慢性阻塞性肺疾病急性加重期生物标志物研究进展
Research Progress of Biomarkers in Acute Exacerbation of Chronic Obstructive Pulmonary Disease
DOI: 10.12677/jcpm.2024.32087, PDF, HTML, XML, 下载: 27  浏览: 58 
作者: 冯业兴:青海大学研究生院,青海 西宁
关键词: 慢性阻塞性肺疾病急性加重期生物标志物Acute Exacerbation of Chronic Obstructive Pulmonary Disease Biomarkers
摘要: 慢性阻塞性肺疾病(COPD)是一种世界范围内常见的慢性炎症性疾病,其特征是持续存在的呼吸系统症状和气流受限,其主要症状包括慢性咳嗽、咳痰和呼吸困难,这些症状可能随着时间的推移而逐渐恶化。COPD在成年人群中的患病率约为10%,且发病率呈上升趋势,给个人和社会带来了巨大的健康和经济负担。慢性阻塞性肺病在世界范围内的死亡率很高,过去是第五大死因,到2030年将上升到第三位。急性加重是COPD患者住院和死亡的主要原因,46%的患者在前一年至少经历过一次急性加重。慢性阻塞性肺疾病急性加重期(AECOPD)患者预后差,住院死亡率高。因此,为了临床管理和医疗资源的合理分配,对急性加重期的个体风险进行准确的评估显得尤为关键。NLR、PLT、CRP等生物标志物与AECOPD的诊断、评估其严重程度及预后有关。在COPD患者和高风险人群中寻找分子生物学标志物,将有助于COPD的早期预防、病情评估和风险预测。这篇文章全面回顾了与COPD发病机制相关的生物学标志物,并对其在临床上的潜在应用价值进行了深入探讨。
Abstract: Chronic obstructive pulmonary disease (COPD) is a common chronic inflammatory disease in the world, which is characterized by persistent respiratory symptoms and limited airflow. Its main symptoms include chronic cough, expectoration and dyspnea, and these symptoms may get worse with time. The prevalence rate of COPD in adult population is about 10%, and the incidence rate is on the rise, which brings huge health and economic burden to individuals and society. Chronic obstructive pulmonary disease (COPD) has a high mortality worldwide, which used to be the fifth leading cause of death and will rise to the third place by 2030. Acute exacerbation is the main cause of hospitalization and death of COPD patients, and 46% patients have experienced acute exacerbation at least once in the previous year. Patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) have poor prognosis and high in-hospital mortality. Therefore, for the sake of clinical management and rational allocation of medical resources, it is particularly critical to accurately evaluate individual risks in acute exacerbation. NLR, PLT, CRP and other markers are related in identifying acute exacerbation and evaluating severity and prognosis. Searching for molecular biomarkers in COPD patients and high-risk population will contribute to early prevention, disease assessment and risk prediction of COPD. This article comprehensively reviews the biological markers related to the pathogenesis of COPD, and deeply discusses their potential clinical application value.
文章引用:冯业兴. 慢性阻塞性肺疾病急性加重期生物标志物研究进展[J]. 临床个性化医学, 2024, 3(2): 606-613. https://doi.org/10.12677/jcpm.2024.32087

1. 血常规相关指标

1.1. 嗜酸性粒细胞(EOS)

EOS为一种终末分化的白细胞,在血液中数量相对较少,通常占白细胞总数的2%至5%。EOS在人体免疫系统中起着重要的作用。此外,EOS还参与炎症过程,特别是在某些慢性炎症和自身免疫性疾病中。在疾病状态下,EOS可以在组织中积聚并通过细胞因子、趋化因子和脱颗粒的分泌参与炎症反应[1]。EOS 活化后会产生各种不同的炎症介质,造成肺中嗜酸粒细胞的炎症,进而使呼吸道上皮细胞受到损害[2]。EOS还可分泌促纤维化转化生长因子-β,刺激成纤维增生,增加胶原蛋白的生成,进而诱发呼吸道纤维化及气管重构[3]。有研究显示嗜酸性支气管炎症与COPD加重发作次数增加有关[4]。同样,Vedel-Krogh等[5]在丹麦203例COPD患者的队列研究中发现,临床状态稳定的嗜酸性粒细胞水平 > 2%的患者在5年内的加重率较高。Couillard等[6]人的另一项评估显示,首次入院时血嗜酸性 ≥ 200细胞/微升或≥2%的COPD患者12个月内再入院的风险更高。另有研究显示,高血嗜酸性粒细胞水平是AECOPD合并肺炎患者死亡率的独立预测指标[7]。综上研究表明,嗜酸性粒细胞水平升高与嗜酸性气道炎症有一定的关联,在中重度的AECOPD患者中更明显。此外,血EOS水平对慢性阻塞性肺疾病患者激素的使用有一定的指导作用。Ho等[8]人的荟萃分析中,与非嗜酸性COPD患者相比,嗜酸性COPD患者发生下一次加重的间隔时间较短,生活质量和对吸入皮质类固醇治疗的反应也更好。

1.2. 中性粒细胞比淋巴细胞比值(NLR)

慢性阻塞性肺病虽然病理的确切机制尚不清楚,但中性粒细胞起着突出的作用,活化的中性粒细胞释放氧自由基和蛋白酶,如基质金属蛋白酶和弹性酶,最终导致肺气肿。中性粒细胞参与的反应也与气道阻塞的严重程度有关。中性粒细胞增多被认为是感染的标志,而淋巴细胞减少是菌血症的预测因子。因此,中性粒细胞和淋巴细胞联合作为COPD患者临床状态的指标可能比单一参数更有效。多项研究显示NLR可用于评估COPD患者肺功能和疾病严重程度[9] [10] [11]。另外,Alupo等[12]对312例COPD患者随访1年并收集临床特征及急性加重率,来评估NLR与因COPD恶化而住院之间的关系。结果显示,预测COPD恶化的最佳NLR截断值为1.17。该截断值的ROC曲线面积为0.64 (95% CI: 0.56, 0.73)。当COPD患者NLR ≥ 1.17,在一年内发生AECOPD导致住院的可能性是NLR低于1.17的患者的2.3倍。其研究结果提示NLR可以作为COPD恶化的生物标志物,对预测COPD患者病情的加重有一定价值。一项纳入503例AECOPD患者的回顾性研究显示[13],出院时年龄 > 72岁、NLR、EOS、BNP是AECOPD患者90天死亡率的独立危险因素,其中NLR是预测90天死亡率的最佳生物标志物,AUC为0.802 (95% CI: 0.631~0.973)。以14.17为NLR临界值,敏感性为76.7%,特异性为88.9%。提示NLR在预测AECOPD住院患者出院后90天内不良预后风险,特别是COPD相关死亡率方面具有重要价值。此外,一项研究[14]表明通过评估病房慢性阻塞性肺疾病急性加重患者的嗜酸性粒细胞和中性粒细胞淋巴细胞比率来启动治疗,可减少不必要的抗生素和类固醇使用以及住院费用。

1.3. 单核细胞比淋巴细胞比值(MLR)

MLR是单核细胞计数与淋巴细胞计数组成的一个被用作炎症、发病率和死亡率的指标[15] [16]。随着对呼吸系统相关疾病的病理生理机制的进一步研究,MLR在呼吸系统相关疾病中也得到了广泛的应用。单核细胞是关键的先天免疫系统细胞,它们在肺部的募集是COPD发病的重要步骤[17]。有研究发现单核细胞计数与AECOPD的发生呈正相关[18]。而Lim等[19]证明淋巴细胞在AECOPD患者中明显降低。2020年Yao等[20]在研究中证实两组AECOPD患者中MLR明显升高。Guler等[21]回顾性分析2018年至2019年在ICU接受治疗的562例患者。结果显示,死亡组的淋巴细胞计数、中性粒细胞计数、血小板计数、单核细胞计数、NLR、PLR、MLR均显著升高。表明NLR、PLR和MLR值可作为COPD重症监护患者的预后指标。研究还显示,NLR和MLR与MV持续时间、APACHE II评分和SOFA评分呈正相关。上述研究提示说明MLR在是被COPD急性加重、预后等方面有意义,但由于相关证据不足,需要继续进行深入研究。

1.4. 血小板比淋巴细胞比值(PLR)

血小板除了在止血和血栓形成中发挥既定作用外,还对炎症和免疫介导的途径发挥重要的调节作用[22]。因此,血小板活性的改变可能在几种急性和慢性疾病状态中发挥重要的病理生理作用,这些疾病状态与过度的局部和/或全身性炎症和血栓负担有关。慢性阻塞性肺疾病就是这样一种疾病,其特征是气道炎症、粘液分泌过多、肺实质逐渐破坏并失去弹性,以及肺血管的异常重塑。许多研究支持血小板参与COPD发病和进展的观点,特别是通过白细胞弹性酶活性的增加、血小板–单核细胞聚集体的形成以及特定缺氧相关信号通路的失调[23] [24]。因此,血小板功能的生物标志物可能在COPD的早期诊断中有用,特别是在预测疾病急性加重风险较高的COPD患者中,AECOPD通常需要住院治疗,并且与明显较差的生存结果相关。一项系统回顾和荟萃分析中[25],在稳定期COPD患者、AECOPD患者和非COPD患者之间观察到特异性血小板指数存在显著差异。特别是,稳定型COPD患者的血小板计数和PLR值明显高于非COPD对照组,而AECOPD患者的PLR值明显高于稳定型COPD患者。另一项多因素分析表明[11],PLR升高与28天死亡显著相关。在截断值为203.6时,相应的PLR敏感性为76.86%,特异性为65.27%,曲线下面积为0.75。提示PLR可作为AECOPD住院患者短期死亡率的预后生物标志物。

2. 炎性相关指标

2.1. 降钙素原(PCT)

PCT由甲状腺C细胞释放,是降钙素的前体,也是炎症级联反应中的急性期反应物。但是,当发生细菌感染时,肠、肝和肾等所有的实质组织中的合成都会明显上升。这些实质组织缺少将PCT转化为降钙素的能力,这导致PCT进入体内循环,并在血液中的水平增加。Song等[26]研究证明了这点,AECOPD患者的PCT水平均高于COPD患者(P < 0.05),特异性为93.5%。因此,血清PCT可以被视为诊断和治疗AECOPD的一个重要监测指标。此外,在大多数研究中提出的主要问题之一是PCT水平是否可以用于区分细菌源性AECOPD与其他原因。这种区分在日常临床实践中被证明是非常有用的,因为它可以区分出在AECOPD期间需要使用抗生素并从中受益的患者。两项研究发现[27] [28],PCT水平可用于细菌性AECOPD与非细菌性原因的鉴别诊断,并提出了一些可能的临界值。然而,也有一些研究得出结论,PCT值在细菌性和非细菌性AECOPD之间没有显著差异。Soler等[29]和Gao等[30]两项比较化脓性和非化脓性痰AECOPD患者PCT水平的病例对照研究发现差异无统计学意义。PCT在区分细菌、病毒和其他原因引起的AECOPD中的作用仍然是一个有争议的话题,迄今为止进行的研究相对较少,结果相互矛盾。同样关于PCT在指导这些患者抗生素治疗中的作用的数据也存在争议,Daniels等[31]在一项包括205例AECOPD患者的243例回顾性队列研究中得出结论,多西环素对PCT水平 < 0.1 µg/L的患者有显著效果,提示PCT值较低的患者确实受益于抗生素。然而,Chen等[32]一项纳入14项临床试验的荟萃分析中得出结论,PCT对改善抗生素使用、临床结果或医疗保健利用几乎没有作用。总之,目前PCT在慢阻肺急性加重早期识别、疾病严重性方面有重要的价值,在区分细菌性AECOPD与非细菌性原因的鉴别诊断及PCT指导抗生素治疗AECOPD的确切作用有待进一步深入探讨。

2.2. C-反应蛋白(CRP)

CRP是一种由肝脏合成的急性时相反应蛋白,其主要功能是参与先天免疫反应。健康人血液中含量较少,当人体遇到感染或炎症时,其在血液中的含量显著上升,一旦炎症消退,CRP水平由于其相对较短的半衰期而迅速下降。2019年的一项研究发现[33],与健康人相比,CRP水平在稳定期的COPD患者血液中的浓度明显上升,而COPD稳定期患者的CRP水平又明显低于AECOPD患者,表明CRP的升高可提示COPD患者病情的加重,我们可以用CRP水平的动态变化来监测COPD患者病情的转归。最近在英国进行的一项随机临床试验比较了653名门诊COPD患者依据CRP水平指导抗生素使用。结果显示,4周内抗生素用量减少20%。尽管减少了抗生素的使用,但6个月时的治疗效果或患者健康指标在试验组之间没有显着差异[34]。Wang等[35]的一项回顾性病例对照研究结果显示,与无创通气成功患者相比,慢性阻塞性肺疾病急性加重无创通气失败组血清CRP水平较高,pH值较低。高血清CRP水平(≥15.0 mg/mL)可预测AECOPD患者的无创通气失败,与PCT、PaCO2参数结合可能使预测更加准确。一项包含10项研究的荟萃分析证实[36],基线CRP水平较高的COPD患者早期死亡风险更高,其风险比为1.17 (95% CI, 1.06~1.28)。基线时血清CRP水平也可预测非常严重COPD患者的住院死亡率[37]。综上情况,说明CRP在COPD的诊断、预后、死亡风险及减少不必要的抗生素使用方面有极其重要价值。

3. 纤溶相关指标

3.1 纤维蛋白原(FIB)

纤维蛋白原是一种在肝细胞中合成并释放到血液循环中的糖蛋白。纤维蛋白原是一种必需的凝血因子,也是一种急性期反应物。有报道,血浆纤维蛋白原水平升高与COPD和其他炎症性疾病以及疾病严重程度和恶化风险相关[38]。Kim等[39]以FIB水平 > 3.5 g/L为分组依据,探讨高纤维蛋白原水平COPD患者的临床表型,分析COPD严重程度指标与纤维蛋白原水平的相关性。结果显示,在140例患者中,高水平纤维蛋白原组比低水平纤维蛋白原组有更多的患者有急性加重史。肺功能[1秒用力呼气量(FEV1)、用力肺活量和6分钟步行距离]在高FIB水平组更差。多因素回归分析显示,血浆纤维蛋白原水平与CAT评分和加重史相关。纤维蛋白原水平与COPD严重程度指标呈显著正相关。Singh等[40]一项纳入8094例患者进行纤维蛋白原评估,通过分析纤维蛋白原四分位数和3.5 g/L阈值与治疗期间恶化及AESIs的相关性。结果显示,纤维蛋白原水平较高的患者的恶化率和风险更高。纤维蛋白原最高四分位数的患者心血管AESIs最高。这支持了纤维蛋白原作为COPD加重的预测性生物标志物的有效性。

3.2. D-二聚体(D-D)

慢性阻塞性肺病患者的临床病程可能伴有肺血管血栓形成和高凝状态,故发生心血管疾病(CVD)和静脉血栓栓塞(VTE)的风险增加。COPD患者中CVD和VTE的较高发生率被认为是凝血途径激活增加的结果,而在此之前可能有全身性炎症、缺氧、血小板激活和/或氧化应激[41]。先前的研究结果表明,与健康组相比,COPD患者的II、V、VII、VIII和IX因子升高以及纤维蛋白原升高,这两种凝血途径的激活都增加了。任意一途径激活的最终产物之一是D-二聚体。以往D-二聚体主要用于低风险人群的静脉血栓栓塞的高敏感性。然而,多项研究发现[42] [43] [44],D-二聚体水平在急性加重时与稳定型COPD相比更高。此外,在COPD急性加重入院的患者中,两项研究表明[45] [46],D-二聚体可预测住院死亡率和1年死亡率[43]。对于COPD患者,D-二聚体与心血管和肺部死亡率之间存在一定关联。

4. 白细胞介素

IL-10作为多功能的细胞因子,可由人体多种细胞产生和分泌,以Th2细胞为主。IL-10能抑制Th1细胞的应答、巨噬细胞的抗原呈递和中性粒细胞的聚集,它还能促进中性粒细胞凋亡,从而抑制机体的炎症反应[47]。IL-35的抗炎作用是通过促进诱导Tregs的增殖和分化,促进抗炎因子IL-10的分泌,抑制效应T细胞的增殖和分化来实现的。多项研究发现[2] [48],稳定期COPD患者IL-10和IL-35水平较对照组显著降低。IL-10和IL-35的降低与稳定期COPD患者的吸烟状况、GOLD分级、mMRC评分和临床病史呈负相关。提示IL-10和IL-35是COPD的保护因子。基于上述研究结果表明IL-10和IL-35对COPD的炎症发展都有抑制作用。深入研究IL-10和IL-35可能有助于寻找治疗COPD的新药。IL-17是T细胞诱导炎症反应的早期启动子,它还能促进IL-6和肿瘤坏死因子α的分泌,从而影响气道纤维结缔组织的构建和平滑肌的增生。因此,它可能参与COPD气道重塑的调节。Jiang等[49]发现在稳定期COPD患者中,血清IL-17表达与FEV1/FVC及预测FEV1%呈负相关。此外,血清IL-17水平升高与稳定期COPD患者的GOLD分级、mMRC评分及临床病史呈正相关,提示IL-17可作为COPD进展程度的一个指标。

5. 总结与展望

在过去的十年中,一些研究试图确定血液生物学标志物在AECOPD患者的临床筛查和诊断,监测疾病活动和进展,并指导治疗中可能发挥的潜在作用。目前可获得的大多数研究都相对较小,并且有一些局限性和弱点。尽管如此,动态监测免疫细胞、细胞因子等的水平对AECOPD的早期诊断及其亚型鉴定有重要价值,也有助于判断COPD的进展和预后,具有很好的临床应用前景。进一步调查生物学标志物水平和最佳临界值,以区分急性加重的潜在原因也是必要的。

参考文献

[1] Ondari, E., Calvino-Sanles, E., First, N.J. and Gestal, M.C. (2021) Eosinophils and Bacteria, the Beginning of a Story. International Journal of Molecular Sciences, 22, Article 8004.
https://doi.org/10.3390/ijms22158004
[2] Tashkin, D.P. and Wechsler, M.E. (2018) Role of Eosinophils in Airway Inflammation of Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease, 13, 335-349.
https://doi.org/10.2147/copd.s152291
[3] Brightling, C. and Greening, N. (2019) Airway Inflammation in COPD: Progress to Precision Medicine. European Respiratory Journal, 54, Article 1900651.
https://doi.org/10.1183/13993003.00651-2019
[4] Chan, M.C., Yeung, Y.C., Yu, E.L.M. and Yu, W.C. (2020) Blood Eosinophil and Risk of Exacerbation in Chronic Obstructive Pulmonary Disease Patients: A Retrospective Cohort Analysis. International Journal of Chronic Obstructive Pulmonary Disease, 15, 2869-2877.
https://doi.org/10.2147/copd.s268018
[5] Vedel-Krogh, S., Nielsen, S.F., Lange, P., Vestbo, J. and Nordestgaard, B.G. (2016) Blood Eosinophils and Exacerbations in Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. American Journal of Respiratory and Critical Care Medicine, 193, 965-974.
https://doi.org/10.1164/rccm.201509-1869oc
[6] Couillard, S., Larivée, P., Courteau, J. and Vanasse, A. (2017) Eosinophils in COPD Exacerbations Are Associated with Increased Readmissions. Chest, 151, 366-373.
https://doi.org/10.1016/j.chest.2016.10.003
[7] Prudente, R., Ferrari, R., Mesquita, C.B., Machado, L.H., Franco, E.A., Godoy, I., et al. (2021) Peripheral Blood Eosinophils and Nine Years Mortality in COPD Patients. International Journal of Chronic Obstructive Pulmonary Disease, 16, 979-985.
https://doi.org/10.2147/copd.s265275
[8] Ho, J., He, W., Chan, M.T.V., Tse, G., Liu, T., Wong, S.H., et al. (2017) Eosinophilia and Clinical Outcome of Chronic Obstructive Pulmonary Disease: A Meta-Analysis. Scientific Reports, 7, Article No. 13451.
https://doi.org/10.1038/s41598-017-13745-x
[9] Paliogiannis, P., Fois, A.G., Sotgia, S., Mangoni, A.A., Zinellu, E., Pirina, P., et al. (2018) The Neutrophil-to-Lymphocyte Ratio as a Marker of Chronic Obstructive Pulmonary Disease and Its Exacerbations: A Systematic Review and Meta-Analysis. European Journal of Clinical Investigation, 48, e12984.
https://doi.org/10.1111/eci.12984
[10] El-Gazzar, A.G., Kamel, M.H., Elbahnasy, O.K.M. and El-Naggar, M.E. (2019) Prognostic Value of Platelet and Neutrophil to Lymphocyte Ratio in COPD Patients. Expert Review of Respiratory Medicine, 14, 111-116.
https://doi.org/10.1080/17476348.2019.1675517
[11] Luo, Z., Zhang, W., Chen, L. and Xu, N. (2021) Prognostic Value of Neutrophil: Lymphocyte and Platelet: Lymphocyte Ratios for 28-Day Mortality of Patients with AECOPD. International Journal of General Medicine, 14, 2839-2848.
https://doi.org/10.2147/ijgm.s312045
[12] Alupo, P., Katagira, W., Mukunya, D., Okimat, P., Tejwani, V., Kayongo, A., et al. (2024) The Neutrophil-to-Lymphocyte Ratio as a Predictor of Acute Exacerbations among Patients with COPD in Uganda. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation, 11, 187-195.
https://doi.org/10.15326/jcopdf.2023.0443
[13] Feng, X., Xiao, H., Duan, Y., Li, Q. and Ou, X. (2023) Prognostic Value of Neutrophil to Lymphocyte Ratio for Predicting 90-Day Poor Outcomes in Hospitalized Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease, 18, 1219-1230.
https://doi.org/10.2147/copd.s399671
[14] Kose Kabil, N., Karakurt, Z., Gundogus, B., Gungor, A., Akyuz, K. and Turker, H. (2023) Peripheral Blood Eosinophilia and Neutrophil Lymphocyte Ratio in the Choice of Antibiotic And/or Steroid in Patients Hospitalized with Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Thoracic Research and Practice, 24, 220-227.
https://doi.org/10.5152/thoracrespract.2023.21281
[15] Murat, S.N., Yarlioglues, M., Celik, I.E., Kurtul, A., Duran, M., Kilic, A., et al. (2016) The Relationship between Lymphocyte-to-Monocyte Ratio and Bare-Metal Stent In-Stent Restenosis in Patients with Stable Coronary Artery Disease. Clinical and Applied Thrombosis/Hemostasis, 23, 235-240.
https://doi.org/10.1177/1076029615627340
[16] Han, L., Jia, Y., Song, Q., Wang, J., Wang, N. and Cheng, Y. (2015) Prognostic Significance of Preoperative Lymphocyte-Monocyte Ratio in Patients with Resectable Esophageal Squamous Cell Carcinoma. Asian Pacific Journal of Cancer Prevention, 16, 2245-2250.
https://doi.org/10.7314/apjcp.2015.16.6.2245
[17] Barnes, P.J. (2019) Inflammatory Endotypes in COPD. Allergy, 74, 1249-1256.
https://doi.org/10.1111/all.13760
[18] Kor, C., Li, Y., Lin, P., Lin, S., Wang, B. and Lin, C. (2022) Explainable Machine Learning Model for Predicting First-Time Acute Exacerbation in Patients with Chronic Obstructive Pulmonary Disease. Journal of Personalized Medicine, 12, Article 228.
https://doi.org/10.3390/jpm12020228
[19] Lim, S.C., Ju, J.Y., Chi, S.Y., Ban, H.J., Kwon, Y.S., Oh, I.J., et al. (2011) Apoptosis of T Lymphocytes Isolated from Peripheral Blood of Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Yonsei Medical Journal, 52, Article 581.
https://doi.org/10.3349/ymj.2011.52.4.581
[20] Long, J., Ouyang, Y., Duan, H., Xiang, Z., Ma, H., Ju, M., et al. (2020) Multiple Factor Analysis of Depression and/or Anxiety in Patients with Acute Exacerbation Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease, 15, 1449-1464.
https://doi.org/10.2147/copd.s245842
[21] Eraslan Doganay, G. and Cirik, M.O. (2022) Are Neutrophil-Lymphocyte, Platelet-Lymphocyte, and Monocyte-Lymphocyte Ratios Prognostic Indicators in Patients with Chronic Obstructive Pulmonary Disease in Intensive Care Units? Cureus, 14, e23499.
https://doi.org/10.7759/cureus.23499
[22] Rayes, J., Bourne, J.H., Brill, A. and Watson, S.P. (2020) The Dual Role of Platelet-Innate Immune Cell Interactions in Thrombo-Inflammation. Research and Practice in Thrombosis and Haemostasis, 4, 23-35.
https://doi.org/10.1002/rth2.12266
[23] Muñoz-Esquerre, M., Ferreiro, J.L., Huertas, D., Marcano, A.L., López-Sánchez, M., Roura, G., et al. (2017) Impact of Acute Exacerbations on Platelet Reactivity in Chronic Obstructive Pulmonary Disease Patients. International Journal of Chronic Obstructive Pulmonary Disease, 13, 141-148.
https://doi.org/10.2147/copd.s152660
[24] Robert, L. and Labat-Robert, J. (2017) Platelets, Micro-Particles and Elastase. A Review with Extrapolation to the Mechanism of Generation and Bio-Pathology of Platelet Fragments. Pathology & Oncology Research, 23, 455-458.
https://doi.org/10.1007/s12253-017-0199-1
[25] Zinellu, A., Paliogiannis, P., Sotgiu, E., Mellino, S., Fois, A.G., Carru, C., et al. (2021) Platelet Count and Platelet Indices in Patients with Stable and Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. COPD: Journal of Chronic Obstructive Pulmonary Disease, 18, 231-245.
https://doi.org/10.1080/15412555.2021.1898578
[26] Song, W., Wang, Y., Tian, F., Ge, L., Shang, X., Zeng, Q., et al. (2021) Clinical Significance of Procalcitonin, C-Reactive Protein, and Interleukin-6 in Helping Guide the Antibiotic Use for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Disease Markers, 2021, Article 8879401.
https://doi.org/10.1155/2021/8879401
[27] Ergan, B., Şahin, A.A. and Topeli, A. (2016) Serum Procalcitonin as a Biomarker for the Prediction of Bacterial Exacerbation and Mortality in Severe COPD Exacerbations Requiring Mechanical Ventilation. Respiration, 91, 316-324.
https://doi.org/10.1159/000445440
[28] Zhang, Y. and Zhou, L. (2014) Diagnostic Value of C-Reactive Protein and Procalcitonin for Bacterial Infection in Acute Exacer-Bations of Chronic Obstructive Pulmonary Disease. Journal of Central South University (Medical Science), 39, 939-943.
[29] Soler, N., Esperatti, M., Ewig, S., Huerta, A., Agustí, C. and Torres, A. (2012) Sputum Purulence-Guided Antibiotic Use in Hospitalised Patients with Exacerbations of COPD. European Respiratory Journal, 40, 1344-1353.
https://doi.org/10.1183/09031936.00150211
[30] Gao, D., Chen, X., Wu, H., Wei, H. and Wu, J. (2017) The Levels of Serum Pro-Calcitonin and High-Sensitivity C-Reactive Protein in the Early Diagnosis of Chronic Obstructive Pulmonary Disease during Acute Exacerbation. Experimental and Therapeutic Medicine, 14, 193-198.
https://doi.org/10.3892/etm.2017.4496
[31] Daniels, J.M.A., Schoorl, M., Snijders, D., Knol, D.L., Lutter, R., Jansen, H.M., et al. (2010) Procalcitonin vs C-Reactive Protein as Predictive Markers of Response to Antibiotic Therapy in Acute Exacerbations of COPD. Chest, 138, 1108-1115.
https://doi.org/10.1378/chest.09-2927
[32] Chen, K., Pleasants, K.A., Pleasants, R.A., Beiko, T., Washburn, R.G., Yu, Z., et al. (2020) Procalcitonin for Antibiotic Prescription in Chronic Obstructive Pulmonary Disease Exacerbations: Systematic Review, Meta-Analysis, and Clinical Perspective. Pulmonary Therapy, 6, 201-214.
https://doi.org/10.1007/s41030-020-00123-8
[33] Şahin, F., Koşar, A.F., Aslan, A.F., Yiğitbaş, B. and Uslu, B. (2019) Serum Biomarkers in Patients with Stable and Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Comparative Study. Journal of Medical Biochemistry, 38, 503-511.
https://doi.org/10.2478/jomb-2018-0050
[34] Llor, C. and Miravitlles, M. (2020) C-Reactive Protein Point of Care Testing: The Answer to Antibiotic Prescribing in Ambulatory Patients with Exacerbations of Chronic Obstructive Pulmonary Disease? Expert Review of Respiratory Medicine, 15, 1-3.
https://doi.org/10.1080/17476348.2020.1776611
[35] Wang, J., Shang, H., Yang, X., Guo, S. and Cui, Z. (2019) Procalcitonin, C-Reactive Protein, PaCO2, and Noninvasive Mechanical Ventilation Failure in Chronic Obstructive Pulmonary Disease Exacerbation. Medicine, 98, e15171.
https://doi.org/10.1097/md.0000000000015171
[36] Fermont, J.M., Masconi, K.L., Jensen, M.T., Ferrari, R., Di Lorenzo, V.A.P., Marott, J.M., et al. (2019) Biomarkers and Clinical Outcomes in COPD: A Systematic Review and Meta-Analysis. Thorax, 74, 439-446.
https://doi.org/10.1136/thoraxjnl-2018-211855
[37] Sneh, A., Pawan, T., Randeep, G., Anant, M., Mani, K., Hadda, V., et al. (2019) Acute Phase Proteins as Predictors of Survival in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease Requiring Mechanical Ventilation. COPD: Journal of Chronic Obstructive Pulmonary Disease, 17, 22-28.
https://doi.org/10.1080/15412555.2019.1698019
[38] Mohan, M., Parthasarathi, A., S K, C., Biligere Siddaiah, J. and Mahesh, P.A. (2021) Fibrinogen: A Feasible Biomarker in Identifying the Severity and Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Cureus, 13, e16864.
https://doi.org/10.7759/cureus.16864
[39] Kim, T.H., Oh, D.K., Oh, Y., Lee, S.W., Lee, S.D. and Lee, J.S. (2018) Fibrinogen as a Potential Biomarker for Clinical Phenotype in Patients with Chronic Obstructive Pulmonary Disease. Journal of Thoracic Disease, 10, 5260-5268.
https://doi.org/10.21037/jtd.2018.08.52
[40] Singh, D., Criner, G.J., Dransfield, M.T., Halpin, D.M.G., Han, M.K., Lange, P., et al. (2021) Informing the Pathway of COPD Treatment (IMPACT) Trial: Fibrinogen Levels Predict Risk of Moderate or Severe Exacerbations. Respiratory Research, 22, Article No. 130.
https://doi.org/10.1186/s12931-021-01706-y
[41] Kyriakopoulos, C., Gogali, A., Kostikas, K. and Konstantinidis, A. (2021) Hypercoagulable State in COPD—A Comprehensive Literature Review. Diagnostics, 11, Article 1447.
https://doi.org/10.3390/diagnostics11081447
[42] Zhang, M., Zhang, J., Zhang, Q., Yang, X., Shan, H., Ming, Z., et al. (2016) D-Dimer as a Potential Biomarker for the Progression of COPD. Clinica Chimica Acta, 455, 55-59.
https://doi.org/10.1016/j.cca.2016.01.024
[43] Husebø, G.R., Gabazza, E.C., D’Alessandro Gabazza, C., Yasuma, T., Toda, M., Aanerud, M., et al. (2020) Coagulation Markers as Predictors for Clinical Events in COPD. Respirology, 26, 342-351.
https://doi.org/10.1111/resp.13971
[44] Liu, B.H., Sun, M.X., Zhou, N., et al. (2016) Detection and Study of Plasma D-Dimer Change in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Journal of Biological Regulators and Homeostatic Agents, 30, 839-845.
[45] Fruchter, O., Yigla, M. and Kramer, M.R. (2015) D-Dimer as a Prognostic Biomarker for Mortality in Chronic Obstructive Pulmonary Disease Exacerbation. The American Journal of the Medical Sciences, 349, 29-35.
https://doi.org/10.1097/maj.0000000000000332
[46] Hu, G., Wu, Y., Zhou, Y., Wu, Z., Wei, L., Li, Y., et al. (2016) Prognostic Role of D-Dimer for In-Hospital and 1-Year Mortality in Exacerbations of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 11, 2729-2736.
https://doi.org/10.2147/copd.s112882
[47] McKinstry, K.K., Strutt, T.M., Buck, A., Curtis, J.D., Dibble, J.P., Huston, G., et al. (2009) IL-10 Deficiency Unleashes an Influenza-Specific Th17 Response and Enhances Survival against High-Dose Challenge. The Journal of Immunology, 182, 7353-7363.
https://doi.org/10.4049/jimmunol.0900657
[48] Ding, Q., Liu, G., Zeng, Y., Zhu, J., Liu, Z., Zhang, X., et al. (2017) Role of IL-17 in LPS-Induced Acute Lung Injury: An in vivo study. Oncotarget, 8, 93704-93711.
https://doi.org/10.18632/oncotarget.21474
[49] Jiang, S., Shan, F., Zhang, Y., Jiang, L. and Cheng, Z. (2018) Increased Serum IL-17 and Decreased Serum IL-10 and IL-35 Levels Correlate with the Progression of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 13, 2483-2494.
https://doi.org/10.2147/copd.s167192