胆囊切除术后与NAFLD关系研究进展
Advances in the Study of the Relationship between Post-Cholecystectomy and NAFLD
DOI: 10.12677/jcpm.2024.32083, PDF, HTML, XML, 下载: 37  浏览: 63 
作者: 杨艳贺:青海大学研究生院,青海 西宁;杨永成*:青海大学附属医院消化科,青海 西宁
关键词: 胆囊切除非酒精性脂肪性肝病法尼醇X受体肠道微生物胆汁酸Cholecystectomy Non-Alcoholic Fatty Liver Disease Farnesoid X Receptor Gut Microbiota Bile Acid
摘要: 越来越多的证据表明,胆囊切除术后是非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)的独立危险因素。然而,胆囊切除术后与NAFLD之间的关系及潜在机制尚不清楚。胆囊切除术改变了进入肠道的胆汁流量和胆汁酸(bile acid, BA)的肠肝循环,这可能改变了胆汁酸和肠道微生物之间的相互作用,法尼醇X受体(Farnesoid X receptor, FXR)作为胆汁酸代谢和肠肝循环的关键调节因子,可在肠道和肝脏之间提供对话。本综述的目的是整合有关FXR、肠道微生物群、胆汁酸在胆囊切除术后NAFLD的相关文献进展进行概述。
Abstract: There is increasing evidence that post-cholecystectomy is an independent risk factor for non-alcoholic fatty liver disease (NAFLD). However, the relationship between post-cholecystectomy and NAFLD and the underlying mechanisms are unclear. Cholecystectomy alters the flow of bile into the gut and enterohepatic circulation of bile acid (BA), which may alter the interaction between bile acids and gut microorganisms, and farnesol X receptor (FXR), a key regulator of bile acid metabolism and enterohepatic circulation, may provide a dialog between the gut and the liver. The purpose of this review is to integrate an overview of relevant literature advances regarding FXR, gut microbiota, and bile acids in post-cholecystectomy NAFLD.
文章引用:杨艳贺, 杨永成. 胆囊切除术后与NAFLD关系研究进展[J]. 临床个性化医学, 2024, 3(2): 574-580. https://doi.org/10.12677/jcpm.2024.32083

1. 引言

调查研究表明,腹腔镜胆囊切除术为胆囊结石患者提供了显著的健康收益[1]。在一些非肥胖的个体胆囊切除2年后载脂蛋白B的浓度有所增加,通过MRI评估肝脏脂肪(HFC)平均值也略增加[2]。不仅如此,在接受胆囊切除的受试者中肠道微生物也存在差异[3]。目前,关于胆囊切除后肠道菌群变化情况尚未在属水平上的丰度变化达成一致[4]。上述可能与胆囊切除后胆汁酸的分泌失去了节律性,胆汁酸的肠肝循环速度加快,从而影响肠道菌群的丰度和组成,并且通过改变FXR和G5蛋白偶联的胆汁酸受体活性,影响机体糖脂代谢水平,有利于NAFLD的发生[5] [6]。研究表明,菌群失调通过改变肠–肝稳态,包括肠道屏障的破坏、脂多糖向肝脏的门脉转运、胆汁酸谱的失调和短链脂肪酸浓度的降低,促进NAFLD的发展[7] [8] [9]。NAFLD在全球范围内影响着人类的健康,中国一般人群中NAFLD的患病率从5%到24%不等,随着饮食结构及生活方式的改变,其患病率在中国迅速增加,且趋于年轻化[10]。本文就胆囊切除术后胆汁酸与肠道微生物的变化及发生机制以及FXR对糖脂代谢产生的作用在NAFLD的发展中扮演的角色进行综述,为胆囊切除后NAFLD的预防及治疗提供新的思路。

2. 胆囊切除术后与NAFLD的相关性研究现状

目前,国内外对于胆囊切除术后与NAFLD的相关性仍然没有定论。一项国外的队列研究表明在对代谢因素进行多变量调整后,胆囊切除术后与NAFLD的存在不再相关[11],这项研究虽然受试者数量多,但并未对肝脏脂肪变性使用有创或无创检查方式进行评估。在中国,一项基于体重指数(BMI)在正常范围的12,303名体检者的回顾性研究表明随着BMI值的上升,可导致NAFLD患病率的增加[12]。一项12例患者在程序化胆囊切除术后接受了肝活检并进行为期6个月的随访,结果表明胆囊切除会加重肝脏的脂肪变程度[13]。对于胆囊切除术后与NAFLD的荟萃分析中[14],横断面研究的合并结果显示胆囊切除术后与NAFLD相关,但异质性较高。此外,从前瞻性研究合并结果来看并不能证实它们的因果关系。我们可能需要更多的前瞻性研究进一步探讨胆囊切除术是否可以独立引起NAFLD。

3. 肠道微生物与胆汁酸的关系

3.1. 胆汁酸的循环代谢

在肝脏中,来自血浆或内源性合成的胆固醇被酶促加工成初级胆汁酸,如胆酸(cholic acid, CA)或鹅去氧胆酸(Chenodeoxycholic acid, CDCA),形成甘氨酸或牛磺酸结合物,然后通过胆盐输出泵(bile salt export pump, BSEP)在小管膜上主动排泄到胆汁中并储存在胆囊中[15]。肝细胞胆汁酸转运至胆管腔过程中,胆汁酸与磷脂酰胆碱和胆固醇形成混合胶束,由多重耐药蛋白3 (multidrug resistance associated protein 3, MDR3)和ATP结合盒G亚家族成员5/8 (ATP-binding cassette sub-family Gmember 5, ABCG5/ATP- binding cassette sub-family Gmember 8, ABCG8)转运蛋白转运[16]。胆囊的收缩是由消化间期通过十二指肠分泌的胆囊收缩素刺激,以排出胆汁[17]。转运到肠道后,由肠道细菌代谢,并通过肠肝系统再循环回肝脏[18]。脑–肝–肠轴的信号分子的紊乱会导致代谢综合征,如肥胖、脂肪肝和2型糖尿病[19]

3.2. 肠道微生物–胆汁酸相互作用的调节

人类肠道微生物组是一个由多样性和动态的微生物库共同居住的分层和弹性生态系统,任何微生物失调都可能导致生理和代谢紊乱的发生[20]。胆汁酸作为细菌生长的强效抑制剂,对肠道菌群产生选择性压力,调节肠道菌群的丰度和组成,干扰胆汁酸和肠道微生物之间的相互作用会促进炎症和消化道疾病[5]。然而,肠道微生物群的组成对维持稳定的胆汁酸库也至关重要,对宿主健康有积极影响,肠道微生物群主要通过四种新陈代谢途径(偶联、脱羟基、氧化和外泌)对初级胆汁酸进行修饰,从而增加了胆汁酸池的多样性和初级胆汁酸的总体疏水性[17]。从而产生与胆汁酸受体具有不同亲和力的胆汁酸,从而可以影响胆汁酸受体信号传导[21]。胆汁酸通过破坏细菌细胞膜而具有抗菌活性,在含有少量胆汁酸的正常条件下抑制细菌过度生长,在高脂饮食中,胆汁酸耐受菌,如拟杆菌属,另枝菌属和嗜胆菌属增加,而多糖消化菌,如罗斯氏菌,直肠真杆菌,瘤胃球菌属和厚壁菌门减少[19]。不仅如此,在高脂肪饮食诱导的脂肪变性背景下,使用口服葡聚糖硫酸钠对小鼠肠道屏障的机械破坏增加了门静脉脂多糖吸收、肝脏炎症和纤维生成,脂多糖通过toll样受体4 (Toll-like receptors 4, TLR4)介导炎症信号[7]。此外,还有研究表明胆囊切除术后特定的细菌变化,以及细菌失调可能与结直肠癌的发生和进展有关[22] [23]。越来越多的证据表明,胆囊切除术后与肠道微生物稳态紊乱和胆汁酸代谢失调有关。

4. FXR在NAFLD代谢中的作用

4.1. FXR的结构

FXR基因(Nr1h4)于1995年首次从小鼠和大鼠肝脏中克隆,1999年发现胆汁酸是FXR的内源性配体[24]。FXR具有核受体的共同结构,包括一个与配体无关的转录激活结构域(AF1)、一个DNA结合结构域(DBD)、一个配体结合结构域(LBD)、一个连接DBD和LBD的铰链区以及一个与配体有关的转录激活功能结构域(AF2) [25]。FXR在人类和小鼠中以4种不同的异构体形式从一个基因座表达,人类肝脏主要表达FXRα1和α2,FXRα2的表达通过ER-2结合主导了FXR激动的效应,它的表达影响了肝脏代谢和代谢性疾病的治疗效果[26]

4.2. FXR在胆汁酸稳态中的作用

FXR是胆汁酸受体,在肝脏、肾脏、肾上腺和肠道中高表达[27]。FXR调节多种基因参与调节脂质稳态和炎症反应,在肝脏脂肪变性、高血糖和高血脂中发挥重要作用[27]。在回肠,FXR被吸收的胆汁酸激活,FXR调节参与胆汁酸吸收的回肠胆汁酸结合蛋白(ileum bile acid binding protein, IBABP)、有机溶质转运蛋白(organic solute transporter, OST)的转录,以及参与肠–肝通信的关键肠因子成纤维细胞生长因子15/19 (fibroblast growth factor 15/19, FGF15/19)的转录[28]。FXR信号在肠道中通过激活肠激酶FGF15/19的表达,FGF15/19运输到肝细胞后进一步激活成纤维细胞生长因子受体4 (fibroblast growth factor receptor 4, FGFR4),FGFR4进一步通过涉及丝裂原激活蛋白激酶(mitogen activated protein kinase, MAPK)通路的信号通路引起胆固醇7α羟化酶(cholesterol 7α-hydroxylase, CYP7A1)转录的抑制,从而减轻肝脏胆汁酸过载[29]。此外,当胆汁酸与FXR结合后,FXR-维甲酸X受体异源二聚体复合物被激活,导致转录抑制因子小异源二聚体伴侣(small heterodimer partner, SHP)的诱导,进而下调胆汁酸合成关键酶CYP7A1和固醇12α-羟化酶(Sterol 12α-hydroxylase, CYP8B1),通过抑制其反式激活因子肝受体同源物-1和肝细胞核因子4的分子变化,共同导致胆汁酸合成的抑制[15]。动物实验研究表明,在FXR缺失的小鼠中高脂饮食喂养小鼠会加剧胆汁酸代谢紊乱,肝脏组织中BSEP的蛋白水平降低,而牛磺胆酸钠共转运多肽(sodium-taurocholate co-transporting polypeptide, NTCP)的蛋白水平升高,导致胆汁酸在肝脏中的积累[30]。胆汁酸的改变通过与分布在不同部位的胆汁酸受体结合,调节脂质或糖代谢信号,从而对NAFLD产生影响[31]

4.3. 胆汁酸介导FXR的表达影响糖脂代谢

FXR是胆汁酸代谢的主要传感器和调节剂。胆汁酸池的大小通过肠道和肝脏FXR信号传导的协调作用在负反馈回路中调节[32]。简而言之,FXR激活减少了胆汁酸的产生,有利于胆汁酸从肝脏排泄,导致胆汁酸库的数量减少和质量变化[32]。相反,FXR基因的缺失会增加肝脏脂质含量并促进产生致动脉粥样硬化脂蛋白,从而不利于脂质代谢,但它也会减少饮食诱导的体重增加,增加能量消耗并改善葡萄糖耐量[33]

胆汁酸介导的肝脏FXR激活可诱导非典型核受体SHP的表达,从而促进活性氧结合蛋白-1c (sterol regulatory element binding protein 1c, SREBP1c)的抑制,最终导致肝脏甘油三酯合成减少;FXR可以通过激活肝脏NR过氧化物酶体增殖物激活受体α (peroxisome proliferator-activated receptor α, PPARα)后促进脂肪酸氧化,以及通过血浆VLDL甘油三酯清除来限制脂肪在肝脏中的积累;FXR通过介导丙酮酸脱氢酶激酶4 (pyruvate dehydrogenase kinase 4, PDK4)基因表达来调节肝脂滴积累和胰岛素抵抗[34] [35] [36]。最新的一项突破性研究表明[37],FXR激活可降低肝脏脂质,然而,这种变化与SHP和SREBP1c无关,可能和FXR的激活下调三个肝脏脂肪酸合成基因(Scd1、Lpin1和Dgat2)的表达有关。

FXR在整个小肠中表达,即十二指肠、空肠和回肠,肠道葡萄糖吸收是餐中葡萄糖代谢的第一步[38]。在小肠中,葡萄糖的跨上皮转运主要由肠上皮细胞中的顶端钠–葡萄糖转运蛋白1 (Na+/glucose cotransporter 1, SGLT1)和基底外侧葡萄糖转运蛋白2 (Glucose transporter 2, GLUT2)介导[39]。肠道胆汁缺乏会增加肠道葡萄糖转运体的表达,已知FXR参与多种信号通路,包括细胞外调节蛋白激酶1/2 (Extracellular-regulated kinase 1/2, ERK1/2)、c-Jun氨基末端激酶1/2 (c-jun N-terminal Kinase1/2, JNK1/2)和蛋白激酶B (protein kinase B, AKT)通路,以发挥其生物效应。激活可刺激肠道分泌FGF15/19,FGF15/19可通过激活ERK1/2促进脂肪细胞摄取葡萄糖[39]。关于信号交叉作用的研究结果也表明,胆汁酸介导的FXR可激活MAPK通路,从而影响肠道葡萄糖代谢。胆汁酸激活的FXR信号可使p-ERK1/2水平升高,从而在不同程度上促进葡萄糖摄取[39]

5. 胆囊切除后通过FXR及肠道微生物影响NAFLD

胆囊不仅是一个储存和浓缩胆汁的器官,还能影响胆汁酸的排泄节律。胆囊切除后胆囊失去储库浓缩功能,肠道将成为胆汁酸的主要储存库,胆汁酸池流经肠肝循环的频率至少是正常情况下的两倍[40]。这种变化可能使肠肝器官,尤其是在新陈代谢调节中发挥重要作用的肝脏,暴露于更高水平的细胞毒性分子(如脱氧胆酸和石胆酸)中[41]。作为信号分子的胆汁酸浓度紊乱、经肠流动减弱以及快速的肠肝再循环最终会干扰BA/FXR以及BA/GPBAR-1轴的基因表达,这种情况会导致不稳定的全身性异常,而这正是代谢综合征的根源[42]

胆囊切除术后可增加胆汁酸的肠肝再循环率,进一步使胆汁酸长时间暴露于肠道,这被认为是胆囊切除术后重塑肠道微生物群结构的主要原因[43]。有研究证明,高脂高胆固醇膳食会加剧破坏肠道微生物群的稳态,导致肠道菌群多样性和差异菌群结构的改变[17]。此外,动物研究发现,小鼠胆囊切除术后进行高脂饮食改变了肠道微生物群谱,可能有助于小鼠NAFLD的发展[5]

6. 总结与展望

胆囊切除术后由于胆囊节律功能的丧失而导致的肠肝循环障碍,从而改变了正常的胆汁酸代谢,导致肠道菌群紊乱,改变微生物代谢产物的组成和含量,影响肠道内环境和肠壁通透性,进一步导致肝脏发生严重的炎症反应,最终引起高脂饮食诱导的NAFLD发展为NASH [5]。胆囊调节功能的缺失导致胆汁酸代谢紊乱和胆汁酸再循环,影响胆汁酸及其受体的关键稳态通路,如法尼醇X受体FXR [13]。FXR在肝脏稳态中起着不可或缺的作用,一直是肝脏疾病的有前途的药物靶点。此外,FXR的调控蛋白在肝脏或肠道中的表达不同,发挥的作用也不同,一些粘菌素和双歧杆菌是通过激活肝脏FXR和抑制肠道FXR表达,以及在炎症刺激、缺氧和肠道微生物群失调等病理条件下,ZO-1和Occludin这两种紧密连接蛋白的表达增加,通过改善肠道通透性对NAFLD做出积极贡献[44]。目前,对于胆囊切除术后是否可以独立引起NAFLD需要更多的研究来证实,可以肯定的是胆囊切除术后改变了机体胆汁酸代谢和肠道菌群。对于胆囊切除术后合并NAFLD的患者来说,通过纠正胆汁酸失衡及调节肠道菌群治疗是一种有效的手段。

NOTES

*通讯作者。

参考文献

[1] Sutherland, J.M., Mok, J., Liu, G., Karimuddin, A. and Crump, T. (2020) A Cost-Utility Study of Laparoscopic Cholecystectomy for the Treatment of Symptomatic Gallstones. Journal of Gastrointestinal Surgery, 24, 1314-1319.
https://doi.org/10.1007/s11605-019-04268-z
[2] Cortés, V., Quezada, N., Uribe, S., Arrese, M. and Nervi, F. (2017) Effect of Cholecystectomy on Hepatic Fat Accumulation and Insulin Resistance in Non-Obese Hispanic Patients: A Pilot Study. Lipids in Health and Disease, 16, Article No. 129.
https://doi.org/10.1186/s12944-017-0525-3
[3] Yoon, W.J., Kim, H., Park, E., Ryu, S., Chang, Y., Shin, H., et al. (2019) The Impact of Cholecystectomy on the Gut Microbiota: A Case-Control Study. Journal of Clinical Medicine, 8, Article 79.
https://doi.org/10.3390/jcm8010079
[4] 叶佳怡, 冯金华, 李卡. 胆囊切除术后患者肠道微生物群改变的研究进展[J]. 中国普外基础与临床杂志, 2022, 29(12): 1653-1659.
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2023&filename=ZPWL202212020&v
[5] Wang, Q., Lu, Q., Shao, W., Jiang, Z. and Hu, H. (2021) Dysbiosis of Gut Microbiota after Cholecystectomy Is Associated with Non‐alcoholic Fatty Liver Disease in Mice. FEBS Open Bio, 11, 2329-2339.
https://doi.org/10.1002/2211-5463.13243
[6] Rodríguez-Antonio, I., López-Sánchez, G.N., Garrido-Camacho, V.Y., Uribe, M., Chávez-Tapia, N.C. and Nuño-Lámbarri, N. (2020) Cholecystectomy as a Risk Factor for Non-Alcoholic Fatty Liver Disease Development. HPB, 22, 1513-1520.
https://doi.org/10.1016/j.hpb.2020.07.011
[7] Tokuhara, D. (2021) Role of the Gut Microbiota in Regulating Non-Alcoholic Fatty Liver Disease in Children and Adolescents. Frontiers in Nutrition, 8, Article 700058.
https://doi.org/10.3389/fnut.2021.700058
[8] Yang, S., Yu, D., Liu, J., Qiao, Y., Gu, S., Yang, R., et al. (2023) Global Publication Trends and Research Hotspots of the Gut-Liver Axis in NAFLD: A Bibliometric Analysis. Frontiers in Endocrinology, 14, Article 1121540.
https://doi.org/10.3389/fendo.2023.1121540
[9] Jiao, N., Baker, S.S., Chapa-Rodriguez, A., Liu, W., Nugent, C.A., Tsompana, M., et al. (2017) Suppressed Hepatic Bile Acid Signalling Despite Elevated Production of Primary and Secondary Bile Acids in NAFLD. Gut, 67, 1881-1891.
https://doi.org/10.1136/gutjnl-2017-314307
[10] 丁雪娇, 赵双清, 李雅丽. 非酒精性脂肪性肝病的流行病学及防治[J]. 中国临床保健杂志, 2021, 24(6): 742-746.
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2022&filename=LZBJ202106006
[11] Latenstein, C.S.S., Alferink, L.J.M., Darwish Murad, S., Drenth, J.P.H., van Laarhoven, C.J.H.M. and de Reuver, P.R. (2020) The Association between Cholecystectomy, Metabolic Syndrome, and Nonalcoholic Fatty Liver Disease: A Population-Based Study. Clinical and Translational Gastroenterology, 11, e00170.
https://doi.org/10.14309/ctg.0000000000000170
[12] 陈静, 吴建荣, 韩亚鹏, 等. 体重正常人群胆囊切除术与NAFLD的相关性分析[J]. 新疆医学, 2023, 53(7): 771-773, 794.
https://kns.cnki.net/kcms2/article/abstract?v=CNKoHtoL3RHjnjv_OU3Zy_oP5QSHh_CiZo-4bFNq1Q0CgOivm96j5NegiUWxjgZjBL1acJiOzWlJiUfj8DhVBc8raKcih1HKTAxlnBfUxnznKvznM4fNyt9YFNrJAu9i&uniplatform=NZKPT&language=gb
[13] Pal, S.C., Castillo-Castañeda, S.M., Díaz-Orozco, L.E., Ramírez-Mejía, M.M., Dorantes-Heredia, R., Alonso-Morales, R., et al. (2023) Molecular Mechanisms Involved in MAFLD in Cholecystectomized Patients: A Cohort Study. Genes, 14, Article 1935.
https://doi.org/10.3390/genes14101935
[14] Lyu, J., Lin, Q., Fang, Z., Xu, Z. and Liu, Z. (2022) Complex Impacts of Gallstone Disease on Metabolic Syndrome and Nonalcoholic Fatty Liver Disease. Frontiers in Endocrinology, 13, Article 1032557.
https://doi.org/10.3389/fendo.2022.1032557
[15] Radun, R. and Trauner, M. (2021) Role of FXR in Bile Acid and Metabolic Homeostasis in NASH: Pathogenetic Concepts and Therapeutic Opportunities. Seminars in Liver Disease, 41, 461-475.
https://doi.org/10.1055/s-0041-1731707
[16] Molinaro, A. and Marschall, H. (2022) Bile Acid Metabolism and FXR-Mediated Effects in Human Cholestatic Liver Disorders. Biochemical Society Transactions, 50, 361-373.
https://doi.org/10.1042/bst20210658
[17] Xu, F., Yu, Z., Liu, Y., Du, T., Yu, L., Tian, F., et al. (2023) A High-Fat, High-Cholesterol Diet Promotes Intestinal Inflammation by Exacerbating Gut Microbiome Dysbiosis and Bile Acid Disorders in Cholecystectomy. Nutrients, 15, Article 3829.
https://doi.org/10.3390/nu15173829
[18] Jiao, T., Ma, Y., Guo, X., Ye, Y. and Xie, C. (2022) Bile Acid and Receptors: Biology and Drug Discovery for Nonalcoholic Fatty Liver Disease. Acta Pharmacologica Sinica, 43, 1103-1119.
https://doi.org/10.1038/s41401-022-00880-z
[19] Park, S., Zhang, T., Yue, Y. and Wu, X. (2022) Effects of Bile Acid Modulation by Dietary Fat, Cholecystectomy, and Bile Acid Sequestrant on Energy, Glucose, and Lipid Metabolism and Gut Microbiota in Mice. International Journal of Molecular Sciences, 23, Article 5935.
https://doi.org/10.3390/ijms23115935
[20] Kumar, T., Pandey, R. and Chauhan, N.S. (2020) Hypoxia Inducible Factor-1α: The Curator of Gut Homeostasis. Frontiers in Cellular and Infection Microbiology, 10, Article 227.
https://doi.org/10.3389/fcimb.2020.00227
[21] Bertolini, A., Fiorotto, R. and Strazzabosco, M. (2022) Bile Acids and Their Receptors: Modulators and Therapeutic Targets in Liver Inflammation. Seminars in Immunopathology, 44, 547-564.
https://doi.org/10.1007/s00281-022-00935-7
[22] Ren, X., Xu, J., Zhang, Y., Chen, G., Zhang, Y., Huang, Q., et al. (2020) Bacterial Alterations in Post-Cholecystectomy Patients Are Associated with Colorectal Cancer. Frontiers in Oncology, 10, Article 1418.
https://doi.org/10.3389/fonc.2020.01418
[23] Frost, F., Kacprowski, T., Rühlemann, M., Weiss, S., Bang, C., Franke, A., et al. (2021) Carrying Asymptomatic Gallstones Is Not Associated with Changes in Intestinal Microbiota Composition and Diversity but Cholecystectomy with Significant Dysbiosis. Scientific Reports, 11, Article No. 6677.
https://doi.org/10.1038/s41598-021-86247-6
[24] Henry, Z., Meadows, V. and Guo, G.L. (2023) FXR and NASH: An Avenue for Tissue-Specific Regulation. Hepatology Communications, 7, e0127.
https://doi.org/10.1097/hc9.0000000000000127
[25] Zhou, W. and Anakk, S. (2022) Enterohepatic and Non-Canonical Roles of Farnesoid X Receptor in Controlling Lipid and Glucose Metabolism. Molecular and Cellular Endocrinology, 549, Article ID: 111616.
https://doi.org/10.1016/j.mce.2022.111616
[26] Ramos Pittol, J.M., Milona, A., Morris, I., Willemsen, E.C.L., van der Veen, S.W., Kalkhoven, E., et al. (2020) FXR Isoforms Control Different Metabolic Functions in Liver Cells via Binding to Specific DNA Motifs. Gastroenterology, 159, 1853-1865.e10.
https://doi.org/10.1053/j.gastro.2020.07.036
[27] Li, Y., Cao, C., Zhou, Y., Nie, Y., Cao, J. and Zhou, Y. (2020) The Roles and Interaction of FXR and Ppars in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Arab Journal of Gastroenterology, 21, 162-168.
https://doi.org/10.1016/j.ajg.2020.04.018
[28] Ijssennagger, N., van Rooijen, K.S., Magnúsdóttir, S., Ramos Pittol, J.M., Willemsen, E.C.L., de Zoete, M.R., et al. (2021) Ablation of Liver FXR Results in an Increased Colonic Mucus Barrier in Mice. JHEP Reports, 3, Article ID: 100344.
https://doi.org/10.1016/j.jhepr.2021.100344
[29] Kumari, A., Pal Pathak, D. and Asthana, S. (2020) Bile Acids Mediated Potential Functional Interaction between FXR and FATP5 in the Regulation of Lipid Metabolism. International Journal of Biological Sciences, 16, 2308-2322.
https://doi.org/10.7150/ijbs.44774
[30] Liu, X., Wang, J., Li, M., Qiu, J., Li, X., Qi, L., et al. (2023) Farnesoid X Receptor Is an Important Target for the Treatment of Disorders of Bile Acid and Fatty Acid Metabolism in Mice with Nonalcoholic Fatty Liver Disease Combined with Cholestasis. Journal of Gastroenterology and Hepatology, 38, 1438-1446.
https://doi.org/10.1111/jgh.16279
[31] Li, Z., Yuan, H., Chu, H. and Yang, L. (2023) The Crosstalk between Gut Microbiota and Bile Acids Promotes the Development of Non-Alcoholic Fatty Liver Disease. Microorganisms, 11, Article 2059.
https://doi.org/10.3390/microorganisms11082059
[32] Panzitt, K., Zollner, G., Marschall, H. and Wagner, M. (2022) Recent Advances on FXR-Targeting Therapeutics. Molecular and Cellular Endocrinology, 552, Article ID: 111678.
https://doi.org/10.1016/j.mce.2022.111678
[33] Farr, S., Stankovic, B., Hoffman, S., Masoudpoor, H., Baker, C., Taher, J., et al. (2020) Bile Acid Treatment and FXR Agonism Lower Postprandial Lipemia in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G682-G693.
https://doi.org/10.1152/ajpgi.00386.2018
[34] Mori, H., Svegliati Baroni, G., Marzioni, M., Di Nicola, F., Santori, P., Maroni, L., et al. (2022) Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites, 12, Article 647.
https://doi.org/10.3390/metabo12070647
[35] Deng, W., Fan, W., Tang, T., Wan, H., Zhao, S., Tan, Y., et al. (2022) Farnesoid X Receptor Deficiency Induces Hepatic Lipid and Glucose Metabolism Disorder via Regulation of Pyruvate Dehydrogenase Kinase 4. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3589525.
https://doi.org/10.1155/2022/3589525
[36] Xue, R., Su, L., Lai, S., Wang, Y., Zhao, D., Fan, J., et al. (2021) Bile Acid Receptors and the Gut-Liver Axis in Nonalcoholic Fatty Liver Disease. Cells, 10, Article 2806.
https://doi.org/10.3390/cells10112806
[37] Clifford, B.L., Sedgeman, L.R., Williams, K.J., Morand, P., Cheng, A., Jarrett, K.E., et al. (2021) FXR Activation Protects against NAFLD via Bile-Acid-Dependent Reductions in Lipid Absorption. Cell Metabolism, 33, 1671-1684.e4.
https://doi.org/10.1016/j.cmet.2021.06.012
[38] Yang, J., van Dijk, T.H., Koehorst, M., Havinga, R., de Boer, J.F., Kuipers, F., et al. (2023) Intestinal Farnesoid X Receptor Modulates Duodenal Surface Area but Does Not Control Glucose Absorption in Mice. International Journal of Molecular Sciences, 24, Article 4132.
https://doi.org/10.3390/ijms24044132
[39] Zhao, L., Xuan, Z., Song, W., Zhang, S., Li, Z., Song, G., et al. (2020) A Novel Role for Farnesoid X Receptor in the Bile Acid‐mediated Intestinal Glucose Homeostasis. Journal of Cellular and Molecular Medicine, 24, 12848-12861.
https://doi.org/10.1111/jcmm.15881
[40] Di Ciaula, A., Garruti, G., Wang, D.Q.-H. and Portincasa, P. (2018) Cholecystectomy and Risk of Metabolic Syndrome. European Journal of Internal Medicine, 53, 3-11.
https://doi.org/10.1016/j.ejim.2018.04.019
[41] Qi, L., Tian, Y. and Chen, Y. (2019) Gall Bladder: The Metabolic Orchestrator. Diabetes/Metabolism Research and Reviews, 35, e3140.
https://doi.org/10.1002/dmrr.3140
[42] Garruti, G., Wang, D.Q., Di Ciaula, A. and Portincasa, P. (2018) Cholecystectomy: A Way Forward and Back to Metabolic Syndrome? Laboratory Investigation, 98, 4-6.
https://doi.org/10.1038/labinvest.2017.129
[43] Xu, F., Chen, R., Zhang, C., Wang, H., Ding, Z., Yu, L., et al. (2023) Cholecystectomy Significantly Alters Gut Microbiota Homeostasis and Metabolic Profiles: A Cross-Sectional Study. Nutrients, 15, Article 4399.
https://doi.org/10.3390/nu15204399
[44] Nian, F., Wu, L., Xia, Q., Tian, P., Ding, C. and Lu, X. (2023) Akkermansia muciniphila and Bifidobacterium bifidum Prevent NAFLD by Regulating FXR Expression and Gut Microbiota. Journal of Clinical and Translational Hepatology, 11, 763-776.
https://doi.org/10.14218/jcth.2022.00415