保留比率的肺功能减损:COPD防控的重点
Preserved Ratio Impaired Spirometry: A Focus for the Prevention and Control of COPD
DOI: 10.12677/acm.2024.1461865, PDF, HTML, XML, 下载: 29  浏览: 61 
作者: 康秀荷, 曲仪庆*:山东大学齐鲁医院,呼吸与危重症医学科,山东 济南
关键词: 慢性阻塞性肺疾病保留比率的肺功能减损防控Chronic Obstructive Pulmonary Disease Preserved Ratio Impaired Spirometry Prevention and Control
摘要: 慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)作为常见的慢性气道炎症疾病之一,显著降低了患者的生活质量。FEV1/FVC < 70%作为COPD诊断标准存在一定争议,很多患者具有慢阻肺症状,并且CT显示有气道炎症和肺部损伤,但肺功能检测结果为健康状态。保留比率的肺功能减损(Preserved Ratio Impaired Spirometry, PRISm)作为COPD重要的表型之一及COPD发生、发展的高危人群,应力争做到早期识别、规范治疗、注重随访,这将是未来COPD防控的重点。本文将对PRISm的患病率,危险因素,临床特点,发病机制及诊疗方案做一综述。
Abstract: Chronic obstructive pulmonary disease is a common chronic inflammatory airway disease that significantly reduces the quality of life of patients. The diagnostic criterion for COPD, FEV1/FVC < 70%, is controversial. Many patients with symptoms of COPD and CT scans showing airway inflammation and lung damage have pulmonary function tests that indicate a healthy state. As one of the most significant phenotypes of COPD and a highrisk group for the occurrence and development of COPD, preserved ratio impaired spirometry (PRISm) should be identified and treated in a standardized manner, with regular followup, in order to facilitate the prevention and control of COPD in the future. This article will review the prevalence, risk factors, clinical characteristics, pathogenesis and treatment options of PRISm.
文章引用:康秀荷, 曲仪庆. 保留比率的肺功能减损:COPD防控的重点[J]. 临床医学进展, 2024, 14(6): 947-952. https://doi.org/10.12677/acm.2024.1461865

1. 引言

保留比率的肺功能减损(Preserved Ratio Impaired Spirometry, PRISm)定义为受检者吸入支气管扩张剂后,第一秒用力呼气量占用力肺活量百分率(Percentage of Forced Expiratory Volume in First Second to Forced Vital Capacity, FEV1/FVC) ≥ 0.7 (即一秒率正常),但患者存在肺通气功能减损。表现为吸入支气管扩张剂后,FEV1占预计值百分比(FEV1%) < 80%和(或) FVC占预计值百分比(FVC%) < 80% [1]。PRISm与COPD并发症发生率及全因死亡率的增加显著相关[2]。GOLD认为,PRISM人群是发生COPD的高危人群,其中尤其需要关注以FVC下降为主的PRISm人群。并且PRISm的人群与心肺疾病的发生发展,全因死亡率和心血管死亡率,住院治疗,以及发生气道阻塞的风险增加相关[3] [4] [5]

2024版GOLD指南指出PRISm并不是一个稳定的表型,经过随访可以恢复正常,也可以发生阻塞性通气功能障碍。据报道,随着时间的推移,大约20%至30%的PRISm受试者转变为阻塞性肺通气功能障碍,从PRISm转变为COPD的最重要预测因素是较低的基线FEV1%和FEV1/FVC、较高年龄、吸烟情况、女性等临床因素[6] [7]。然而,并非所有PRISm的个体最终都会随着时间的推移出现固定的气流阻塞,但他们应该被视为“患者”,因为他们已经出现症状或有功能、结构异常。因此对PRISm人群早期发现和干预,有望降低其死亡风险[8] [9] [10]。规范化人群队列进一步探讨PRISm的发生发展机制、病理生理过程、不同的临床亚型、纵向变化轨迹、慢阻肺发生风险和临床预后非常必要,特别是在不吸烟人群中,为PRISm人群的早防早诊早治提供相应的理论依据[11] [12] [13]

2. PRISm的患病率

PRISm在人群中广泛存在。有研究证明,PRISm在人群中的患病率范围为7.1%至11% [8] [11] [14]。在COPD Gene队列中,PRISm的患病率范围为10.4%至11.3% [15]。来自中国的一项研究从2014~2015年全国慢性阻塞性肺病监测横断面调查中得出,PRISm在人群中的患病率为6.9% [16],且发现PRISm是COPD发展的高危因素之一。日本的一项研究对1202名社区居住的日本老年人进行了随访,发现有11.4%的老年人患上了PRISm,且证实了PRISm患者的痴呆风险高于肺活量测定正常的受试者[17]。美国的一项对于9556名人群的研究调查显示PRISm的患病率为7.02%,同时,此项研究发现了高水平的血清镉与PRISm显著相关[18]。一项加拿大的临床研究包含了1561名受试者发现96名PRISm患者,患病率为6.1%,同时发现PRISm的患者发生心血管疾病的风险较正常肺功能的个体相比风险增加[19]。德国一项1987名受试者的研究中发现,PRISm的患病率为15.7%,且证实了与肺活量测定正常的患者相比,PRISm肺癌患者患鳞状细胞或小细胞肿瘤的发生率更高,并且PRISm与筛查检测到的癌症的晚期肺癌肿瘤分期相关[20]

3. PRISm的危险因素

一项来自美国包括53,701名受试者的回顾性队列研究中发现,肥胖、体重较轻、女性和当前吸烟为PRISm的危险因素[11]。英国的一项大样本队列研究揭示了PRISm与肥胖、当前吸烟情况、哮喘病史、女性、体脂和体脂比相关[8]。来自德国的一项研究显示PRISm与血清中IL-6和GDF-15的表达水平呈正相关[21]。日本的一项研究表示,心力衰竭或肾功能不全可能通过减少FVC影响PRISm,从而影响PRISm的死亡率。与其他可能的机制一样,高龄和既往存在肺部疾病(如间质性肺炎),肥胖等对PRISm的发生存在影响[13]。为了对PRISm的发病机制进行进一步的探索,并确定其可能治疗靶点,来自英国的GWAS研究成功识别与PRISm相关的四个信号:rs7652391 (MECOM)rs9431040 (HLX)、rs62018863 (TMEM114)和rs185937162 (HLA-B),并证实了其与PRISm相关的遗传因素与其他肺部疾病和肺外合并症的风险密切相关[22]

4. PRISm的临床特点

PRISm人群与肺功能正常人群相比,在呼吸道症状方面,发生慢性支气管炎和呼吸困难症状的概率更高、SGRQ评分更高;在肺功能方面,肺总量、肺活量和深吸气量均低于正常肺功能人群,而小气道功能、肺换气功能的减弱则较轻;在运动方面,PRISm患者在峰值运动时呼吸困难/摄氧量比值更高。在标准化次最大做功速率下,PRISm患者具有更大的潮气量/深吸气量,表明存在吸气机械约束[23],其6 min步行试验数据明显缩短[24]。在影像学方面,反应小气道病变的空气潴留指数与功能性小气道疾病PRISm人群较正常肺功能人群较高,肺实质衰减没有增加,由于FEV1/FVC与肺实质衰减参数的相关性最强,但与气道参数的相关性不强。PRISm主要影响气道,包括小的气道病变,对肺实质影响不大。因此,PRISm中FEV1/FVC的值变化不明显,这与PRISm的肺功能指标定义一致[25]。在血清生物标记物方面,IL-6、CRP、GDF-15˚可以作为PRISm的风险预测因子[21]。有研究通过对PRISm的临床指标进行主成分分析和非监督聚类分析发现PRISm可分为三种临床亚型,一是类似慢阻肺亚型,FEV1/FVC低,肺气肿和气体陷闭程度高,出现类似慢阻肺样改变;二是限制性亚型,FEV1/FVC高,肺气肿和气体陷闭程度低,肺总量低;三是高代谢亚型,合并糖尿病和其他伴随疾病比例高[26]。提示通过肺功能诊断的PRISm人群存在显著的异质性。

多项研究显示PRISm相比于肺功能正常人群更常出现伴随疾病,包括:加速衰弱进展、糖尿病、心血管风险、慢性肾病和甲状腺疾病等。PRISm发现与老年人衰弱进展加速有关,PRISm患者相较于正常人群,表现出加速的衰弱指数(Frailty Index, FI)进展[27]。研究显示,PRISm个体发生心血管疾病的风险相较于正常人群升高[28]。患有PRISm的人的整体认知功能较差,腔隙性梗死的患病率较高[29]。COPDGene研究显示PRISm人群糖尿病患病率显著高于肺功能正常人群(21.6% vs. 11.6%, P < 0.05),糖尿病是PRISm发生的相关因素(OR = 1.372, 95% CI: 1.111~1.695) [6]。糖尿病引起的氧化应激可导致肺实质损伤,出现肺纤维化和结构改变[30],同时糖尿病患者的呼吸肌肉力量下降导致呼出气减少出现PRISm。也有研究表明肺功能异常可能早于糖尿病的诊断[31],PRISm更易合并糖尿病的机制目前尚有待进一步研究。Kim等[22]研究显示PRISm相对于肺功能正常人群合并高血压的比例更高(51.5% vs. 44.9%, P < 0.05),合并缺血性脑卒中病史的比例更高(3.5% vs. 1.6%, P < 0.05) [6],考虑可能缺血性脑卒中患者行动能力较正常人显著降低,无法用尽全力呼气导致FEV1和FVC同步降低,进而出现PRISm这一肺功能测定结果。临床医生在关注PRISm的肺功能结果的同时,需要加强对伴随疾病的关注和随访,以减少相应的疾病负担。

5. PRISm的发病机制

先前有研究提出,有支气管肺发育不良的早产儿更容易出现PRISm,其可能机制为TGF-β通路中几个关键点的上调或下调导致肺部异常发育的结果[32],在先天免疫系统缺乏促炎信号的情况下,激活的TGF-β信号传导与抗原刺激相结合,可促进诱导性调节性T细胞的发育,从而发挥免疫抑制功能。然而,能够解释这种联系的分子机制仍然知之甚少。其二,炎症与组织重塑和修复过程密不可分,组织重塑和修复过程会影响肺实质和气道,从而改变肺功能。炎症引起上皮损伤,促炎因子(IL-1,IL-6,IL-8,IL-18,TNF-α和TGF-β)和抗炎(IL-10和IL-13)介质之间的不平衡导致AT1型肺泡上皮细胞的破坏。GOLD2024提出,对于以下人群应做到早期肺功能筛查:既往早产、低出生体重、孕期吸烟、婴儿期被动吸烟、哮喘、过敏、鼻窦炎或鼻息肉病史;儿童期呼吸道感染病史;艾滋病病毒,结核等病史;慢性阻塞性肺病或其他慢性呼吸道疾病的家族史;患者既往存在呼吸系统疾病恶化史或既往住院史;存在导致活动受限的心脏病、骨质疏松症、肌肉骨骼疾病、焦虑和抑郁以及恶性肿瘤病史。

6. PRISm的诊疗方案

现在没有证据表明PRISm的最佳诊疗方案是什么[33],但此类人群应被视为COPD患者,予以积极治疗。首先,对于所有PRISm人群来说,戒烟是一项关键干预措施[34],医务工作者在其中扮演着至关重要的角色,应鼓励患者抓住任何机会戒烟,值得一提的是,电子烟作为戒烟辅助手段的有效性和安全性并没有得到验证。第二,减少室内外环境污染,减少生物质燃料烟雾的暴露是减少全球慢性阻塞性肺病患病率的一个关键目标。高效通风、无污染的炉灶和类似的干预措施是可行的,应予以推荐[35] [36]。第三,减少职业暴露,目前尚无研究证明减少职业暴露的干预措施是否也能减轻慢性阻塞性肺病的负担,但建议患者尽可能避免持续暴露于潜在的刺激物,例如灰尘、烟雾和气体,这似乎是合乎逻辑的。第四,疫苗接种,COPD患者应根据指南推荐接受流感疫苗,呼吸道合胞病毒疫苗,肺炎球菌疫苗等的接种,以减少COPD急性加重的风险[37]。第五,药物治疗,根据患者的日常症状评分,急性加重风险以及血液嗜酸性粒细胞计数进行评估,并根据不同的病情按需制定个体化用药计划,同时需加强有关的循证医学证据。第六,肺康复治疗,应鼓励具有高症状负担和加重风险的患者参加肺康复治疗,根据个人情况,制定改善躯体不适及心理状况的方案,最大程度增加个体受益[30]。最后,加强自我管理,2022年Cochrane综述报告称,加强自我管理干预措施对COPD患者健康相关生命质量的改善、呼吸相关住院概率的降低以及呼吸相关和全因死亡风险的降低有关[31]

7. 总结与展望

PRISm患者与COPD患者一样,有严重的症状主诉和未满足的治疗需求。尽管PRISm的制定与诊断对于患者的预后有利,但我们对这一类别的了解仍然存在许多空白,因为其中许多受试者会演变为正常肺活量测定,而另一些会演变为气流阻塞,而我们不知道导致它们以某种方式进化的病理生理机制,需要进一步深入研究,我们应该对疾病的病程和PRISm患者的治疗潜力保持持续的兴趣。需要进一步的研究来确定这些患者最合适的评估和治疗策略。

NOTES

*通讯作者。

参考文献

[1] Agustí, A., Celli, B.R., Criner, G.J., Halpin, D., Anzueto, A., Barnes, P., et al. (2023) Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. European Respiratory Journal, 61, 2300239.
https://doi.org/10.1183/13993003.00239-2023
[2] Guerra, S., Sherrill, D.L., Venker, C., Ceccato, C.M., Halonen, M. and Martinez, F.D. (2010) Morbidity and Mortality Associated with the Restrictive Spirometric Pattern: A Longitudinal Study. Thorax, 65, 499-504.
https://doi.org/10.1136/thx.2009.126052
[3] Kugler, W., Enssle, J., Hentze, M.W. and Kulozik, A.E. (1995) Nuclear Degradation of Nonsense Mutated Β-Globin Mrna: A Post-Transcriptional Mechanism to Protect Heterozygotes from Severe Clinical Manifestations of β-Thalassemia? Nucleic Acids Research, 23, 413-418.
https://doi.org/10.1093/nar/23.3.413
[4] Tokano, Y., Miyake, S., Kayagaki, N., Nozawa, K., Morimoto, S., Azuma, M., et al. (1996) Soluble Fas Molecule in the Serum of Patients with Systemic Lupus Erythematosus. Journal of Clinical Immunology, 16, 261-265.
https://doi.org/10.1007/bf01541390
[5] Littleton, S.W. and Tulaimat, A. (2017) The Effects of Obesity on Lung Volumes and Oxygenation. Respiratory Medicine, 124, 15-20.
https://doi.org/10.1016/j.rmed.2017.01.004
[6] Leone, N., Courbon, D., Thomas, F., Bean, K., Jégo, B., Leynaert, B., et al. (2009) Lung Function Impairment and Metabolic Syndrome. American Journal of Respiratory and Critical Care Medicine, 179, 509-516.
https://doi.org/10.1164/rccm.200807-1195oc
[7] van Westing, A.C., Ochoa-Rosales, C., van der Burgh, A.C., Chaker, L., Geleijnse, J.M., Hoorn, E.J., et al. (2023) Association of Habitual Coffee Consumption and Kidney Function: A Prospective Analysis in the Rotterdam Study. Clinical Nutrition, 42, 83-92.
https://doi.org/10.1016/j.clnu.2022.11.017
[8] Higbee, D.H., Granell, R., Davey Smith, G. and Dodd, J.W. (2022) Prevalence, Risk Factors, and Clinical Implications of Preserved Ratio Impaired Spirometry: A UK Biobank Cohort Analysis. The Lancet Respiratory Medicine, 10, 149-157.
https://doi.org/10.1016/s2213-2600(21)00369-6
[9] Park, H.J., Byun, M.K., Rhee, C.K., Kim, K., Kim, H.J. and Yoo, K. (2018) Significant Predictors of Medically Diagnosed Chronic Obstructive Pulmonary Disease in Patients with Preserved Ratio Impaired Spirometry: A 3-Year Cohort Study. Respiratory Research, 19, Article No. 185.
https://doi.org/10.1186/s12931-018-0896-7
[10] Wei, X., Ding, Q., Yu, N., Mi, J., Ren, J., Li, J., et al. (2018) Imaging Features of Chronic Bronchitis with Preserved Ratio and Impaired Spirometry (PRISm). Lung, 196, 649-658.
https://doi.org/10.1007/s00408-018-0162-2
[11] Wan, E.S., Balte, P., Schwartz, J.E., Bhatt, S.P., Cassano, P.A., Couper, D., et al. (2021) Association between Preserved Ratio Impaired Spirometry and Clinical Outcomes in US Adults. JAMA, 326, 2287-2298.
https://doi.org/10.1001/jama.2021.20939
[12] Kim, J., Lee, C., Lee, H.Y. and Kim, H. (2021) Association between Comorbidities and Preserved Ratio Impaired Spirometry: Using the Korean National Health and Nutrition Examination Survey IV-VI. Respiration, 101, 25-33.
https://doi.org/10.1159/000517599
[13] Washio, Y., Sakata, S., Fukuyama, S., Honda, T., Kan-o, K., Shibata, M., et al. (2022) Risks of Mortality and Airflow Limitation in Japanese Individuals with Preserved Ratio Impaired Spirometry. American Journal of Respiratory and Critical Care Medicine, 206, 563-572.
https://doi.org/10.1164/rccm.202110-2302oc
[14] Perez-Padilla, R., Montes de Oca, M., Thirion-Romero, I., Wehrmeister, F.C., Lopez, M.V., Valdivia, G., et al. (2023) Trajectories of Spirometric Patterns, Obstructive and Prism, in a Population-Based Cohort in Latin America. International Journal of Chronic Obstructive Pulmonary Disease, 18, 1277-1285.
https://doi.org/10.2147/copd.s406208
[15] Wan, E.S., Hokanson, J.E., Regan, E.A., Young, K.A., Make, B.J., DeMeo, D.L., et al. (2022) Significant Spirometric Transitions and Preserved Ratio Impaired Spirometry among Ever Smokers. Chest, 161, 651-661.
https://doi.org/10.1016/j.chest.2021.09.021
[16] Fan, J., Fang, L., Cong, S., Zhang, Y., Jiang, X., Wang, N., et al. (2024) Potential Pre-COPD Indicators in Association with COPD Development and COPD Prediction Models in Chinese: A Prospective Cohort Study. The Lancet Regional HealthWestern Pacific, 44, Article ID: 100984.
https://doi.org/10.1016/j.lanwpc.2023.100984
[17] Kawatoko, K., Washio, Y., Ohara, T., Fukuyama, S., Honda, T., Hata, J., et al. (2023) Risks of Dementia in a General Japanese Older Population with Preserved Ratio Impaired Spirometry: The Hisayama Study. Journal of Epidemiology.
https://doi.org/10.2188/jea.je20230207
[18] Chen, C., Zhang, S., Yang, T., Wang, C. and Han, G. (2023) Associations between Environmental Heavy Metals Exposure and Preserved Ratio Impaired Spirometry in the U.S. Adults. Environmental Science and Pollution Research, 30, 108274-108287.
https://doi.org/10.1007/s11356-023-29688-y
[19] Krishnan, S., Tan, W.C., Farias, R., et al. (2023) Impaired Spirometry and COPD Increase the Risk of Cardiovascular Disease: A Canadian Cohort Study. Chest, 164, 637-649.
[20] Kaaks, R., Christodoulou, E., Motsch, E., Katzke, V., Wielpütz, M.O., Kauczor, H., et al. (2022) Lung Function Impairment in the German Lung Cancer Screening Intervention Study (LUSI): Prevalence, Symptoms, and Associations with Lung Cancer Risk, Tumor Histology and All-Cause Mortality. Translational Lung Cancer Research, 11, 1896-1911.
https://doi.org/10.21037/tlcr-22-63
[21] Cortés-Ibáñez, F.O., Johnson, T., Mascalchi, M., Katzke, V., Delorme, S. and Kaaks, R. (2023) Serum-Based Biomarkers Associated with Lung Cancer Risk and Cause-Specific Mortality in the German Randomized Lung Cancer Screening Intervention (LUSI) Trial. Translational Lung Cancer Research, 12, 2460-2475.
https://doi.org/10.21037/tlcr-23-548
[22] Jin, Z. and Wang, G. (2024) Some Future Directions for Genome-Wide Association Studies of Preserved Ratio Impaired Spirometry. European Respiratory Journal, 63, Article ID: 2400142.
https://doi.org/10.1183/13993003.00142-2024
[23] Phillips, D.B., James, M.D., Vincent, S.G., et al. (2024) Physiological Characterization of Preserved Ratio Impaired Spirometry in the CanCOLD Study: Implications for Exertional Dyspnea and Exercise Intolerance. American Journal of Respiratory and Critical Care Medicine.
[24] Wan, E.S., Fortis, S., Regan, E.A., et al. (2018) Longitudinal Phenotypes and Mortality in Preserved Ratio Impaired Spirometry in the COPDGene Study. American Journal of Respiratory and Critical Care Medicine, 198, 1397-1405.
[25] Lu, J., Ge, H., Qi, L., Zhang, S., Yang, Y., Huang, X., et al. (2022) Subtyping Preserved Ratio Impaired Spirometry (prism) by Using Quantitative HRCT Imaging Characteristics. Respiratory Research, 23, Article No. 309.
https://doi.org/10.1186/s12931-022-02113-7
[26] Wan, E.S., Castaldi, P.J., Cho, M.H., Hokanson, J.E., Regan, E.A., Make, B.J., et al. (2014) Epidemiology, Genetics, and Subtyping of Preserved Ratio Impaired Spirometry (PRISm) in Copdgene. Respiratory Research, 15, Article No. 89.
https://doi.org/10.1186/s12931-014-0089-y
[27] He, D., Yan, M., Zhou, Y., et al. (2023) Preserved Ratio Impaired Spirometry and COPD Accelerate Frailty Progression: Evidence from a Prospective Cohort Study. Chest, 165, 573-582.
[28] Im, Y., Park, H.Y., Lee, J., Kim, H., Yoo, H., Kang, M., et al. (2023) Impact of Preserved Ratio Impaired Spirometry on Coronary Artery Calcium Score Progression: A Longitudinal Cohort Study. ERJ Open Research, 10, 00819-2023.
https://doi.org/10.1183/23120541.00819-2023
[29] Xiao, T., Wijnant, S.R.A., van der Velpen, I., Terzikhan, N., Lahousse, L., Ikram, M.K., et al. (2022) Lung Function Impairment in Relation to Cognition and Vascular Brain Lesions: The Rotterdam Study. Journal of Neurology, 269, 4141-4153.
https://doi.org/10.1007/s00415-022-11027-9
[30] Alison, J.A., McKeough, Z.J., Johnston, K., McNamara, R.J., Spencer, L.M., Jenkins, S.C., et al. (2017) Australian and new zealand pulmonary rehabilitation guidelines. Respirology, 22, 800-819.
https://doi.org/10.1111/resp.13025
[31] Schrijver, J., Lenferink, A., Brusse-Keizer, M., Zwerink, M., van der Valk, P.D., van der Palen, J., et al. (2022) Self-management Interventions for People with Chronic Obstructive Pulmonary Disease. Cochrane Database of Systematic Reviews, No. 1, CD002990.
https://doi.org/10.1002/14651858.cd002990.pub4
[32] Warburton, D., Gauldie, J., Bellusci, S. and Shi, W. (2006) Lung Development and Susceptibility to Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 3, 668-672.
https://doi.org/10.1513/pats.200605-122sf
[33] Sin, D.D. (2022) Rethincking COPD—Bronchodilators for Symptomatic Tobacco-Exposed Persons with Preserved Lung Function? New England Journal of Medicine, 387, 1230-1231.
https://doi.org/10.1056/nejme2210347
[34] Willemse, B.W.M., Postma, D.S., Timens, W. and ten Hacken, N.H.T. (2004) The Impact of Smoking Cessation on Respiratory Symptoms, Lung Function, Airway Hyperresponsiveness and Inflammation. European Respiratory Journal, 23, 464-476.
https://doi.org/10.1183/09031936.04.00012704
[35] Yang, I.A., Jenkins, C.R. and Salvi, S.S. (2022) Chronic Obstructive Pulmonary Disease in Never-Smokers: Risk Factors, Pathogenesis, and Implications for Prevention and Treatment. The Lancet Respiratory Medicine, 10, 497-511.
https://doi.org/10.1016/s2213-2600(21)00506-3
[36] Sin, D.D., Doiron, D., Agusti, A., Anzueto, A., Barnes, P.J., Celli, B.R., et al. (2023) Air Pollution and COPD: GOLD 2023 Committee Report. European Respiratory Journal, 61, Article ID: 2202469.
https://doi.org/10.1183/13993003.02469-2022
[37] Poole, P., Chacko, E.E., Wood-Baker, R. and Cates, C.J. (2006) Influenza Vaccine for Patients with Chronic Obstructive Pulmonary Disease. Cochrane Database of Systematic Reviews, No. 1, CD002733.
https://doi.org/10.1002/14651858.cd002733.pub2