放疗联合免疫治疗在非小细胞肺癌中的研究进展
Research Progress of Radiotherapy Combined with Immunotherapy in Non-Small Cell Lung Cancer
DOI: 10.12677/jcpm.2024.32082, PDF, HTML, XML, 下载: 25  浏览: 76  科研立项经费支持
作者: 王泽宁:青海大学附属医院放射治疗科,青海 西宁;祁艳娟*:青海大学附属医院放疗中心,青海 西宁
关键词: 放射治疗免疫治疗非小细胞肺癌联合疗法Radiation Therapy Immunotherapy Non-Small Cell Lung Cancer Combination Therapy
摘要: 肺癌(lung cancer, LC)是全球最常见的癌症之一,也是全球癌症相关死亡的主要原因,其中约80%的病例为非小细胞肺癌(non-small-cell lung cancer, NSCLC)。在过去十年中,免疫检查点抑制剂(ICIs),如程序性死亡1 (PD-1)和程序性死亡配体1 (PD-L1)抑制剂,极大地改变了NSCLC的治疗策略。近年来,事后分析和早期临床试验提供了越来越多的证据,证明放射治疗(RT)和免疫疗法在治疗从早期到转移性疾病的NSCLC方面具有协同作用。放射治疗似乎不仅能增强免疫疗法对靶病灶的作用,还能在不直接暴露于辐射的情况下对远处病灶产生抗肿瘤反应。在这篇综述中,我们将介绍免疫疗法和放射疗法的生物学基础、有关生物标志物的新证据,以及支持将放射免疫疗法用于早期、局部晚期和转移性NSCLC的临床前和临床数据。
Abstract: Lung cancer is one of the most common cancers and the leading cause of cancer-related deaths worldwide, and about 80% of these cases are non-small cell lung cancer (NSCLC). Over the past decade, immune checkpoint inhibitors (ICIs), such as programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors, have dramatically altered the therapeutic strategies for NSCLC. In recent years, post-hoc analyses and early clinical trials have provided increasing evidence of the synergistic effects of radiation therapy (RT) and immunotherapy in the treatment of NSCLC from early to metastatic disease. Radiation therapy appears to not only enhance the effect of immunotherapy on the target lesion, but also produce an antitumor response on distant lesions without direct exposure to radiation. In this review, we will present the biological basis of immunotherapy and radiation therapy, new evidence regarding biomarkers, and preclinical and clinical data supporting the use of radioimmunotherapy for early, locally advanced, and metastatic NSCLC.
文章引用:王泽宁, 祁艳娟. 放疗联合免疫治疗在非小细胞肺癌中的研究进展[J]. 临床个性化医学, 2024, 3(2): 564-573. https://doi.org/10.12677/jcpm.2024.32082

1. 引言

肺癌通常在晚期或转移阶段才被确诊,此时的治疗方案往往疗效有限。即使得到早期诊断和治疗,肺癌的临床过程也往往以复发和远处转移为特征[1]。在过去十年中,各期NSCLC的标准治疗方案已转向越来越多地采用放射治疗(RT)和免疫治疗(IO)。与此同时,人们对放射治疗(RT)影响全身免疫的能力也有了更深的认识[2] [3],这促进了对利用RT和免疫疗法改善肺癌治疗的联合方法的研究。目前,新确诊的I/II期NSCLC患者可通过药物治疗接受手术切除[4]。然而,NSCLC患者的中位诊断年龄为70岁,因此许多患者并不适合接受手术治疗[5]。这些无法接受药物治疗的患者被建议接受明确的RT治疗,特别是利用立体定向体放射治疗(SBRT)技术。放疗具有通过多种细胞机制和远隔效应增强免疫介导的肿瘤消退的推动能力,近年来已得到更好的表征[6]。本综述的重点是概述IO、RT以及它们在肿瘤微环境(TME)中相互作用的生物学基础[5],并特别关注RT与免疫系统之间的相互作用。然后,我们将讨论目前针对早期、局部晚期和转移性NSCLC的治疗范例,以及正在进行的有关它们联合使用的研究。

2. 放疗联合免疫治疗的生物学机制

2.1. 产生远隔效应

远隔效应即放射治疗产生免疫介导的抗肿瘤效应,导致远离原发照射部位的非照射转移瘤消退[7]。放射治疗(RT)可以诱导局部和远处肿瘤的全身性抗肿瘤免疫反应。许多研究表明,将放射与ICPi相结合可以增加局部和远处的肿瘤控制[8]。在2期试验PEMBRO-RT(24)中,晚期NSCLC患者被随机分配单独使用pembrolizumab或在对单个肿瘤部位进行立体定向体放疗(SBRT) (3次,每次8 Gy)后使用pembrolizumab。12周时,pembrolizumab治疗组和pembrolizumab放疗后治疗组的总反应率(ORR)分别为18%和36% (P = 0.07)。单用pembrolizumab与放疗后使用pembrolizumab的中位无进展生存期(PFS)分别为1.9个月和6.6个月(HR = 0.71; P = 0.19)。中位总生存期(OS)分别为7.6个月和15.9个月(HR = 0.66; P = 0.16) [9]。由于远隔效应,联合放射治疗和免疫治疗是治疗早期非小细胞肺癌的一种有前途的策略,远隔效应被认为是一种全身性抗肿瘤免疫反应,可由免疫疗法刺激。

2.2. rt增加免疫反应

一项II期临床试验报告称,单独使用ipilimumab或与化疗联合使用对化疗难治性转移性非小细胞肺癌患者没有显示出显著疗效,而ipilimumab与RT联合使用可增加免疫反应[10]。Ipilimumab与放疗中体外效应的增加相关,表明免疫系统的激活导致了非辐射反应。在另一项III期非小细胞肺癌研究中,709人接受了指定的干预。结果显示,与55.6%相比,durvalumab的24个月OS率为66.3%。与安慰剂相比,Durvalumab显著延长了OS,观察到的临床获益表明,免疫疗法背景下的RT可激发全身免疫反应。建立了局部晚期非小细胞肺癌同步放化疗加Durvalumab辅助治疗的标准治疗状态。

2.3. 克服肿瘤免疫逃逸

放射疗法有能力克服几种使肿瘤逃避免疫反应的机制。例如,在某些条件下,放射治疗可以释放免疫原性肿瘤抗原,其可以刺激炎性细胞因子和趋化因子及免疫细胞[11]。此外,放疗可诱导白细胞浸润,增加肿瘤细胞的易感性。这些复杂的相互作用机制有助于重新编程抗免疫肿瘤微环境,并增加抗原呈递细胞和T细胞的功能[12]。放射疗法允许免疫系统更容易识别和根除肿瘤细胞,从而增强局部和全身免疫反应。

免疫逃逸的发生是肿瘤发生的一个非常重要的步骤。肿瘤免疫逃逸是指肿瘤细胞通过重新编程免疫细胞的生物学来逃避免疫监视[13],这一过程也称为免疫编辑。肿瘤免疫逃逸机制复杂,涉及多个细胞和分子。其中,PD-1/PD-L1、CTLA-4是肿瘤细胞与免疫细胞相互作用的配体或受体,起到免疫调节作用[14]。在MEDI4736作为局部晚期、不可切除非小细胞肺癌(III期)患者序贯治疗的III期、随机、双盲、安慰剂对照、多中心国际研究中,这些患者在确定性、铂类、同步放化疗后没有进展,局部晚期、不可切除非小细胞肺癌患者在确定性同步放化疗后被随机分配(比例为2:1)每两周接受一次durvalumab或安慰剂治疗,最长持续12个月。同步放化疗后的Durvalumab导致PFS和OS明显长于安慰剂[PFS:17.2个月对5.6个月,分层风险比,0.51,95%可信区间(CI),0.41~0.63;24个月OS率:66.3%比55.6%,双侧P = 0.005]。放射治疗和免疫治疗相结合减少了局部复发和转移,提高了整体全身治疗效果。

3. 放疗联合免疫治疗相关临床研究

3.1. 放疗联合ICIs治疗早期NSCLC

目前,免疫疗法在晚期非小细胞肺癌治疗中不断取得成功,但在早期NSCLC中联合使用RT和ICB的经验鲜有发表。外科肺叶切除术和SBRT是这一阶段疾病的核心治疗方法,局部控制率超过90%。尽管局部控制率很高,但早期疾病患者的主要失败模式往往是远处复发,4年远处控制率为54%,癌症特异性生存率为75.3% [15]

传统化疗药物在早期疾病中的作用历来有限。Altorki等人[16]在单中心、开放标签、随机对照II期试验中,比较了新辅助杜瓦单抗单药治疗两个周期与新辅助杜瓦单抗加立体定向放疗治疗可能切除的早期NSCLC患者(临床I~IIIA期)。在杜瓦单抗加立体定向放疗组中,患者在接受第一个周期的杜瓦单抗治疗之前,每天连续接受三次8 Gy的分次治疗。完成术前治疗且未出现疾病进展的患者将接受手术切除。durvalumab联合RT组和durvalumab单药治疗组分别有20%和17%的患者发生≥3级AE。选定的总放射剂量为24 Gy。这种非标准的较低放射剂量相当于43.2 Gy的生物有效剂量,与免疫疗法同时使用似乎能提高对胸部肿瘤和潜在微转移疾病的疗效[17]。Lee GD等人评估了PD-L1表达和CD8+肿瘤浸润淋巴细胞变化在接受新辅助CRT后手术切除的局部晚期NCSLC患者中的作用。新辅助同期CRT后PD-L1表达和CD8+密度增加的患者取得了最佳疗效[18]。RT会在癌细胞死亡过程中释放抗原,上调免疫原性细胞表面复合物,并诱发促炎信号,从而触发先天性免疫系统激活肿瘤特异性T细胞。

虽然有人认为在SBRT治疗小的I期NSCLC病灶时加入细胞毒性化疗会增加毒性而无明显益处,但对于越来越多接受SBRT治疗的大淋巴结阴性患者而言[19] [20],加入化疗可能会改善OS [21]。对于手术和SBRT治疗的小淋巴结阴性肿瘤患者而言,他们的区域和远处复发风险仍相对较高。新辅助免疫检查点抑制疗法可能比辅助治疗中的同种疗法更有效,这是因为在治疗开始时存在肿瘤抗原,并刺激了肿瘤微环境中现有的肿瘤特异性细胞毒性T细胞[8] [22]。在一项针对可切除的I~IIIA期NSCLC的新辅助nivolumab治疗研究中,Forde等人[23]发现主要病理反应(>90%反应)率为45%。然而,NEOSTAR研究的初步结果显示,主要病理应答率(MPR)较低,仅为24% [24],该研究对44例I~IIIA期可切除NSCLC患者进行了新辅助尼妥珠单抗或尼妥珠单抗和伊匹单抗治疗。目前尚不清楚MPR率的增加是否意味着生存率的提高和/或远处失败事件的减少。

3.2. 放疗联合ICIs治疗局部晚期NSCLC

尽管在过去几年中,免疫疗法与RT联合用于局部晚期NSCLC的研究一直备受关注[25],但是具有里程碑意义的PACIFIC试验在将检查点阻断策略的应用扩展到早期疾病方面取得了重大进展。

PACIFIC研究在明确CRT治疗III期不可切除NSCLC后使用抗PD-L1抗体durvalumab进行巩固性IO的情况。durvalumab或安慰剂在明确的CRT治疗完成后1至42天开始给药。在主要终点OS和PFS方面,durvalumab和安慰剂的24个月生存率分别为66.3%和55.6% (死亡HR:0.68;99.73% CI:0.47~0.997),均显示出优越性。安慰剂组的中位OS为28.7个月,而durvalumab组未达到这一水平。durvalumab组的中位PFS为17.2个月,而安慰剂组为5.6个月(病情进展或死亡的HR:0.51;95% CI:0.41~0.63)。durvalumab组的3年OS率为57.0%,而安慰剂组为43.5% [26]。此外,肿瘤PD-L1表达的事后分析发现,PD-L1表达 > 1%的所有水平都存在改善疾病进展或死亡的益处。这项试验提出了几个重要问题,包括RT的时机和免疫疗法的实施。有趣的是,一项亚组分析显示,与14天后开始辅助治疗的患者相比,能够在化疗结束后14天内开始辅助治疗的患者的OS和PFS均有所改善。尽管这些发现可能只是反映出健康的患者能够更快地接受ICB巩固治疗,但它们也表明了在RT结束后尽快开始免疫治疗以获得最大疗效的重要性。虽然有趣,但这一假设及其机制仍然是推测性的,必须谨慎对待这一分析,因为事后分析会受到队列之间潜在不平衡的影响(例如,表现状态、年龄和阶段)。

3.3. 放疗联合ICIs治疗转移性NSCLC

ICB最初是针对转移性 NSCLC 的疗效进行研究的,而RT在转移性NSCLC中通常只起缓解作用。对KEYNOTE-001研究中的患者进行的二次分析发现,有一组患者曾接受过颅外放射治疗。虽然颅外照射与pembrolizumab之间的中位间隔为9.5个月,但与单独接受pembrolizumab治疗的患者相比,既往接受过RT治疗的患者的PFS和OS明显更长,而且重要的是,3级肺毒性没有明显差异[27]。此外,一项大型、单一机构的回顾性研究显示,与接受ICB的时间少于30天或在RT后最多30天相比,在放疗前接受ICB超过30天与OS之间存在正相关性。Shaverdian等人对一家机构参加KEYNOTE-001一期试验的98名患者进行了一项事后分析,比较了在接受pembrolizumab治疗前接受RT治疗的患者和未接受RT治疗的患者。作者报告称,之前接受过RT治疗的患者的中位OS显著提高至10.7个月,而未接受过RT治疗的患者的中位OS为5.3个月(P = 0.026)。观察到的临床获益表明,免疫疗法背景下的RT可激发全身免疫反应。

KEYNOTE-001的成功促进了多项后续研究,调查IO在治疗转移性NSCLC患者中的作用。KEYNOTE-024是一项国际多中心III期研究,该研究比较了PD-L1 TPS 50%患者一线使用pembrolizumab和标准铂类化疗的疗效。Reck等人发现,在这组患者中,一线使用pembrolizumab与铂类化疗相比,PFS和OS显著延长(死亡HR:0.60;95% CI:0.40~0.89)。接受pembrolizumab治疗的患者ORR也有所提高:44.8% (95% CI: 36.8~53.0),而化疗组为27.8% (95% CI: 20.8~35.7)。尽管KEYNOTE-024治疗PD-L1 TPS为50%的患者取得了令人鼓舞的结果,但这只是转移性NSCLC患者中的一小部分。在最近的KEYNOTE-042试验中,对于TPS < 50%的患者,联合使用pembrolizumab和化疗作为一线疗法的效果并不明显。这项大型国际III期试验将PD-L1 TPS > 1%的局部晚期或转移性NSCLC患者随机分为单用pembrolizumab或标准化疗两种方案[28]。Mok等人发现所有患者的OS均有显著改善,包括PD-L1表达1%至20%的患者(HR: 0.81; 95% CI: 0.71~0.93),但TPS为50%的患者仍然获益最大,这与之前的研究一致。这导致FDA将Pembrolizumab的一线适应症扩大到“不适合手术切除或明确化疗或转移性NSCLC的III期NSCLC患者”以及PD-L1 TPS低至1%的患者。

4. 预测免疫RT治疗疗效的生物标志物

4.1. PD-L1

PD-L1是一种由肿瘤细胞(TCs)表达的免疫抑制分子。PD-1/PD-L1轴诱导T细胞凋亡并抑制肿瘤微环境(TME)中的抗肿瘤免疫[29] [30],从而加速癌细胞的浸润。根据之前的临床试验,食品药品监督管理局(FDA)已批准pembrolizumab和nivolumab (PD-1抑制剂)和atezolizumab (PD-L1抑制剂)用于转移性非小细胞肺癌的一线/二线治疗,而durvalumab (PD-L1抑制剂)已被批准用于III期不可切除的非小细胞肺癌[31]。一项系统综述收集了19项研究,评估了晚期非小细胞肺癌治疗期间患者中PD-L1表达对ICIs有效性的影响。大多数证据表明,与低PD-L1表达的患者相比,接受抗PD-1/PD-L1药物(nivolumab、pembrolizumab、duvalizumab、atilizumab和avelumab)治疗的高表达患者在作为单一药物治疗时受益更多[32]。PD-L1表达水平在预测ICIs疗效方面相对成熟,已成为临床医生制定非小细胞肺癌患者免疫治疗方案的重要依据。

尽管取得了令人印象深刻的成功,但只有一小部分患者受益于PD1/PDL1抑制剂。更多有助于患者选择和风险分层的生物标志物数据对于探索免疫疗法在早期NSCLC中的作用至关重要。根据PD-L1的表达情况,可以选择单药免疫治疗或化学免疫治疗作为晚期NSCLC的一线治疗策略,然而,关于使用 PD-L1表达和TMB评估新辅助ICI的疗效,目前尚未达成共识。Zaric等人[33]报道了生存期延长与PD1表达之间的潜在关系,PD1表达是癌症复发和死亡的独立预后因素。然而,对于早期鳞状细胞肺癌,PD-L1表达、TMB、Teffector和干扰素-γ基因特征与OS无关[34]。同样,Tsao等人[35]发现PD-L1表达与早期 NSCLC患者的预后没有关系。基于这些相互矛盾的报道,PD-L1作为新辅助或辅助免疫疗法疗效预测指标的实用性有待进一步探讨。

4.2. 肿瘤突变负荷(TMB)

TMB是肿瘤组织中所有基因突变的近似度量,也是免疫疗法反应的新兴生物标志物。虽然高TMB往往与免疫疗法的较好反应相关[36],但TMB的临床应用仍存在利弊。Owada-Ozaki等人[37]报道,在切除的NSCLC患者中,TMB > 62与预后不良之间存在统计学意义上的显著相关性。相反,在一项对两项大型随机试验的回顾性分析中,接受阿特珠单抗治疗的血液中TMB较高(≥16)的患者的PFS优于接受多西他赛治疗的患者(交互作用P = 0.036) [38]。一些研究人员正试图阐明PD-L1/TMB与病理反应之间的相关性。MPR与PD-L1表达无关,而TMB被认为是新辅助免疫疗法中MPR的潜在预测生物标志物。

2017年,一项回顾性研究评估了TMB和PD-1抑制之间的客观反应率。结果显示,在用PD-1或PD-L1抑制剂治疗的27种类型的肿瘤中,ORR与TMB水平正相[39]。基于这项研究的结果,NCCN-非小细胞肺癌专家组在2019年NCCN指南的第一版中将TMB列为生物标志物,这被认为有助于筛选适合伊普利姆单抗一线治疗nivolumab的转移性非小细胞肺癌患者,但也表示目前没有标准的TMB测量方法[40]。更重要的是,许多研究表明,PD-L1和TMB是与联合ICIs的肿瘤反应相关的生物标志物[39] [41] [42] [43]。因此,PD-L1表达和TMB的结合被认为是评估患者存活率和对精确免疫治疗反应的有前途的生物标志物。

4.3. TILs

肿瘤浸润淋巴细胞(TILs)是肿瘤微环境的组成部分之一,具体来说是一种表达多种活化抗原的异质性免疫炎症细胞群[44]。人们越来越认识到TILs的重要性,尤其是其在癌症治疗中的预测作用。癌细胞可以通过各种方式使TIL失活,以躲避免疫监视并进一步发展肿瘤组织。显然,这种现象会对抗肿瘤治疗的效果产生负面影响。

目前,有相当多的证据表明TILs可以预测肿瘤的治疗和预后。例如,CD8+ T细胞肿瘤浸润淋巴细胞在免疫治疗中显示出令人满意的预测功效[45]。有证据表明,肿瘤背景中CD8+和FOXP3+ Treg TIL的浓度可被视为晚期非小细胞肺癌患者以铂类为基础的新辅助化疗反应的预测标志物[46] [47]

然而,TMB的应用还存在争议。在Checkmate 227试验中,只有57.7%的样本足以进行TMB检测[48]。此外,TMB可部分反映肿瘤新抗原,而肿瘤新抗原与治疗反应率的关系更为密切。纪念斯隆–凯特琳癌症中心团队研究了1662名接受ICIs治疗的晚期癌症患者和5371名未接受ICIs治疗的患者的临床和基因组数据。他们发现,尽管高TMB是疗效的预测因素,但它并不是预后因素[49]。此外,与TMB相关的漫长时间和高昂费用,以及关于使用全外显子组测序(WES)还是面板检测的决定,都是未来研究中需要解决的问题。

5. 问题与挑战

5.1. 放疗时机与毒性

目前正在进行大量研究,以确定RT配合免疫疗法的最佳时机。由于RT通过触发肿瘤微环境中的抗原呈递细胞释放和摄取肿瘤抗原来促进肿瘤免疫,因此在RT后进行免疫治疗可能更有效[50]。与此相一致的是,许多研究显示,在RT后给予免疫疗法会产生腹膜反应[51] [52]。不过,由于免疫疗法和RT可能会以多种方式相互作用,因此也可以考虑先给予免疫疗法可能会有效的情况。例如,在小鼠结直肠癌模型中,在RT之前给予抗CTLA-4可使肿瘤消退,这种效果归因于Treg细胞的前期消耗[53]。一般来说,免疫疗法和RT的组合在临床环境中耐受性良好[54]。然而,随着对新型RT剂量、给药技术和免疫治疗药物组合的测试,可能会出现不同的毒性反应。Levy等人[55]在一组接受姑息性RT剂量的10名患者中证实了同时使用durvalumab和RT的安全性。在该系列研究中,没有出现因RT导致的3级或以上不良事件(AEs)。Hwang等人[56]回顾性分析了164例接受胸部RT和检查点抑制剂的患者,发现与免疫相关的AEs没有增加。该系列主要由接受60 Gy治疗的患者组成,治疗时间中位数为检查点抑制前8.6个月。相反,一项对117例患者的回顾性研究显示,在接受SBRT的同时,在RT后30天内服用免疫检查点抑制剂的患者发生3级肺炎的比例增加(10.7% vs. 0%; P < 0.01)。未来的研究,包括正在进行的随机研究,将有助于进一步阐明免疫疗法和RT联合治疗的毒性概况。

5.2. 患者选择

虽然ICB已成功应用于未经选择的广大患者群体,但PD-L1表达和肿瘤突变负荷(TMB)是潜在的生物标记物,可帮助选择最有可能对免疫疗法产生反应的患者。使用PD-L1表达作为生物标记物,KEYNOTE-024研究显示,在PD-L1肿瘤比例评分(TPS) ≥ 50%的患者中,单药pembrolizumab的应答率为45%~50% [57]。KEYNOTE001研究的长期随访显示,在亚组分析中,TPS > 50%的患者获得了持久的应答,使用pembrolizumab的治疗无效患者的中位OS为34.9个月[58]。有关TMB的数据不太清楚。2期CheckMate 568试验和3期CheckMate 227试验将TMB作为尼夫单抗的预测性生物标志物,初步结果显示TMB > 10 mut/Mb为预测ORR的临界值[59] [60]。MB随后在CheckMate 227中被验证为一种预测性生物标志物,与单用化疗相比,Nivolumab加ipilimumab的PFS得到了改善。然而,KEYNOTE-189的最新数据表明,与单独的PD-L1表达相比,TMB与生存结果并无显著关联[61]。尽管这些结果表明有可能选择出更有可能对免疫疗法产生反应的患者,但这些标志物是否能预测接受联合RT与免疫疗法的患者的临床预后是否有所改善还有待观察。相反,选择低TMB和/或低PD-L1队列可能会发现对单药免疫疗法反应最小的患者,从而为纳入RT提供依据。事实上,PEMBRO-RT 研究显示,只有PD-L1阴性患者在接受RT和免疫疗法联合治疗时才会在PFS方面显著获益,这表明有必要进一步研究联合模式方法的适当患者选择。

6. 总结与展望

放疗和ICB的结合显示了从I期到IV期非小细胞肺癌的全部前景。临床前研究提供了令人信服的证据,证明放疗具有免疫调节性质,当与ICIs联合使用时,会产生协同效应。然而,关于启动免疫反应以通过检查点抑制剂最佳释放所需的最佳时间和顺序以及最佳辐射剂量和分割,仍然存在许多问题。未来的研究也需要评估先进的放射疗法,如质子疗法,是否允许改善与免疫疗法的临床协同作用。临床医生急切地等待着上述试验的结果。此外,为免疫原性细胞死亡或放疗诱导的抗肿瘤免疫反应建立可评估的生物标志物将有助于推动该领域的研究向前发展。

基金项目

青海大学附属医院中青年科研基金一般项目,项目名称:肺段支气管作为OAR的勾画在胸部肿瘤放射治疗肺损伤评价中的应用研究。

NOTES

*通讯作者。

参考文献

[1] Agrawal, V., Benjamin, K.T. and Ko, E.C. (2020) Radiotherapy and Immunotherapy Combinations for Lung Cancer. Current Oncology Reports, 23, Article No. 4.
https://doi.org/10.1007/s11912-020-00993-w
[2] Curran, W.J., Paulus, R., Langer, C.J., Komaki, R., Lee, J.S., Hauser, S., et al. (2011) Sequential vs Concurrent Chemoradiation for Stage III Non-Small Cell Lung Cancer: Randomized Phase III Trial RTOG 9410. JNCI Journal of the National Cancer Institute, 103, 1452-1460.
https://doi.org/10.1093/jnci/djr325
[3] Aupérin, A., Le Péchoux, C., Rolland, E., Curran, W.J., Furuse, K., Fournel, P., et al. (2010) Meta-Analysis of Concomitant versus Sequential Radiochemotherapy in Locally Advanced Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 28, 2181-2190.
https://doi.org/10.1200/jco.2009.26.2543
[4] Antonia, S.J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., et al. (2018) Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. New England Journal of Medicine, 379, 2342-2350.
https://doi.org/10.1056/nejmoa1809697
[5] Dams, R.V., Yuan, Y., Robinson, C.G. and Lee, P. (2020) Immunotherapy and Radiation Therapy for Non-Small Cell Lung Cancer—A Stimulating Partnership. Seminars in Respiratory and Critical Care Medicine, 41, 360-368.
https://doi.org/10.1055/s-0039-3399578
[6] Zhang, Y., Huang, C. and Li, S. (2023) Influence of Treatment-Related Lymphopenia on the Efficacy of Immune Checkpoint Inhibitors in Lung Cancer: A Meta-Analysis. Frontiers in Oncology, 13, Article 1287555.
https://doi.org/10.3389/fonc.2023.1287555
[7] Kang, J., Zhang, C. and Zhong, W. (2021) Neoadjuvant Immunotherapy for Non-Small Cell Lung Cancer: State of the Art. Cancer Communications, 41, 287-302.
https://doi.org/10.1002/cac2.12153
[8] Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R.R., et al. (2014) Irradiation and Anti-PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. Journal of Clinical Investigation, 124, 687-695.
https://doi.org/10.1172/jci67313
[9] Bassanelli, M., Ricciuti, B., Giannarelli, D., Cecere, F.L., Roberto, M., Giacinti, S., et al. (2021) Systemic Effect of Radiotherapy before or after Nivolumab in Lung Cancer: An Observational, Retrospective, Multicenter Study. Tumori Journal, 108, 250-257.
https://doi.org/10.1177/03008916211004733
[10] Theelen, W.S., de Jong, M.C. and Baas, P. (2020) Synergizing Systemic Responses by Combining Immunotherapy with Radiotherapy in Metastatic Non-Small Cell Lung Cancer: The Potential of the Abscopal Effect. Lung Cancer, 142, 106-113.
https://doi.org/10.1016/j.lungcan.2020.02.015
[11] Formenti, S.C., Rudqvist, N., Golden, E., Cooper, B., Wennerberg, E., Lhuillier, C., et al. (2018) Radiotherapy Induces Responses of Lung Cancer to CTLA-4 Blockade. Nature Medicine, 24, 1845-1851.
https://doi.org/10.1038/s41591-018-0232-2
[12] Liu, Y., Dong, Y., Kong, L., Shi, F., Zhu, H. and Yu, J. (2018) Abscopal Effect of Radiotherapy Combined with Immune Checkpoint Inhibitors. Journal of Hematology & Oncology, 11, Article No. 104.
https://doi.org/10.1186/s13045-018-0647-8
[13] Beasley, M.B., Brambilla, E. and Travis, W.D. (2005) The 2004 World Health Organization Classification of Lung Tumors. Seminars in Roentgenology, 40, 90-97.
https://doi.org/10.1053/j.ro.2005.01.001
[14] Souquet, P.J. and Geriniere, L. (2001) The Role of Chemotherapy in Early Stage of Non-Small Cell Lung Cancer. Lung Cancer, 34, S155-S158.
https://doi.org/10.1016/s0169-5002(01)00361-0
[15] Robinson, C.G., DeWees, T.A., El Naqa, I.M., Creach, K.M., Olsen, J.R., Crabtree, T.D., et al. (2013) Patterns of Failure after Stereotactic Body Radiation Therapy or Lobar Resection for Clinical Stage I Non-Small-Cell Lung Cancer. Journal of Thoracic Oncology, 8, 192-201.
https://doi.org/10.1097/JTO.0b013e31827ce361
[16] Altorki, N.K., McGraw, T.E., Borczuk, A.C., Saxena, A., Port, J.L., Stiles, B.M., et al. (2021) Neoadjuvant Durvalumab with or without Stereotactic Body Radiotherapy in Patients with Early-Stage Non-Small-Cell Lung Cancer: A Single-Centre, Randomised Phase 2 Trial. The Lancet Oncology, 22, 824-835.
https://doi.org/10.1016/s1470-2045(21)00149-2
[17] Tian, S., Switchenko, J.M., Buchwald, Z.S., Patel, P.R., Shelton, J.W., Kahn, S.E., et al. (2020) Lung Stereotactic Body Radiation Therapy and Concurrent Immunotherapy: A Multicenter Safety and Toxicity Analysis. International Journal of Radiation OncologyBiology∙Physics, 108, 304-313.
https://doi.org/10.1016/j.ijrobp.2019.12.030
[18] Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., et al. (2016) Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 375, 1823-1833.
https://doi.org/10.1056/nejmoa1606774
[19] Verma, V., Shostrom, V.K., Zhen, W., Zhang, M., Braunstein, S.E., Holland, J., et al. (2017) Influence of Fractionation Scheme and Tumor Location on Toxicities after Stereotactic Body Radiation Therapy for Large (≥5 cm) Non-Small Cell Lung Cancer: A Multi-Institutional Analysis. International Journal of Radiation Oncology∙Biology∙Physics, 97, 778-785.
https://doi.org/10.1016/j.ijrobp.2016.11.049
[20] Verma, V., Shostrom, V.K., Kumar, S.S., Zhen, W., Hallemeier, C.L., Braunstein, S.E., et al. (2016) Multi-Institutional Experience of Stereotactic Body Radiotherapy for Large (≥5 Centimeters) Non-Small Cell Lung Tumors. Cancer, 123, 688-696.
https://doi.org/10.1002/cncr.30375
[21] Verma, V., McMillan, M.T., Grover, S. and Simone, C.B. (2017) Stereotactic Body Radiation Therapy and the Influence of Chemotherapy on Overall Survival for Large (≥5 Centimeter) Non-Small Cell Lung Cancer. International Journal of Radiation Oncology∙Biology∙Physics, 97, 146-154.
https://doi.org/10.1016/j.ijrobp.2016.09.036
[22] Fujimoto, D., Uehara, K., Sato, Y., Sakanoue, I., Ito, M., Teraoka, S., et al. (2017) Alteration of PD-L1 Expression and Its Prognostic Impact after Concurrent Chemoradiation Therapy in Non-Small Cell Lung Cancer Patients. Scientific Reports, 7, Article No. 11373.
https://doi.org/10.1038/s41598-017-11949-9
[23] Badiyan, S.N., Roach, M.C., Chuong, M.D., Rice, S.R., Onyeuku, N.E., Remick, J., et al. (2018) Combining Immunotherapy with Radiation Therapy in Thoracic Oncology. Journal of Thoracic Disease, 10, S2492-S2507.
https://doi.org/10.21037/jtd.2018.05.73
[24] Simone II, C.B., Berman, A.T. and Jabbour, S.K. (2017) Harnessing the Potential Synergy of Combining Radiation Therapy and Immunotherapy for Thoracic Malignancies. Translational Lung Cancer Research, 6, 109-112.
https://doi.org/10.21037/tlcr.2017.04.05
[25] Jabbour, S.K., Berman, A.T. and Simone II, C.B. (2007) Integrating Immunotherapy into Chemoradiation Regimens for Medically Inoperable Locally Advanced Non-Small Cell Lung Cancer. Translational Lung Cancer Research, 6, 113-118.
https://doi.org/10.21037/tlcr.2017.04.02
[26] Gray, J.E., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., et al. (2020) Three-Year Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC—Update from PACIFIC. Journal of Thoracic Oncology, 15, 288-293.
https://doi.org/10.1016/j.jtho.2019.10.002
[27] Shaverdian, N., Lisberg, A.E., Bornazyan, K., Veruttipong, D., Goldman, J.W., Formenti, S.C., et al. (2017) Previous Radiotherapy and the Clinical Activity and Toxicity of Pembrolizumab in the Treatment of Non-Small-Cell Lung Cancer: A Secondary Analysis of the KEYNOTE-001 Phase 1 Trial. The Lancet Oncology, 18, 895-903.
https://doi.org/10.1016/s1470-2045(17)30380-7
[28] Mok, T.S.K., Wu, Y., Kudaba, I., Kowalski, D.M., Cho, B.C., Turna, H.Z., et al. (2019) Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. The Lancet, 393, 1819-1830.
https://doi.org/10.1016/s0140-6736(18)32409-7
[29] Mittal, D., Gubin, M.M., Schreiber, R.D. and Smyth, M.J. (2014) New Insights into Cancer Immunoediting and Its Three Component Phases—Elimination, Equilibrium and Escape. Current Opinion in Immunology, 27, 16-25.
https://doi.org/10.1016/j.coi.2014.01.004
[30] Pardoll, D.M. (2012) Immunology Beats Cancer: A Blueprint for Successful Translation. Nature Immunology, 13, 1129-1132.
https://doi.org/10.1038/ni.2392
[31] Rizzo, A. and Ricci, A.D. (2022) PD-L1, TMB, and Other Potential Predictors of Response to Immunotherapy for Hepatocellular Carcinoma: How Can They Assist Drug Clinical Trials? Expert Opinion on Investigational Drugs, 31, 415-423.
https://doi.org/10.1080/13543784.2021.1972969
[32] Brody, R., Zhang, Y., Ballas, M., Siddiqui, M.K., Gupta, P., Barker, C., et al. (2017) PD-L1 Expression in Advanced NSCLC: Insights into Risk Stratification and Treatment Selection from a Systematic Literature Review. Lung Cancer, 112, 200-215.
https://doi.org/10.1016/j.lungcan.2017.08.005
[33] Zaric, B., Brcic, L., Buder, A., Brandstetter, A., Buresch, J.O., Traint, S., et al. (2018) PD-1 and PD-L1 Protein Expression Predict Survival in Completely Resected Lung Adenocarcinoma. Clinical Lung Cancer, 19, e957-e963.
https://doi.org/10.1016/j.cllc.2018.08.014
[34] Yu, H., Chen, Z., Ballman, K.V., Watson, M.A., Govindan, R., Lanc, I., et al. (2019) Correlation of PD-L1 Expression with Tumor Mutation Burden and Gene Signatures for Prognosis in Early-Stage Squamous Cell Lung Carcinoma. Journal of Thoracic Oncology, 14, 25-36.
https://doi.org/10.1016/j.jtho.2018.09.006
[35] Tsao, M.-S., Le Teuff, G., Shepherd, F.A., Landais, C., Hainaut, P., Filipits, M., et al. (2017) PD-L1 Protein Expression Assessed by Immunohistochemistry Is Neither Prognostic Nor Predictive of Benefit from Adjuvant Chemotherapy in Resected Non-Small Cell Lung Cancer. Annals of Oncology, 28, 882-889.
https://doi.org/10.1093/annonc/mdx003
[36] Chalmers, Z.R., Connelly, C.F., Fabrizio, D., Gay, L., Ali, S.M., Ennis, R., et al. (2017) Analysis of 100,000 Human Cancer Genomes Reveals the Landscape of Tumor Mutational Burden. Genome Medicine, 9, Article No. 34.
https://doi.org/10.1186/s13073-017-0424-2
[37] Owada-Ozaki, Y., Muto, S., Takagi, H., Inoue, T., Watanabe, Y., Fukuhara, M., et al. (2018) Prognostic Impact of Tumor Mutation Burden in Patients with Completely Resected Non-Small Cell Lung Cancer: Brief Report. Journal of Thoracic Oncology, 13, 1217-1221.
https://doi.org/10.1016/j.jtho.2018.04.003
[38] Gandara, D.R., Paul, S.M., Kowanetz, M., Schleifman, E., Zou, W., Li, Y., et al. (2018) Blood-Based Tumor Mutational Burden as a Predictor of Clinical Benefit in Non-Small-Cell Lung Cancer Patients Treated with Atezolizumab. Nature Medicine, 24, 1441-1448.
https://doi.org/10.1038/s41591-018-0134-3
[39] Yarchoan, M., Hopkins, A. and Jaffee, E.M. (2017) Tumor Mutational Burden and Response Rate to PD-1 Inhibition. The New England Journal of Medicine, 377, 2500-2501.
https://doi.org/10.1056/NEJMc1713444
[40] Ettinger, D.S., Wood, D.E., Aggarwal, C., et al. (2019) NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 1.2020. Journal of the National Comprehensive Cancer Network, 17, 1464-1472.
https://doi.org/10.6004/jnccn.2019.0059
[41] Rizvi, N.A., Hellmann, M.D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J.J., et al. (2015) Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science, 348, 124-128.
https://doi.org/10.1126/science.aaa1348
[42] Carbone, D.P., Reck, M., Paz-Ares, L., Creelan, B., Horn, L., Steins, M., et al. (2017) First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. New England Journal of Medicine, 376, 2415-2426.
https://doi.org/10.1056/nejmoa1613493
[43] Rizvi, H., Sanchez-Vega, F., La, K., Chatila, W., Jonsson, P., Halpenny, D., et al. (2018) Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients with Non-Small-Cell Lung Cancer Profiled with Targeted Next-Generation Sequencing. Journal of Clinical Oncology, 36, 633-641.
https://doi.org/10.1200/JCO.2017.75.3384
[44] Li, T., Zhao, L., Yang, Y., Wang, Y., Zhang, Y., Guo, J., et al. (2021) T Cells Expanded from PD-1+ Peripheral Blood Lymphocytes Share More Clones with Paired Tumor-Infiltrating Lymphocytes. Cancer Research, 81, 2184-2194.
https://doi.org/10.1158/0008-5472.can-20-2300
[45] Farhood, B., Najafi, M. and Mortezaee, K. (2019) CD8+ Cytotoxic T Lymphocytes in Cancer Immunotherapy: A Review. Journal of Cellular Physiology, 234, 8509-8521.
https://doi.org/10.1002/jcp.27782
[46] Liu, H., Zhang, T., Ye, J., Li, H., Huang, J., Li, X., et al. (2012) Tumor-Infiltrating Lymphocytes Predict Response to Chemotherapy in Patients with Advance Non-Small Cell Lung Cancer. Cancer Immunology, Immunotherapy, 61, 1849-1856.
https://doi.org/10.1007/s00262-012-1231-7
[47] Masucci, G.V., Cesano, A., Hawtin, R., Janetzki, S., Zhang, J., Kirsch, I., et al. (2016) Validation of Biomarkers to Predict Response to Immunotherapy in Cancer: Volume I—Pre-Analytical and Analytical Validation. Journal for ImmunoTherapy of Cancer, 4, Article 76.
https://doi.org/10.1186/s40425-016-0178-1
[48] (2018) High TMB Predicts Immunotherapy Benefit. Cancer Discovery, 8, Article 668.
https://doi.org/10.1158/2159-8290.CD-NB2018-048
[49] Samstein, R.M., Lee, C., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., et al. (2019) Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nature Genetics, 51, 202-206.
https://doi.org/10.1038/s41588-018-0312-8
[50] Demaria, S., Kawashima, N., Yang, A.M., Devitt, M.L., Babb, J.S., Allison, J.P., et al. (2005) Immune-Mediated Inhibition of Metastases after Treatment with Local Radiation and CTLA-4 Blockade in a Mouse Model of Breast Cancer. Clinical Cancer Research, 11, 728-734.
https://doi.org/10.1158/1078-0432.728.11.2
[51] Chakravarty, P.K., Alfieri, A., Thomas, E.K., et al. (1999) Flt3-Ligand Administration after Radiation Therapy Prolongs Survival in a Murine Model of Metastatic Lung Cancer. Cancer Research, 59, 6028-6032.
[52] Nikitina, E.Y. and Gabrilovich, D.I. (2001) Combination of Gamma-Irradiation and Dendritic Cell Administration Induces a Potent Antitumor Response in Tumor-Bearing Mice: Approach to Treatment of Advanced Stage Cancer. International Journal of Cancer, 94, 825-833.
https://doi.org/10.1002/1097-0215(20011215)94:6<825::AID-IJC1545>3.0.CO;2-5
[53] Young, K.H., Baird, J.R., Savage, T., Cottam, B., Friedman, D., Bambina, S., et al. (2016) Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLOS ONE, 11, e0157164.
https://doi.org/10.1371/journal.pone.0157164
[54] Ko, E.C., Raben, D. and Formenti, S.C. (2018) The Integration of Radiotherapy with Immunotherapy for the Treatment of Non-Small Cell Lung Cancer. Clinical Cancer Research, 24, 5792-5806.
https://doi.org/10.1158/1078-0432.ccr-17-3620
[55] Levy, A., Massard, C., Soria, J.-C. and Deutsch, E. (2016) Concurrent Irradiation with the Anti-Programmed Cell Death Ligand-1 Immune Checkpoint Blocker Durvalumab: Single Centre Subset Analysis from a Phase 1/2 Trial. European Journal of Cancer, 68, 156-162.
https://doi.org/10.1016/j.ejca.2016.09.013
[56] Hwang, W.L., Niemierko, A., Hwang, K.L., Hubbeling, H., Schapira, E., Gainor, J.F., et al. (2018) Clinical Outcomes in Patients with Metastatic Lung Cancer Treated with PD-1/PD-L1 Inhibitors and Thoracic Radiotherapy. JAMA Oncology, 4, 253-255.
https://doi.org/10.1001/jamaoncol.2017.3808
[57] Lu, C., Guan, J., Lu, S., Jin, Q., Rousseau, B., Lu, T., et al. (2021) DNA Sensing in Mismatch Repair-Deficient Tumor Cells Is Essential for Anti-Tumor Immunity. Cancer Cell, 39, 96-108.e6.
https://doi.org/10.1016/j.ccell.2020.11.006
[58] Motz, G.T. and Coukos, G. (2013) Deciphering and Reversing Tumor Immune Suppression. Immunity, 39, 61-73.
https://doi.org/10.1016/j.immuni.2013.07.005
[59] Mole, R.H. (1953) Whole Body Irradiation; Radiobiology or Medicine? British Journal of Radiology, 26, 234-241.
https://doi.org/10.1259/0007-1285-26-305-234
[60] Sharabi, A.B., Lim, M., DeWeese, T.L. and Drake, C.G. (2015) Radiation and Checkpoint Blockade Immunotherapy: Radiosensitisation and Potential Mechanisms of Synergy. The Lancet Oncology, 16, e498-e509.
https://doi.org/10.1016/S1470-2045(15)00007-8
[61] McLaughlin, M., Patin, E.C., Pedersen, M., Wilkins, A., Dillon, M.T., Melcher, A.A., et al. (2020) Inflammatory Microenvironment Remodelling by Tumour Cells after Radiotherapy. Nature Reviews Cancer, 20, 203-217.
https://doi.org/10.1038/s41568-020-0246-1