姜黄素治疗神经胶质瘤的研究进展
Research Progress of Curcumin in the Treatment of Glioma
DOI: 10.12677/acm.2024.1461874, PDF, HTML, XML, 下载: 40  浏览: 59  科研立项经费支持
作者: 范 阳*, 张西安, 刘展会#:西安市第九医院神经外科,陕西 西安
关键词: 姜黄素神经胶质瘤机制Curcumin Glioma Mechanism
摘要: 姜黄素是一种具抗炎、抗菌、抗氧化和抗肿瘤等特性的天然中药提取物,在中枢神经系统中,姜黄素具有显著的抗肿瘤作用,尤其是在治疗神经胶质瘤方面。大量研究表明,姜黄素可以显著抑制神经胶质瘤的发生发展,在这篇综述中,我们阐述了姜黄素在抑制肿瘤血管生成、抑制肿瘤细胞增殖、诱导细胞凋亡、抑制肿瘤细胞迁移和侵袭、停滞细胞周期等方面对抗神经胶质瘤的分子机制,揭示了姜黄素的开发利用可能是治疗神经胶质瘤的一个新兴研究领域。
Abstract: Curcumin is a natural Chinese medicine extract with anti-inflammatory, antibacterial, antioxidant, and anti-tumor properties. In the central nervous system, curcumin has a significant anti-tumor effect, especially in the treatment of glioma. A large number of studies have shown that curcumin can significantly inhibit the occurrence and development of glioma. In this review, we explained that curcumin can inhibit tumor angiogenesis, inhibit tumor cell proliferation, induce apoptosis, and inhibit tumor cell migration and invasion, cell cycle arrest and other aspects of the molecular mechanism against glioma. It is revealed that the development and utilization of curcumin may be an emerging research field in the treatment of glioma.
文章引用:范阳, 张西安, 刘展会. 姜黄素治疗神经胶质瘤的研究进展[J]. 临床医学进展, 2024, 14(6): 1030-1036. https://doi.org/10.12677/acm.2024.1461874

1. 引言

神经胶质瘤的患病率约占所有颅内肿瘤的40%~50%,是成人最常见的原发性恶性中枢神经系统肿瘤之一[1],其具有早期无明显特异性症状、病情发展迅速、且治疗后容易复发等特点,虽然目前的治疗方法,如手术、放疗、化疗等,在不断改进,但治疗效果并没有显著提高[2] [3]。这就是为什么出现了非常规疗法来补充现有疗法,如应用植物提取物治疗神经胶质瘤[4]。姜黄色素是一种从姜黄根茎中提取的黄色素,属于姜黄素类化合物[5] [6]。越来越多的实验研究表明,姜黄素具有多种生物学效应,包括抗炎、抗菌、抗氧化和抗肿瘤等特性,同时还具有卓越的安全性,因此,其可能成为各种疾病的潜在保护因子[7]。尤其是在治疗神经胶质瘤方面,姜黄素可通过多种分子机制来达到抗肿瘤的作用,具有很强的治疗潜力[8]

2. 抑制肿瘤血管生成

肿瘤血管生成与肿瘤的发展及转移密切相关,且在人类所有肿瘤中,恶性胶质瘤是血管化程度较高的肿瘤之一,其生长和存活依赖于足够的血液供应[9]。有研究表明,姜黄素具有抗血管生成活性,其通过抑制肿瘤血管生成显著抑制肿瘤组织的发展及转移[10]。在动物实验中,姜黄素可以抑制无胸腺小鼠胶质瘤生长,其作用机制与抑制神经胶质瘤诱导的血管生成有关[11]。Sharma等[12]以0.01 mg/L姜黄素处理神经胶质瘤U87细胞系小鼠模型发现,实验组肿瘤重量明显小于对照组。此外,姜黄素显著抑制胶质瘤的血管密度和血管内皮生长因子(VEGF)、血管生成素-2 (Ang-2)的表达,上调了血小板反应蛋白1 (TSP-1)表达,这表明姜黄素通过介导VEGF、Ang-2、TSP-1的表达抑制小鼠神经胶质瘤模型中的血管生成来抑制肿瘤生长。Perry等[13]报道了姜黄素在异种移植物中的抗癌作用,姜黄素降低了金属蛋白酶-9 (MMP-9)的活性和内皮细胞标记物的表达。而且,姜黄素可以通过抑制新生血管内皮细胞标志物的表达和肿瘤中血红蛋白浓度来抑制神经胶质瘤的血管生成,这表明姜黄素抗肿瘤作用的机制至少部分与抑制神经胶质瘤的血管生成有关。这些研究结果提示姜黄素能抑制肿瘤血管生成,在神经胶质瘤治疗方面具有潜在的应用价值。

3. 抑制肿瘤细胞增殖、诱导细胞凋亡

早在2003年就报道了姜黄素能抑制神经胶质瘤细胞系的增殖,且其抑制程度与姜黄素浓度直接相关[14]。随后研究发现,姜黄素促进凋亡的功能与诱导活性氧(ROS)产生、半胱天冬酶(caspases)激活和线粒体膜通透性等有关[15] [16]。近几年有研究指出,姜黄素诱导细胞凋亡的功能可能与促进ROS产生密切相关,这一过程中细胞NADPH氧化酶活性升高,引起细胞内总氧化力(T-AOC)降低,丙二醛(MDA)含量升高,谷胱甘肽(GSH)含量下降,超氧化物歧化酶(SOD)活性升高,使细胞处于氧化胁迫,并通过ROS的升高触发细胞信号通路,下调NF-κB/p65蛋白的表达,最终通过凋亡执行分子Caspase-3促使细胞凋亡[17]。在另一项动物实验中,姜黄素可减少裸鼠的肿瘤体积,引起肿瘤组织坏死,并显著增强体内的PTEN和p53表达,进一步研究发现姜黄素通过减少p-AKT/p-mTOR途径抑制增殖,并通过增加PTEN和p53表达促进U251和U87细胞凋亡[18]。胡科等人发现姜黄素通过长链非编码RNA H19/miR-491-5p/HOXA9轴抑制胶质瘤细胞的增殖、迁移及促进细胞凋亡[19]。除此之外,姜黄素可通过诱导副凋亡抑制神经胶质瘤的发生发展。副凋亡又称类凋亡,是一种在发育的某些阶段发生的非凋亡性程序性细胞死亡,最近的研究表明,姜黄素和紫杉醇等天然产物,均能通过诱导与副凋亡相关的细胞死亡而发挥抗癌作用,其特征通常是表现为内质网、线粒体肿胀和细胞浆空泡化[20]。在此过程中不需要半胱天冬酶激活,也不涉及DNA断裂,但它可以被蛋白激酶或蛋白合成酶激活[21]。Garrido等人的研究表明,应用50 μM姜黄素处理胶质母细胞瘤细胞系A172细胞24小时后,内质网形态改变、ERSR基因过度表达和内质网相关微小核糖核酸表达改变,显示出一半微小核糖核酸下调(miR-27a, miR21, miR-151-3p, miR-27b, miR-222和miR-125a-5p),另一半上调(miR-133a, miR181a, MiR-225p)。提示姜黄素调节的微小核糖核酸参与了AKT-胰岛素和p53-BCL2途径,并降低了AKT蛋白水平。因此可以得出,姜黄素通过影响内质网结构的完整性,进而导致胶质母细胞瘤细胞的副凋亡,发挥其诱导细胞死亡特性[22]。除此之外,姜黄素类似物已引起许多关注,如去甲氧基姜黄素(DMC),研究表明,浓度为50 µg/ml的DMC可诱导U87细胞产生活性氧,主要是超氧阴离子自由基(O2),并诱导细胞凋亡。生物信息学分析表明,DMC可与线粒体超氧化物歧化酶(mnSOD)活性位点残基相互作用,抑制其活性,导致细胞内O2积累。在该研究中,DMC可抑制PI3-Kinase/NF-κB信号,激活caspase-8和caspase-9释放细胞色素c,导致胶质瘤U87细胞的生长停滞和凋亡[23]。值得注意的是,姜黄素在高浓度下不能诱导正常原代星形胶质细胞死亡,其可能的机制是肿瘤细胞对姜黄素的摄取高于正常细胞[24]。此外,肿瘤细胞中的抗氧化剂(GSH/GST)往往低于正常细胞,从而增强了肿瘤细胞对姜黄素的敏感性,肿瘤细胞中抗氧化剂的减少和姜黄素诱导的活性氧的产生可能是癌细胞中选择性凋亡的又一原因[25]

4. 抑制肿瘤细胞迁移和侵袭

恶性胶质瘤侵袭性极强,它们容易迁移和侵入周围的脑实质,导致肿瘤进展和随后的治疗失败。为了迁移和侵入周围环境,胶质瘤细胞会改变其形状和刚性。形状和刚性的改变涉及肌动蛋白细胞骨架的重新排列,这又涉及多个肌成束蛋白[26] [27]。肌成束蛋白是一种参与肌动蛋白聚集、细胞骨架重排和细胞运动的作用结合蛋白,其表达与肿瘤细胞的侵袭行为有关。目前的研究表明姜黄素通过抑制脑胶质瘤细胞中的肌成束蛋白表达参与抗迁移和抗侵袭机制[28]。据报道,姜黄素可以抑制胶质瘤U87细胞的迁移和侵袭,应用10 μM/L的姜黄素处理6小时后,发现其通过抑制STAT3途径导致肌成束蛋白表达显著降低,其表达的减少导致胶质瘤U87细胞的细胞形状改变和丝状体形成减少。而且,细胞附着、侵袭和迁移能力与姜黄素浓度和暴露时间呈负相关[29]。在另一研究中,发现MMPs除了可以诱导细胞凋亡,亦与肿瘤侵袭性有关,MMPs是一类锌依赖性蛋白水解内肽酶,通过降解细胞外基质蛋白、生长因子结合蛋白和细胞粘附分子,使肿瘤细胞具有侵袭性,MMPs已被证明能引起播散性肿瘤生长。由于MMP-2可以被血管内皮生长因子(VEGF) A和血管内皮生长因子受体-2 (VEGFR-2)共同表达,MMP-2也被证明是血管生成和血管生成所必需的物质[30]。Tabouret等人发现直径较小的胶质瘤MMP-2的表达较低,但是MMP-2在直径较大的恶性胶质瘤中高表达。而且,金属蛋白酶组织抑制剂(TIMPs)的表达相应减少[31]。无独有偶,Thani等发现,用不同浓度的姜黄素处理的细胞与对照组相比,MMP-2、9、14、15、16、17、24和25的表达显著降低[32]。Wang及其团队研究发现,与对照组相比,在10、15和20 μM浓度下SNB19和A1027脑胶质瘤细胞进行的细胞侵袭试验,可以发现细胞迁移显著减少[33]。在另一研究中,姜黄素通过抑制hsp60/TLR-4信号显著抑制神经胶质瘤U87细胞的生存能力和侵袭能力[34]。王泽夏[35]等人报道,姜黄素可通过抑制p-Akt蛋白表达、促进PTEN蛋白表达,发挥对胶质瘤U251细胞的抑制作用。在实验中,应用浓度在10 μmol/L以上姜黄素处理胶质瘤U251细胞后,实验组U251细胞的增殖能力、迁移与侵袭能力被显著抑制,与此同时,也在一定程度上促进了U251细胞的凋亡。除此之外,姜黄素浓度为20 μmol/L,持续作用48 h后,通过抑制HDGF/β-catenin复合物,降低了EMT信号,从而抑制了U251细胞侵袭、迁移能力[36]。以上多个研究结果表明,姜黄素可通过多种信号通路抑制肿瘤细胞迁移和侵袭能力。

5. 停滞细胞周期

细胞周期是指细胞从一次分裂完成开始到下一次分裂结束所经历的全过程,细胞周期停滞可发生在细胞周期的四个阶段中的任何一个阶段,这四个阶段通常被称为:G1期、S期、G2期和M期。因此,肿瘤细胞的周期调节通路失调,可导致细胞增殖和存活受到抑制。在20年前的研究中就已发现,姜黄素可通过上调CDKI、P21WAF1/CIP1、P27KIP1和P53,并稍微下调cyclin B1和CDC2,进而诱导ECV304细胞中G0/G1和G2/M期细胞周期停滞[37],随后,Liu发现在胶质瘤U251细胞中,姜黄素诱导的P53扩增导致G2/M期和S期停滞,增加肿瘤抑制因子4 (ING-4)的表达[38]。随着研究的推进,Su等人发现在胶质瘤DBTRG细胞中,姜黄素增加P53蛋白水平,通过P21的上调和CDC2的下调触发G2/M期细胞周期停滞。除此之外,还通过CDKN2A/P16的上调和磷酸化RB的下调抑制RB途径RB1/CDK4/P16INK4,并将细胞停滞在G1/S期[39]。在大鼠神经胶质瘤模型中,姜黄素导致瘤体体积缩小,并出现了G2/M细胞周期停滞,随后出现G1期细胞凋亡和凋亡小体的形成[40]。Cheng研究发现,姜黄素通过上调叉头盒蛋白01 (Fox01)表达诱导U87细胞G2/M细胞周期停滞和凋亡[41]。另外,有研究发现肿瘤抑制因子死亡相关蛋白激酶1 (DAPK1),在姜黄素的抗癌作用中起着至关重要的作用,用姜黄素处理U251细胞后,姜黄素以剂量和时间依赖的方式上调了DAPK1的表达,使细胞停滞在G2/M期,因此,DAPK1参与姜黄素介导的抗增殖和促凋亡作用[42]。与此同时,在姜黄素类似物的研究中亦有类似的结论,用DMC处理的胶质瘤U87细胞可通过激活Bcl-2诱导G2/M细胞停滞和凋亡[43]。另一研究发现,DMC除了诱导活性氧的产生,还降低了CDC25C、细胞周期蛋白B1和CDK1的表达,导致G2/M细胞停滞,而且增加了U87细胞的泛素化和蛋白酶体降解,在实验中,DMC抑制Pi3kLine/NF-κB信号和激活caspase-8和caspase-9,促进了细胞色素c的释放,导致胶质瘤U87细胞生长停滞和凋亡[44]。在另一项研究中也得到了类似的结果,DMC可降低神经胶质瘤细胞系线粒体膜电位,并通过激活caspase-3和caspase-9,进而增加DNA片段化和凋亡,同时抑制NF-κB信号通路,使细胞阻滞在SubG0/G1期[45]。不难看出,姜黄素对细胞周期的阻滞作用主要集中在G2/M,这些研究结果可能为进一步的研究指明了方向。

6. 结语

在神经胶质瘤的治疗过程中,涉及多个临床治疗模式,如放疗、化疗和手术。但是神经胶质瘤通常表现出放射和化学抗性,且神经胶质瘤较强的扩散性和侵袭性,以及预后不良等特性。因此,仍然需要其他有效的方法来治疗神经胶质瘤。这篇综述中,我们总结了姜黄素在抑制肿瘤血管生成、抑制肿瘤细胞增殖、诱导细胞凋亡、抑制肿瘤细胞迁移和侵袭、停滞细胞周期等方面干预胶质瘤生长的作用机制。表明了这种天然化合物在治疗神经胶质瘤方面具有巨大的潜力和广阔的前景。

基金项目

西安市创新能力强基计划–医学研究项目(2022JH-YBYJ-0316)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Warsi, N.M., Zewude, R., Karmur, B., Pirouzmand, N., Hachem, L. and Mansouri, A. (2020) The Cost-Effectiveness of 5-ALA in High-Grade Glioma Surgery: A Quality-Based Systematic Review. Canadian Journal of Neurological Sciences, 47, 793-799.
https://doi.org/10.1017/cjn.2020.78
[2] Uhm, J.H. and Porter, A.B. (2017) Treatment of Glioma in the 21st Century: An Exciting Decade of Postsurgical Treatment Advances in the Molecular Era. Mayo Clinic Proceedings, 92, 995-1004.
https://doi.org/10.1016/j.mayocp.2017.01.010
[3] Chen, R.Q., Liu, F., Qiu, X.Y. and Chen, X.Q. (2019) The Prognostic and Therapeutic Value of PD-L1 in Glioma. Frontiers in Pharmacology, 9, Article 1503.
https://doi.org/10.3389/fphar.2018.01503
[4] Ángelo, A.S.T., et al. (2017) Current Therapeutic Alternatives and New Perspectives in Glioblastoma Multiforme. Current Medicinal Chemistry, 24, 2781-2795.
[5] Niranjan, A., Singh, S., Dhiman, M. and Tewari, S.K. (2013) Biochemical Composition of Curcuma longa L. Accessions. Analytical Letters, 46, 1069-1083.
https://doi.org/10.1080/00032719.2012.751541
[6] Kocaadam, B. and Şanlier, N. (2015) Curcumin, an Active Component of Turmeric (Curcuma longa), and Its Effects on Health. Critical Reviews in Food Science and Nutrition, 57, 2889-2895.
https://doi.org/10.1080/10408398.2015.1077195
[7] Nelson, K.M., Dahlin, J.L., Bisson, J., Graham, J., Pauli, G.F. and Walters, M.A. (2017) The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry, 60, 1620-1637.
https://doi.org/10.1021/acs.jmedchem.6b00975
[8] Zhou, S., Zhang, S., Shen, H., Chen, W., Xu, H., Chen, X., et al. (2017) Curcumin Inhibits Cancer Progression through Regulating Expression of Micrornas. Tumor Biology, 39.
https://doi.org/10.1177/1010428317691680
[9] Kesari, S., Ramakrishna, N., Sauvageot, C., Stiles, C.D. and Wen, P.Y. (2006) Targeted Molecular Therapy of Malignant Gliomas. Current Oncology Reports, 8, 58-70.
https://doi.org/10.1007/s11912-006-0011-y
[10] Arbiser, J.L., Klauber, N., Rohan, R., van Leeuwen, R., Huang, M., Fisher, C., et al. (1998) Curcumin Is an in Vivo Inhibitor of Angiogenesis. Molecular Medicine, 4, 376-383.
https://doi.org/10.1007/bf03401744
[11] Perry, M., Demeule, M., Régina, A., Moumdjian, R. and Béliveau, R. (2010) Curcumin Inhibits Tumor Growth and Angiogenesis in Glioblastoma Xenografts. Molecular Nutrition & Food Research, 54, 1192-1201.
https://doi.org/10.1002/mnfr.200900277
[12] Zhang, Z., Li, C., Tan, Q., Xie, C., Yang, Y., Zhan, W., et al. (2017) Curcumin Suppresses Tumor Growth and Angiogenesis in Human Glioma Cells through Modulation of Vascular Endothelial Growth Factor/Angiopoietin-2/thrombospondin-1 Signaling. CNS & Neurological DisordersDrug Targets, 16, 346-350.
https://doi.org/10.2174/1871527315666160902144513
[13] Perry, M., Demeule, M., Régina, A., Moumdjian, R. and Béliveau, R. (2010) Curcumin Inhibits Tumor Growth and Angiogenesis in Glioblastoma Xenografts. Molecular Nutrition & Food Research, 54, 1192-1201.
https://doi.org/10.1002/mnfr.200900277
[14] Ambegaokar, S., Wu, L., Alamshahi, K., et al. (2003) Curcumin Inhibits Dose-Dependently and Time-Dependently Neuroglial Cell Proliferation and Growth. Neuro Endocrinology Letters, 24, 469-473.
[15] Jana, N.R., Dikshit, P., Goswami, A. and Nukina, N. (2004) Inhibition of Proteasomal Function by Curcumin Induces Apoptosis through Mitochondrial Pathway. Journal of Biological Chemistry, 279, 11680-11685.
https://doi.org/10.1074/jbc.m310369200
[16] Reuter, S., Eifes, S., Dicato, M., Aggarwal, B.B. and Diederich, M. (2008) Modulation of Anti-Apoptotic and Survival Pathways by Curcumin as a Strategy to Induce Apoptosis in Cancer Cells. Biochemical Pharmacology, 76, 1340-1351.
https://doi.org/10.1016/j.bcp.2008.07.031
[17] 刘国安, 靳亚东, 冉苗苗, 等. 姜黄素通过促进ROS产生诱导人脑胶质瘤细胞凋亡[J]. 天然产物研究与开发, 2020, 32(4): 541-548.
[18] Wang, Z., Liu, F., Liao, W., Yu, L., Hu, Z., Li, M., et al. (2020) Curcumin Suppresses Glioblastoma Cell Proliferation by P-AKT/mTOR Pathway and Increases the PTEN Expression. Archives of Biochemistry and Biophysics, 689, Article ID: 108412.
https://doi.org/10.1016/j.abb.2020.108412
[19] 胡科, 贾东佩, 任应国, 等. 姜黄素抗胶质瘤作用的分子机制研究[J]. 中华神经医学杂志, 2021, 20(2): 141-152.
[20] Lee, D., Kim, I.Y., Saha, S. and Choi, K.S. (2016) Paraptosis in the Anti-Cancer Arsenal of Natural Products. Pharmacology & Therapeutics, 162, 120-133.
https://doi.org/10.1016/j.pharmthera.2016.01.003
[21] Sperandio, S., Poksay, K., de Belle, I., Lafuente, M.J., Liu, B., Nasir, J., et al. (2004) Paraptosis: Mediation by MAP Kinases and Inhibition by AIP-1/Alix. Cell Death & Differentiation, 11, 1066-1075.
https://doi.org/10.1038/sj.cdd.4401465
[22] Garrido-Armas, M., Corona, J.C., Escobar, M.L., Torres, L., Ordóñez-Romero, F., Hernández-Hernández, A., et al. (2018) Paraptosis in Human Glioblastoma Cell Line Induced by Curcumin. Toxicology in Vitro, 51, 63-73.
https://doi.org/10.1016/j.tiv.2018.04.014
[23] Kumar, R., Lal, N., Nemaysh, V. and Luthra, P.M. (2018) Demethoxycurcumin Mediated Targeting of Mnsod Leading to Activation of Apoptotic Pathway and Inhibition of Akt/NF-κB Survival Signalling in Human Glioma U87 MG Cells. Toxicology and Applied Pharmacology, 345, 75-93.
https://doi.org/10.1016/j.taap.2018.02.020
[24] Kunwar, A., Barik, A., Mishra, B., Rathinasamy, K., Pandey, R. and Priyadarsini, K.I. (2008) Quantitative Cellular Uptake, Localization and Cytotoxicity of Curcumin in Normal and Tumor Cells. Biochimica et Biophysica Acta (BBA)—General Subjects, 1780, 673-679.
https://doi.org/10.1016/j.bbagen.2007.11.016
[25] Syng-ai, C., Kumari, A.L. and Khar, A. (2004) Effect of Curcumin on Normal and Tumor Cells: Role of Glutathione and Bcl-2. Molecular Cancer Therapeutics, 3, 1101-1108.
https://doi.org/10.1158/1535-7163.1101.3.9
[26] Hwang, J.H., Smith, C.A., Salhia, B. and Rutka, J.T. (2008) The Role of Fascin in the Migration and Invasiveness of Malignant Glioma Cells. Neoplasia, 10, 149-159.
https://doi.org/10.1593/neo.07909
[27] Alici, O., Kefeli, M., Yildiz, L., Baris, S., Karagoz, F. and Kandemir, B. (2014) Fascin and EMMPRIN Expression in Primary Mucinous Tumors of Ovary: A Tissue Microarray Study. PathologyResearch and Practice, 210, 934-938.
https://doi.org/10.1016/j.prp.2014.07.003
[28] Liu, C.H., Gao, H., et al. (2016) The Role of FSCN1 in Migration and Invasion of Pituitary Adenomas. Molecular & Cellular Endocrinology, 419, 217-224.
[29] Park, K., Yoon, S., Park, S. and Hwang, J. (2019) Anti-Migration and Anti-Invasion Effects of Curcumin via Suppression of Fascin Expression in Glioblastoma Cells. Brain Tumor Research and Treatment, 7, 16-24.
https://doi.org/10.14791/btrt.2019.7.e28
[30] Zhang, H., Ma, Y., Wang, H., Xu, L. and Yu, Y. (2018) MMP-2 Expression and Correlation with Pathology and MRI of Glioma. Oncology Letters, 17, 1826-1832.
https://doi.org/10.3892/ol.2018.9806
[31] Tabouret, E., Boudouresque, F., Farina, P., Barrié, M., Bequet, C., Sanson, M., et al. (2015) MMP2 and MMP9 as Candidate Biomarkers to Monitor Bevacizumab Therapy in High-Grade Glioma. Neuro-Oncology, 17, 1174-1176.
https://doi.org/10.1093/neuonc/nov094
[32] Thani, N.A.A., Sallis, B., Nuttall, R., Schubert, F.R., Ahsan, M., Davies, D., et al. (2012) Induction of Apoptosis and Reduction of MMP Gene Expression in the U373 Cell Line by Polyphenolics in Aronia Melanocarpa and by Curcumin. Oncology Reports, 28, 1435-1442.
https://doi.org/10.3892/or.2012.1941
[33] Wang, X., Deng, J., Yuan, J., Tang, X., Wang, Y., Chen, H., et al. (2017) Curcumin Exerts Its Tumor Suppressive Function via Inhibition of NEDD4 Oncoprotein in Glioma Cancer Cells. International Journal of Oncology, 51, 467-477.
https://doi.org/10.3892/ijo.2017.4037
[34] Bi, F., Wang, J., Zheng, X., Xiao, J., Zhi, C., Gu, J., et al. (2021) HSP60 Participates in the Anti-Glioma Effects of Curcumin. Experimental and Therapeutic Medicine, 21, Article No. 204.
https://doi.org/10.3892/etm.2021.9637
[35] 王泽夏, 封烨, 刘菲, 等. 姜黄素对神经胶质瘤细胞的抑制作用及机制研究[J]. 重庆医学, 2019, 48(17): 2903-2908.
[36] Luo, Q., Luo, H., Fu, H., et al. (2019) Curcumin Suppresses Invasiveness and Migration of Human Glioma Cells in Vitro by Inhibiting HDGF/β-Catenin Complex. Journal of Southern Medical University, 39, 911-916.
[37] Park, M., Kim, E., Park, I., Lee, H., Woo, S., Lee, J., et al. (2002) Curcumin Inhibits Cell Cycle Progression of Immortalized Human Umbilical Vein Endothelial (ECV304) Cells by Up-Regulating Cyclin-Dependent Kinase Inhibitor, P21WAF1/CIP1, P27KIP1 and P53. International Journal of Oncology, 21, 379-383.
https://doi.org/10.3892/ijo.21.2.379
[38] Liu, E., Wu, J., Cao, W., Zhang, J., Liu, W., Jiang, X., et al. (2007) Curcumin Induces G2/M Cell Cycle Arrest in a P53-Dependent Manner and Upregulates ING4 Expression in Human Glioma. Journal of Neuro-Oncology, 85, 263-270.
https://doi.org/10.1007/s11060-007-9421-4
[39] Chiu, (2010) The Anti-Cancer Efficacy of Curcumin Scrutinized through Core Signaling Pathways in Glioblastoma. International Journal of Molecular Medicine, 26, 217-224.
https://doi.org/10.3892/ijmm_00000455
[40] Zanotto-Filho, A., Braganhol, E., Edelweiss, M.I., Behr, G.A., Zanin, R., Schröder, R., et al. (2012) The Curry Spice Curcumin Selectively Inhibits Cancer Cells Growth in Vitro and in Preclinical Model of Glioblastoma. The Journal of Nutritional Biochemistry, 23, 591-601.
https://doi.org/10.1016/j.jnutbio.2011.02.015
[41] Cheng, C., Jiao, J., Qian, Y., Guo, X., Huang, J., Dai, M., et al. (2016) Curcumin Induces G2/M Arrest and Triggers Apoptosis via Foxo1 Signaling in U87 Human Glioma Cells. Molecular Medicine Reports, 13, 3763-3770.
https://doi.org/10.3892/mmr.2016.5037
[42] Wu, B., Yao, H., Wang, S. and Xu, R. (2013) DAPK1 Modulates a Curcumin-Induced G2/M Arrest and Apoptosis by Regulating STAT3, NF-κB, and Caspase-3 Activation. Biochemical and Biophysical Research Communications, 434, 75-80.
https://doi.org/10.1016/j.bbrc.2013.03.063
[43] Luthra, P.M., Kumar, R. and Prakash, A. (2009) Demethoxycurcumin Induces Bcl-2 Mediated G2/M Arrest and Apoptosis in Human Glioma U87 Cells. Biochemical and Biophysical Research Communications, 384, 420-425.
https://doi.org/10.1016/j.bbrc.2009.04.149
[44] Lal, N., Nemaysh, V. and Luthra, P.M. (2018) Proteasome Mediated Degradation of CDC25C and Cyclin B1 in Demethoxycurcumin Treated Human Glioma U87 MG Cells to Trigger G2/M Cell Cycle Arrest. Toxicology and Applied Pharmacology, 356, 76-89.
https://doi.org/10.1016/j.taap.2018.07.012
[45] Huang, T., Hsu, C., Chang, W., Wang, M., Wu, J. and Hsu, Y. (2012) Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells. Evidence-Based Complementary and Alternative Medicine, 2012, Article ID: 396573.
https://doi.org/10.1155/2012/396573