LC3B在心力衰竭中的研究进展
Research Progress of LC3B in Heart Failure
DOI: 10.12677/md.2024.142033, PDF, HTML, XML, 下载: 27  浏览: 51 
作者: 张琪琪:济宁医学院临床医学院,山东 济宁;崔英华*:济宁医学院附属医院CCU,山东 济宁
关键词: 心力衰竭自噬自噬体微管相关蛋白1轻链3βHeart Failure Autophagy Autophagosome Microtubule-Associated Protein 1 Light Chain 3β
摘要: 心力衰竭是各种心血管疾病的终末阶段,亦是医学界尚未攻克的最后堡垒,给患者、家庭、社会带来沉重负担。LC3B属于LC3/GABARAP蛋白家族,通过介导自噬底物的招募、自噬体的运动、自噬基因的转录,参与自噬调节,保护细胞应对饥饿、缺血、缺氧,抗线粒体氧化应激,在心肌梗死、心肌病、心肌肥大中有重要作用。本综述对LC3B的生物学特点、功能及其通过调节自噬改善心力衰竭进行综述,并为心力衰竭的治疗提供新思路。
Abstract: Heart failure is the final stage of all kinds of cardiovascular diseases, and it is also the last bastion that has not yet been conquered by the medical profession, which has brought a heavy burden to the patients, their families and the society. LC3B belongs to the LC3/GABARAP family of proteins and is involved in the regulation of autophagy by mediating the recruitment of autophagic substrates, autophagosome motility, and transcription of autophagy genes, which protects the cells against starvation, ischemia, and hypoxia, and is resistant to mitochondrial oxidative stress, and has an important role in myocardial infarction, cardiomyopathy, and myocardial hypertrophy. This review provides an overview of the biological characteristics and functions of LC3B and its ability to ameliorate heart failure by regulating autophagy, and provides new ideas for the treatment of heart failure.
文章引用:张琪琪, 崔英华. LC3B在心力衰竭中的研究进展[J]. 医学诊断, 2024, 14(2): 221-226. https://doi.org/10.12677/md.2024.142033

1. 引言

心力衰竭(heart failure, HF)是各种原因导致心脏结构和(或)功能异常,使心室收缩和(或)舒张功能发生障碍,是所有心血管疾病终末阶段,也是心血管疾病最主要的死亡原因,给患者、家庭、社会带来沉重负担。微管相关蛋白1轻链3β (microtubule-associated protein 1-light chain 3B,MAP1LC3B,以下简称LC3B)是唯一一种在从吞噬泡到溶酶体降解的整个过程中特异性定位于自噬结构的特征明确的蛋白质,可用于监测自噬活性,属于LC3/GABARAP蛋白家族,由泛素样核心和C端尾部组成。通过介导自噬底物的招募、自噬体的运动、自噬基因的转录,参与自噬调节,在心力衰竭的发展中起着重要作用,因此LC3B为心力衰竭的治疗提供了潜在的治疗靶点[1] [2] [3]

2. LC3B结构特点

LC3B是LC3/GABARAP蛋白家族成员之一。Pro-LC3B蛋白分子包括125个氨基酸残基,由泛素样核心(氨基酸残基1-115)和10个氨基酸残基的C端尾部(氨基酸残基116-125)组成[4]。与泛素不同的是LC3B的N端含有两个额外的α-端螺旋,这是进化保守的特征[5]。Pro-LC3B在C端附近被自噬相关蛋白4B (Atg4B)裂解暴露出羧基端甘氨酸(Gly),生成胞浆型的LC3B-I (残基1-120)并定位在细胞质[4]。LC3B-I被自噬相关蛋白7 (Atg7)激活,转移到Atg3,并与磷脂酰乙醇胺(PE)结合,在自噬体上生成膜型的LC3B-II,定位于自噬体的内膜和外膜。

3. LC3B与自噬

自噬是一种高度保守的溶酶体降解途径,在所有真核细胞中以基础水平发生,通过降解异常蛋白质和受损细胞器,控制细胞质质量,并重复利用降解产物(氨基酸、脂肪酸、核苷酸、碳水化合物),当出现营养剥夺、缺氧及药物作用时,自噬迅速上调,以渡过暂时的能量危机[6]。自噬由一组进化上保守的、最初于酵母中发现的自噬相关基因(ATG)介导,哺乳动物中的LC3/GABARAP蛋白家族是酵母自噬相关蛋白Atg8的类似物,除LC3B外还包括6个家族蛋白:LC3A (2种剪接变异体)、LC3C、GABARAP、GABARAPL1和GABARAPL2,其中LC3B是研究最多的自噬分子。人MAP1LC3B基因定位于16q24.2,在不同的组织中有不同的表达数量。LC3B通过结合不同的蛋白在自噬底物的招募、自噬体的运动、自噬基因的转录等过程中均发挥调控作用。此外,LC3B-II作为RNA结合蛋白可以通过结合并降解编码自噬负调控因子的mRNA来增强自噬[7]

3.1. LC3B参与自噬底物的招募

与货物结合的受体与锚定在自噬体凹(内)面膜上的LC3B-II相互作用,以确保货物被包裹。这种相互作用是由15~20个氨基酸长的序列基团介导的,这些基团被称为LC3相互作用区(LIR),它们与LC3B的LIR对接位点(LDS)结合。LDS是由LC3B的N端臂和类泛素(UBL)结构域形成的缝隙,其中藏有两个疏水口袋。LIR的核心序列为W/F/Y-X-X-L/I/V (X为任意氨基酸),其中芳香残基与LC3/GABARAP蛋白LDS的疏水口袋1 (HP1)对接,疏水残基与LC3/GABARAP蛋白LDS的疏水口袋2 (HP2)对接。如自噬受体p62与LC3B结合的结构显示了一个W-X-X-L模式,其中芳香残基和疏水的亮氨酸残基(L)对接到LC3B的LDS的两个疏水口袋(HP1和HP2)中[1]

3.2. LC3B的磷酸化促进自噬体的运动

Hippo激酶STK4/MST1通过未知机制使LC3B的苏氨酸50磷酸化,可能介导LC3B-FYCO1-驱动蛋白复合物向LC3B-JIP1-动力蛋白复合物的转变,从而促进自噬体的逆行运动,确保与核周溶酶体融合和货物降解。Stk4的耗竭或不可磷酸化的LC3B-T50A突变体的表达会导致整个细胞内自噬体的积累和细胞核周围溶酶体的聚集,从而导致自噬受阻[2]

3.3. LC3B的去乙酰化促进自噬基因的转录

LC3B定位于细胞核和细胞质,并在这些细胞区室之间循环,这一过程受赖氨酸乙酰化和去乙酰化的调控[8]。核LC3B在赖氨酸49和赖氨酸51处被SIRT1去乙酰化,使其重新分布到细胞质中与磷脂酰乙醇胺(PE)结合,从而介导饥饿诱导的自噬。去乙酰化的核LC3B可作为辅助因子与转录因子LMX1B的LC3相互作用区(LIR)样序列结合,增强多巴胺能神经元中自噬基因的转录[3]。二者的共同作用使细胞能够应对外部营养物质的缺乏。同时,LC3B的去乙酰化也被证明是与p62结合所必需的[9]。LC3B的去乙酰化酶SIRT1缺乏导致自噬功能受损,与人类和小鼠肾脏、大脑和心脏的多种疾病有关[10]

4. LC3B与心力衰竭的关系

4.1. LC3B与心肌梗死导致的心力衰竭

心肌梗死(MI)的特点是缺血引起的心肌细胞死亡,心肌细胞是终末分化的细胞,心肌细胞的死亡不可逆地破坏了心脏的结构和功能,使其成为全世界心力衰竭的主要原因。在缺血培养的H9c2心肌细胞和新生大鼠心肌细胞(NRCMs)中促进心肌细胞自噬流,可以为心肌细胞提供必要的能量,减少心肌细胞的凋亡,从而对心脏产生保护作用[11]。也有研究表明[12],在行左前降支(LAD)结扎术的大鼠心脏中,可以通过激活AMPK-mTOR信号通路来促进LC3B的表达,减少心肌细胞的凋亡。此外,海藻糖通过促进LC3B表达、激活自噬作用可减少心肌梗死诱发的心脏重塑和功能障碍。[13]。这表明自噬的激活具有保护作用,LC3B基因表达的上调可能为AMI患者提供一种新的和潜在的治疗方法[14]

4.2. LC3B与心肌病导致的心力衰竭

心肌病主要是由遗传因素引起的心肌病变导致的心肌机械和(或)心电功能障碍,最终可导致心力衰竭。肥厚型心肌病(HCM)是最常见的遗传性心脏疾病,其特点是心肌增厚,编码心脏肌球蛋白结合蛋白C (cMyBPC)的MYBPC3基因的遗传突变是其主要原因[15]。溶酶体蛋白酶抑制剂亮肽素处理的野生型小鼠的LC3-II水平和LC3-II/LC3-I比率(表明自噬周转率)都明显高于未处理的野生型小鼠,而亮肽素处理的MYBPC3基因突变小鼠的LC3-II水平和LC3-II/LC3-I比率与未处理的MYBPC3基因突变小鼠之间没有差别。因此MYBPC3基因的突变可能是通过抑制自噬作用,导致心肌功能障碍。而雷帕霉素(RAPA)通过抑制mTORC1,激活自噬,增加MYBPC3基因突变小鼠的LC3-II水平,可以改善小鼠的心脏功能[16]。扩张型心肌病(DCM)的临床表现可以从无症状到心力衰竭症状或心源性猝死[17]。TTN基因发生突变是迄今为止DCM最常见的遗传学病因,研究表明,在TTN截断性突变(TTNtv)的大鼠模型中,结蛋白(Titin)减少,损害自噬,导致功能失调/受损的线粒体的积累,而激活自噬可以减少TTNtv在心脏中的积累,保护心功能[18]。研究发现在δ-肌聚糖缺乏所致的小鼠扩张型心肌病的模型中自噬被激活,LC3-II/LC3-I的比率明显增加,而二甲双胍可以通过激活AMPK-mTOR途径进一步增强自噬,增加心肌细胞内LC3-II/LC3-I的比率和ATP含量,通过减弱心脏纤维化、心肌肥大和亚细胞变性来缓解心力衰竭[19]。此外,通过对42名DCM患者(21名左心室逆重构(LVRR)阳性和21名LVRR阴性)和7名心脏功能正常的患者进行分析得出结论:LC3表达增加、自噬活性高的心脏能更有效地供应能量,因此能够实现LVRR,并大大抑制心血管事件,改善扩张型心肌病的预后[20]。此外,阻塞性睡眠呼吸暂停(OSA)患者的外泌体(Exos)通过蛋白激酶B/哺乳动物雷帕霉素靶蛋白(Akt/mTOR)信号通路抑制了自噬,减少LC3B II/I比率,增加了心肌纤维化和肥厚,加重DCM患者的HF程度,而激活自噬可以减轻OSA-Exos诱发的心肌细胞损伤[21]

4.3. LC3B与心肌肥大导致的心力衰竭

当心脏结构或功能受损,心排血量不足时,在神经内分泌系统和血流动力学压力的作用下,心肌发生代偿性肥大,可以增加心肌收缩力,维持心输出量[22]。但是,心肌肥大的代偿作用也是有一定限度的,心肌过度肥大可发生不同程度的缺血、缺氧、能量代谢障碍和心肌收缩能力减弱等,使心功能由代偿转变为失代偿,最终将导致心力衰竭[23]。自噬在心肌肥大过程中扮演重要角色,自噬可通过增加异常蛋白质和受损细胞器的降解,抑制心肌细胞肥大,拮抗心室肥厚[24]

血管紧张素II增加线粒体产生的活性氧(ROS)水平,ROS对心肌细胞产生毒害作用,促进心肌肥大和凋亡的发生,经过进一步的研究发现,增强自噬清除产生ROS的线粒体,可以逆转心肌肥大[25]。因此,除了常规的RAS抑制治疗,尽量减少血管紧张素II的不利影响之外,增强自噬水平以清除损伤的线粒体,减少ROS的产生,对心衰患者的治疗至关重要。研究还发现,上调的细胞分裂周期蛋白20 (CDC20)能够直接结合并促进LC3泛素化并被蛋白酶体降解,从而导致自噬的抑制和心肌肥大[26]。同样的,在ATG4B表达下调的NRCMs中,LC3-II的表达水平降低,自噬流被抑制,促进心脏肥大[27]。此外,增强自噬流可以防止压力过载引起的心脏肥大[28]。在行TAC致心肌肥大的情况下,RAPA治疗后,左心室功能得以维持,表明自噬在心肌细胞收缩力和心脏功能中起着至关重要的作用。[29]

上述研究均表明自噬在心肌肥大过程中起一定保护作用,可有效抑制心肌肥大。然而也存在相反的结论,姜黄素至少部分地通过激活mTOR信号抑制LC3的mRNA表达,减少自噬,可以减轻异丙肾上腺素引起的心脏肥大和纤维化[30]。自噬在心肌肥厚中的相反的作用,可能与诱发原因、疾病损伤程度及自噬水平不同有关,生理水平的自噬在心肌肥大中起到保护作用,但是过度自噬反而会加重心肌肥大,这仍需进一步研究[31]

5. 总结与展望

LC3B主要通过介导自噬底物的招募、自噬体的运动、自噬基因的转录,参与自噬调节,保护细胞应对饥饿、缺血、缺氧,抗线粒体氧化应激,影响凋亡,抑制心肌重塑,保护心肌细胞,在心肌梗死、心肌病、心肌肥大中有重要作用,调节自噬可能成为治疗心力衰竭的一种潜在的策略。然而在自噬成为临床可行性治疗方法之前,仍有很多问题亟待解决。首先,自噬在心衰中起预防保护作用还是只是一种心肌损伤的标志物尚未形成统一意见,虽然大多数研究支持自噬在心衰过程中起保护作用,但也有部分学者提出过度的自噬使得正常的细胞器被错误地降解,促进细胞萎缩和自噬性细胞死亡[32]。这些研究中的差异可能来自于自噬在疾病发展中的双重复杂性、疾病不同阶段的差异性、自噬的时间过程和程度、实验模型的差异性,以及用于评估自噬的方法[33]。其次,大多数研究只是估计了自噬的一个阶段,而忽略了自噬是一个动态过程,很难确定自噬是病因还是结果。最后,由于自噬发生在身体所有细胞,药物调节自噬治疗心衰可能会影响其他器官[34]。总之,我们进一步揭示自噬在心衰病程中的作用,在病程的不同阶段通过增强或抑制自噬治疗心衰,是一种具有发展前景的治疗方法,而LC3B可能成为增强或抑制自噬的靶点。

利益冲突

所有作者均声明不存在利益冲突。

NOTES

*通讯作者。

参考文献

[1] Johansen, T. and Lamark, T. (2020) Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. Journal of Molecular Biology, 432, 80-103.
https://doi.org/10.1016/j.jmb.2019.07.016
[2] Nieto-Torres, J.L., Shanahan, S., Chassefeyre, R., Chaiamarit, T., Zaretski, S., Landeras-Bueno, S., et al. (2021) LC3B Phosphorylation Regulates FYCO1 Binding and Directional Transport of Autophagosomes. Current Biology, 31, 3440-3449.E7.
https://doi.org/10.1016/j.cub.2021.05.052
[3] Kournoutis, A. and Johansen, T. (2023) LC3B Is a Cofactor for Lmx1b-Mediated Transcription of Autophagy Genes in Dopaminergic Neurons. Journal of Cell Biology, 222, e202303008.
https://doi.org/10.1083/jcb.202303008
[4] Tang, Y., Kay, A., Jiang, Z. and Arkin, M.R. (2022) LC3B Binds to the Autophagy Protease Atg4b with High Affinity Using a Bipartite Interface. Biochemistry, 61, 2295-2302.
https://doi.org/10.1021/acs.biochem.2c00482
[5] Wesch, N., Kirkin, V. and Rogov, V.V. (2020) Atg8-Family Proteins—Structural Features and Molecular Interactions in Autophagy and Beyond. Cells, 9, Article 2008.
https://doi.org/10.3390/cells9092008
[6] Wang, X. and Cui, T. (2017) Autophagy Modulation: A Potential Therapeutic Approach in Cardiac Hypertrophy. American Journal of Physiology-Heart and Circulatory Physiology, 313, H304-H319.
https://doi.org/10.1152/ajpheart.00145.2017
[7] Hwang, H.J., Ha, H., Lee, B.S., Kim, B.H., Song, H.K. and Kim, Y.K. (2022) LC3B Is an RNA-Binding Protein to Trigger Rapid mRNA Degradation during Autophagy. Nature Communications, 13, Article No. 1436.
https://doi.org/10.1038/s41467-022-29139-1
[8] Huang, R., Xu, Y., Wan, W., Shou, X., Qian, J., You, Z., et al. (2015) Deacetylation of Nuclear LC3 Drives Autophagy Initiation under Starvation. Molecular Cell, 57, 456-466.
https://doi.org/10.1016/j.molcel.2014.12.013
[9] Song, T., Su, H., Yin, W., Wang, L. and Huang, R. (2019) Acetylation Modulates LC3 Stability and Cargo Recognition. FEBS Letters, 593, 414-422.
https://doi.org/10.1002/1873-3468.13327
[10] Nieto-Torres, J.L., Zaretski, S., Liu, T., Adams, P.D. and Hansen, M. (2023) Post-Translational Modifications of ATG8 Proteins—An Emerging Mechanism of Autophagy Control. Journal of Cell Science, 136, jcs259725.
https://doi.org/10.1242/jcs.259725
[11] Liu, H., Liu, P., Shi, X., Yin, D. and Zhao, J. (2018) NR4A2 Protects Cardiomyocytes against Myocardial Infarction Injury by Promoting Autophagy. Cell Death Discovery, 4, Article No. 27.
https://doi.org/10.1038/s41420-017-0011-8
[12] Zhang, X., Wang, Q., Wang, X., Chen, X., Shao, M., Zhang, Q., et al. (2019) Tanshinone IIA Protects against Heart Failure Post-Myocardial Infarction via AMPKs/mTOR-Dependent Autophagy Pathway. Biomedicine & Pharmacotherapy, 112, Article ID: 108599.
https://doi.org/10.1016/j.biopha.2019.108599
[13] Sciarretta, S., Yee, D., Nagarajan, N., Bianchi, F., Saito, T., Valenti, V., et al. (2018) Trehalose-Induced Activation of Autophagy Improves Cardiac Remodeling after Myocardial Infarction. Journal of the American College of Cardiology, 71, 1999-2010.
https://doi.org/10.1016/j.jacc.2018.02.066
[14] Gao, F., Su, Q., Yang, W., Pang, S., Wang, S., Cui, Y., et al. (2018) Functional Variants in the LC3B Gene Promoter in Acute Myocardial Infarction. Journal of Cellular Biochemistry, 119, 7339-7349.
https://doi.org/10.1002/jcb.27035
[15] Da‘as, S.I., Fakhro, K., Thanassoulas, A., Krishnamoorthy, N., Saleh, A., Calver, B.L., et al. (2018) Hypertrophic Cardiomyopathy-Linked Variants of Cardiac Myosin-Binding Protein C3 Display Altered Molecular Properties and Actin Interaction. Biochemical Journal, 475, 3933-3948.
https://doi.org/10.1042/bcj20180685
[16] Singh, S.R., Zech, A.T.L., Geertz, B., Reischmann-Düsener, S., Osinska, H., Prondzynski, M., et al. (2017) Activation of Autophagy Ameliorates Cardiomyopathy in Mybpc3-Targeted Knockin Mice. Circulation: Heart Failure, 10, e004140.
https://doi.org/10.1161/circheartfailure.117.004140
[17] Orphanou, N., Papatheodorou, E. and Anastasakis, A. (2021) Dilated Cardiomyopathy in the Era of Precision Medicine: Latest Concepts and Developments. Heart Failure Reviews, 27, 1173-1191.
https://doi.org/10.1007/s10741-021-10139-0
[18] Zhou, J., Ng, B., Ko, N.S.J., Fiedler, L.R., Khin, E., Lim, A., et al. (2019) Titin Truncations Lead to Impaired Cardiomyocyte Autophagy and Mitochondrial Function in Vivo. Human Molecular Genetics, 28, 1971-1981.
https://doi.org/10.1093/hmg/ddz033
[19] Kanamori, H., Naruse, G., Yoshida, A., Minatoguchi, S., Watanabe, T., Kawaguchi, T., et al. (2019) Metformin Enhances Autophagy and Provides Cardioprotection in δ-Sarcoglycan Deficiency-Induced Dilated Cardiomyopathy. Circulation: Heart Failure, 12, e005418.
https://doi.org/10.1161/circheartfailure.118.005418
[20] Kanamori, H., Yoshida, A., Naruse, G., Endo, S., Minatoguchi, S., Watanabe, T., et al. (2022) Impact of Autophagy on Prognosis of Patients with Dilated Cardiomyopathy. Journal of the American College of Cardiology, 79, 789-801.
https://doi.org/10.1016/j.jacc.2021.11.059
[21] Gong, H., Lyu, X., Dong, L., Tan, S., Li, S., Peng, J., et al. (2022) Obstructive Sleep Apnea Impacts Cardiac Function in Dilated Cardiomyopathy Patients through Circulating Exosomes. Frontiers in Cardiovascular Medicine, 9, Article 699764.
https://doi.org/10.3389/fcvm.2022.699764
[22] Shi, S. and Jiang, P. (2022) Therapeutic Potentials of Modulating Autophagy in Pathological Cardiac Hypertrophy. Biomedicine & Pharmacotherapy, 156, Article ID: 113967.
https://doi.org/10.1016/j.biopha.2022.113967
[23] Oldfield, C.J., Duhamel, T.A. and Dhalla, N.S. (2020) Mechanisms for the Transition from Physiological to Pathological Cardiac Hypertrophy. Canadian Journal of Physiology and Pharmacology, 98, 74-84.
https://doi.org/10.1139/cjpp-2019-0566
[24] Oyabu, J., Yamaguchi, O., Hikoso, S., Takeda, T., Oka, T., Murakawa, T., et al. (2013) Autophagy-Mediated Degradation Is Necessary for Regression of Cardiac Hypertrophy during Ventricular Unloading. Biochemical and Biophysical Research Communications, 441, 787-792.
https://doi.org/10.1016/j.bbrc.2013.10.135
[25] Kobara, M., Toba, H. and Nakata, T. (2022) Roles of Autophagy in Angiotensin II-Induced Cardiomyocyte Apoptosis. Clinical and Experimental Pharmacology and Physiology, 49, 1342-1351.
https://doi.org/10.1111/1440-1681.13719
[26] Xie, Y., Lai, S., Lin, Q., Xie, X., Liao, J., Wang, H., et al. (2018) CDC20 Regulates Cardiac Hypertrophy via Targeting Lc3-Dependent Autophagy. Theranostics, 8, 5995-6007.
https://doi.org/10.7150/thno.27706
[27] Zhang, Y., Ding, Y., Li, M., Yuan, J., Yu, Y., Bi, X., et al. (2022) Microrna-34c-5p Provokes Isoprenaline-Induced Cardiac Hypertrophy by Modulating Autophagy via Targeting Atg4b. Acta Pharmaceutica Sinica B, 12, 2374-2390.
https://doi.org/10.1016/j.apsb.2021.09.020
[28] Jin, Y., Zhou, H., Fan, D., Che, Y., Wang, Z., Wang, S., et al. (2020) TMEM173 Protects against Pressure Overload‐Induced Cardiac Hypertrophy by Modulating Autophagy. Journal of Cellular Physiology, 236, 5176-5192.
https://doi.org/10.1002/jcp.30223
[29] Ott, C., Jung, T., Brix, S., John, C., Betz, I.R., Foryst-Ludwig, A., et al. (2021) Hypertrophy-Reduced Autophagy Causes Cardiac Dysfunction by Directly Impacting Cardiomyocyte Contractility. Cells, 10, Article 805.
https://doi.org/10.3390/cells10040805
[30] Liu, R., Zhang, H.B., Yang, J., et al. (2018) Curcumin Alleviates Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis through Inhibition of Autophagy and Activation of mTOR. European Review for Medical and Pharmacological Sciences, 22, 7500-7508.
[31] 杨伟, 苗立坤, 陈章荣. 自噬与心肌重构研究进展[J]. 心血管病学进展, 2022, 43(6): 535-537, 546.
[32] Farhan, H., Kundu, M. and Ferro-Novick, S. (2017) The Link between Autophagy and Secretion: A Story of Multitasking Proteins. Molecular Biology of the Cell, 28, 1161-1164.
https://doi.org/10.1091/mbc.e16-11-0762
[33] Wu, X., Liu, Z., Yu, X., Xu, S. and Luo, J. (2020) Autophagy and Cardiac Diseases: Therapeutic Potential of Natural Products. Medicinal Research Reviews, 41, 314-341.
https://doi.org/10.1002/med.21733
.
[34] 张东霞, 刘凤岐, 张瑞英. 自噬与心力衰竭的治疗[J]. 心血管病学进展, 2017, 38(6): 696-699.