, C., Poncelet, M., Mekaouche, M., Vallat, J., et al. (2019) Anti-Neurofascin-155 IgG4 Antibodies Prevent Paranodal Complex Formation in vivo. Journal of Clinical Investigation, 129, 2222-2236.
https://doi.org/10.1172/jci124694
[14] Manso, C., Querol, L., Mekaouche, M., Illa, I. and Devaux, J.J. (2016) Contactin-1 IgG4 Antibodies Cause Paranode Dismantling and Conduction Defects. Brain, 139, 1700-1712.
https://doi.org/10.1093/brain/aww062
[15] Cortese, A., Lombardi, R., Briani, C., Callegari, I., Benedetti, L., Manganelli, F., et al. (2020) Antibodies to Neurofascin, Contactin-1, and Contactin-Associated Protein 1 in CIDP. Neurology Neuroimmunology & Neuroinflammation, 7, e639.
https://doi.org/10.1212/nxi.0000000000000639
[16] Dalakas, M.C. (2022) IgG4-mediated Neurologic Autoimmunities. Neurology Neuroimmunology & Neuroinflammation, 9, e1116.
https://doi.org/10.1212/nxi.0000000000001116
[17] Doppler, K., Schuster, Y., Appeltshauser, L., Biko, L., Villmann, C., Weishaupt, A., et al. (2019) Anti-CNTN1 IgG3 Induces Acute Conduction Block and Motor Deficits in a Passive Transfer Rat Model. Journal of Neuroinflammation, 16, Article No. 73.
https://doi.org/10.1186/s12974-019-1462-z
[18] Koike, H., Kadoya, M., Kaida, K., Ikeda, S., Kawagashira, Y., Iijima, M., et al. (2017) Paranodal Dissection in Chronic Inflammatory Demyelinating Polyneuropathy with Anti-Neurofascin-155 and Anti-Contactin-1 Antibodies. Journal of Neurology, Neurosurgery & Psychiatry, 88, 465-473.
https://doi.org/10.1136/jnnp-2016-314895
[19] Martinez-Martinez, L., Lleixà, M.C., Boera-Carnicero, G., Cortese, A., Devaux, J., Siles, A., et al. (2017) Anti-NF155 Chronic Inflammatory Demyelinating Polyradiculoneuropathy Strongly Associates to HLA-DRB15. Journal of Neuroinflammation, 14, Article No. 224.
https://doi.org/10.1186/s12974-017-0996-1
[20] Vallat, J., Mathis, S., Magy, L., Bounolleau, P., Skarzynski, M., Heitzmann, A., et al. (2018) Subacute Nodopathy with Conduction Blocks and Anti-Neurofascin 140/186 Antibodies: An Ultrastructural Study. Brain, 141, e56.
https://doi.org/10.1093/brain/awy134
[21] Martín-Aguilar, L., Lleixà, C. and Pascual-Goñi, E. (2022) Autoimmune Nodopathies, an Emerging Diagnostic Category. Current Opinion in Neurology, 35, 579-585.
https://doi.org/10.1097/wco.0000000000001107
[22] Delmont, E., Manso, C., Querol, L., Cortese, A., Berardinelli, A., Lozza, A., et al. (2017) Autoantibodies to Nodal Isoforms of Neurofascin in Chronic Inflammatory Demyelinating Polyneuropathy. Brain, 140, 1851-1858.
https://doi.org/10.1093/brain/awx124
[23] Hu, W., Xin, Y., He, Z. and Zhao, Y. (2018) Association of Neurofascin IgG4 and Atypical Chronic Inflammatory Demyelinating Polyneuropathy: A Systematic Review and Meta-Analysis. Brain and Behavior, 8, e01115.
https://doi.org/10.1002/brb3.1115
[24] Painous, C., López-Pérez, M.Á., Illa, I. and Querol, L. (2018) Head and Voice Tremor Improving with Immunotherapy in an Anti-NF155 Positive CIDP Patient. Annals of Clinical and Translational Neurology, 5, 499-501.
https://doi.org/10.1002/acn3.539
[25] Briani, C., Salvalaggio, A., Ruiz, M., Cacciavillani, M., Rinaldi, F., Callegari, I., et al. (2019) Tongue Tremor in Neurofascin-155 IgG4 Seropositive Chronic Inflammatory Polyradiculoneuropathy. Journal of Neuroimmunology, 330, 178-180.
https://doi.org/10.1016/j.jneuroim.2019.01.017
[26] Vural, A., Doppler, K. and Meinl, E. (2018) Autoantibodies against the Node of Ranvier in Seropositive Chronic Inflammatory Demyelinating Polyneuropathy: Diagnostic, Pathogenic, and Therapeutic Relevance. Frontiers in Immunology, 9, Article 1029.
https://doi.org/10.3389/fimmu.2018.01029
[27] Shelly, S., Klein, C.J., Dyck, P.J.B., Paul, P., Mauermann, M.L., Berini, S.E., et al. (2021) Neurofascin-155 Immunoglobulin Subtypes. Neurology, 97, e2392-e2403.
https://doi.org/10.1212/wnl.0000000000012932
[28] Devaux, J.J., Miura, Y., Fukami, Y., Inoue, T., Manso, C., Belghazi, M., et al. (2016) Neurofascin-155 IgG4 in Chronic Inflammatory Demyelinating Polyneuropathy. Neurology, 86, 800-807.
https://doi.org/10.1212/wnl.0000000000002418
[29] Hou, X., Liang, Y., Cui, P. and Hao, J. (2021) The Clinical Features of Combined Central and Peripheral Demyelination and Antibodies against the Node of Ranvier. Multiple Sclerosis Journal, 28, 453-462.
https://doi.org/10.1177/13524585211028126
[30] Kawamura, N., Yamasaki, R., Yonekawa, T., Matsushita, T., Kusunoki, S., Nagayama, S., et al. (2013) Anti-Neurofascin Antibody in Patients with Combined Central and Peripheral Demyelination. Neurology, 81, 714-722.
https://doi.org/10.1212/wnl.0b013e3182a1aa9c
[31] Klehmet, J., Staudt, M., Diederich, J., Siebert, E., Meinl, E., Harms, L., et al. (2017) Neurofascin (NF)155-and NF186-Specific T Cell Response in a Patient Developing a Central Pontocerebellar Demyelination after 10 Years of CIDP. Frontiers in Neurology, 8, Article 724.
https://doi.org/10.3389/fneur.2017.00724
[32] Wang, W., Liu, C., Li, W., Zhang, D., Shan, Y., Zheng, J., et al. (2022) Clinical and Diagnostic Features of Anti-Neurofascin-155 Antibody-Positive Neuropathy in Han Chinese. Annals of Clinical and Translational Neurology, 9, 695-706.
https://doi.org/10.1002/acn3.51550
[33] Ogata, H., Zhang, X., Inamizu, S., Yamashita, K., Yamasaki, R., Matsushita, T., et al. (2020) Optic, Trigeminal, and Facial Neuropathy Related to Anti-Neurofascin 155 Antibody. Annals of Clinical and Translational Neurology, 7, 2297-2309.
https://doi.org/10.1002/acn3.51220
[34] Kouton, L., Boucraut, J., Devaux, J., Rajabally, Y.A., Adams, D., Antoine, J.C., et al. (2020) Electrophysiological Features of Chronic Inflammatory Demyelinating Polyradiculoneuropathy Associated with IgG4 Antibodies Targeting Neurofascin 155 or Contactin 1 Glycoproteins. Clinical Neurophysiology, 131, 921-927.
https://doi.org/10.1016/j.clinph.2020.01.013
[35] Miura, Y., Devaux, J.J., Fukami, Y., Manso, C., Belghazi, M., Wong, A.H.Y., et al. (2015) Contactin 1 IgG4 Associates to Chronic Inflammatory Demyelinating Polyneuropathy with Sensory Ataxia. Brain, 138, 1484-1491.
https://doi.org/10.1093/brain/awv054
[36] Delmont, E., Brodovitch, A., Kouton, L., Allou, T., Beltran, S., Brisset, M., et al. (2020) Antibodies against the Node of Ranvier: A Real-Life Evaluation of Incidence, Clinical Features and Response to Treatment Based on a Prospective Analysis of 1500 Sera. Journal of Neurology, 267, 3664-3672.
https://doi.org/10.1007/s00415-020-10041-z
[37] Appeltshauser, L., Weishaupt, A., Sommer, C. and Doppler, K. (2017) Complement Deposition Induced by Binding of Anti-Contactin-1 Auto-Antibodies Is Modified by Immunoglobulins. Experimental Neurology, 287, 84-90.
https://doi.org/10.1016/j.expneurol.2016.10.006
[38] Doppler, K., Appeltshauser, L., Wilhelmi, K., Villmann, C., Dib-Hajj, S.D., Waxman, S.G., et al. (2015) Destruction of Paranodal Architecture in Inflammatory Neuropathy with Anti-Contactin-1 Autoantibodies. Journal of Neurology, Neurosurgery & Psychiatry, 86, 720-728.
https://doi.org/10.1136/jnnp-2014-309916
[39] Tang, Y., Liu, J., Gao, F., Hao, H., Jia, Z., Zhang, W., et al. (2023) CIDP/Autoimmune Nodopathies with Nephropathy: A Case Series Study. Annals of Clinical and Translational Neurology, 10, 706-718.
https://doi.org/10.1002/acn3.51754
[40] Doppler, K., Appeltshauser, L., Villmann, C., Martin, C., Peles, E., Krämer, H.H., et al. (2016) Auto-Antibodies to Contactin-Associated Protein 1 (CASPR) in Two Patients with Painful Inflammatory Neuropathy. Brain, 139, 2617-2630.
https://doi.org/10.1093/brain/aww189
[41] Li, C., Zheng, H., Yuan, C., Li, Y., Hu, Y. and Jiang, H. (2022) Two CIDP Variants Patients with Anti-Caspr1 Antibodies in South China. Frontiers in Immunology, 13, Article 844036.
https://doi.org/10.3389/fimmu.2022.844036
[42] Liu, B., Zhou, L., Sun, C., Wang, L., Zheng, Y., Hu, B., et al. (2023) Clinical Profile of Autoimmune Nodopathy with Anti-Neurofascin 186 Antibody. Annals of Clinical and Translational Neurology, 10, 944-952.
https://doi.org/10.1002/acn3.51775
[43] Querol, L., Rojas-García, R., Diaz-Manera, J., Barcena, J., Pardo, J., Ortega-Moreno, A., et al. (2015) Rituximab in Treatment-Resistant CIDP with Antibodies against Paranodal Proteins. Neurology Neuroimmunology & Neuroinflammation, 2, e149.
https://doi.org/10.1212/nxi.0000000000000149
[44] Martín-Aguilar, L., Lleixà, C., Pascual-Goñi, E., et al. (2022) Clinical and Laboratory Features in Anti-NF155 Autoimmune Nodopathy. Neurology Neuroimmunology & Neuroinflammation, 9, e1129.
https://doi.org/10.1212/NXI.0000000000001129
[45] Bresciani, L., Salvalaggio, A., Vegezzi, E., Visentin, A., Fortuna, A., Anglani, M., et al. (2023) Caspr1 Antibodies Autoimmune Paranodopathy with Severe Tetraparesis: Potential Relevance of Antibody Titers in Monitoring Treatment Response. Journal of the Peripheral Nervous System, 28, 522-527.
https://doi.org/10.1111/jns.12565
[46] Mehndiratta, M.M., Hughes, R.A. and Pritchard, J. (2015) Plasma Exchange for Chronic Inflammatory Demyelinating Polyradiculoneuropathy. Cochrane Database of Systematic Reviews, No. 8, Article No. CD003906.
https://doi.org/10.1002/14651858.cd003906.pub4
[47] Bunschoten, C., Jacobs, B.C., Van den Bergh, P.Y.K., Cornblath, D.R. and van Doorn, P.A. (2019) Progress in Diagnosis and Treatment of Chronic Inflammatory Demyelinating Polyradiculoneuropathy. The Lancet Neurology, 18, 784-794.
https://doi.org/10.1016/s1474-4422(19)30144-9
[48] Yang, M., Xu, L., Ji, S., Gao, H., Zhang, Q. and Bu, B. (2022) Tacrolimus Combined with Corticosteroids Improved the Outcome of CIDP Patients with Autoantibodies against Paranodal Proteins. Neuropsychiatric Disease and Treatment, 18, 1207-1217.
https://doi.org/10.2147/ndt.s361461