不可切除胰腺癌治疗进展
Advances in the Treatment of Unresectable Pancreatic Cancer
DOI: 10.12677/jcpm.2024.32079, PDF, HTML, XML, 下载: 14  浏览: 29 
作者: 薛星昊*, 王 聪#:青海大学研究生院,青海 西宁
关键词: 胰腺癌不可切除评价综合治疗Pancreatic Cancer Unresectable Evaluation Comprehensive Treatment
摘要: 胰腺癌是一种高度恶性的疾病,其特点是具有侵袭性和高死亡率。最常见的类型是胰腺导管腺癌,预后不良,死亡率高。目前胰腺癌的治疗方法主要包括手术、化疗、放疗、分子靶向治疗、免疫治疗、联合治疗方案。手术仍然是胰腺癌的主要治疗方法。然而,胰腺癌在发现初期可实现R0切除的比例很低。因此,不可切除胰腺癌的治疗成为一种必要的选择。本文综述了不可切除胰腺癌的一些治疗方式。全面分析治疗不可切除胰腺癌的前景,旨在更深入地了解现有药物和治疗方法,促进新型治疗药物的开发,并尝试增强对不可切除胰腺癌患者的治疗效果。
Abstract: Pancreatic cancer is a highly malignant and incurable disease characterised by aggressiveness and high mortality. The most common type is pancreatic ductal adenocarcinoma, which has a poor prognosis and high mortality rate. Current treatments for pancreatic cancer include surgery, chemotherapy, radiotherapy, molecular targeted therapy, immunotherapy, and combination therapy options. Surgery is still the main treatment for pancreatic cancer. However, the percentage of pancreatic cancer that can be R0 resected at the early stage of detection is very low. Therefore, treatment of unresectable pancreatic cancer has become a necessary option. This article reviews some of the treatment modalities for unresectable pancreatic cancer. A comprehensive analysis of the prospects for treating unresectable pancreatic cancer aims to provide a deeper understanding of existing drugs and therapeutic approaches, to facilitate the development of novel therapeutic agents, and to attempt to enhance the therapeutic efficacy of treatment for patients with unresectable pancreatic cancer.
文章引用:薛星昊, 王聪. 不可切除胰腺癌治疗进展[J]. 临床个性化医学, 2024, 3(2): 538-548. https://doi.org/10.12677/jcpm.2024.32079

1. 引言

胰腺癌(pancreatic cancer, PC)是恶性程度最高的肿瘤之一,中国国家癌症中心2022年发布的2016年度统计数据显示,胰腺癌在国内男性恶性肿瘤发病率中居第8位,女性中居第12位,在恶性肿瘤死亡率中居第6位[1]。美国癌症协会发布的2023年美国癌症统计报告上指出胰腺癌是美国癌症相关死亡率的第三大主要原因[2]。根据发生部位的不同可以分为胰头癌、胰体癌、胰尾癌和全胰癌,其中胰头癌占60%~70%,胰体癌占20%~30%,胰尾癌占5%~10%,全胰癌约占5% [3]。根据病理学分型主要分为胰腺导管腺癌(pancreatic ductal adenocarcinoma, PDAC),约占胰腺癌的80%~90%,其次为少见类型的胰腺癌,包括未分化癌、胶样癌、髓样癌、鳞癌或者腺鳞癌[4]。PDAC是迄今为止最常见的胰腺原发性恶性肿瘤类型,在头部的常见率明显高于胰腺的其他部位,约70%,一般所说的胰腺癌就是胰腺导管腺癌[5]。此外,越来越清楚的是,PDAC还表现出非常高的侵入血管通道并通过内皮衬壁形成导管样结构的倾向性[6]。这也是导致PDAC的R0切除率很低的原因之一。因各期胰腺癌综合治疗策略重点有所不同,此文首先根据诊疗规范及指南并借鉴前沿研究成果将胰腺癌分期,并对不可切除胰腺癌的综合治疗方案的前沿临床研究作一综述。

2. 胰腺癌不可切除标准

不可切除胰腺癌(unresectable pancreatic ductal adenocarcinoma, UR-PDAC)分为胰头颈部及胰体尾部两个方面。胰头颈部肿瘤:肿瘤侵犯肠系膜上动脉超过180˚;肿瘤侵犯腹腔干超过180˚;肿瘤侵犯肠系膜上动脉第一空肠支。肿瘤侵犯或栓塞(瘤栓或血栓)导致肠系膜上静脉或门静脉不可切除重建;肿瘤侵犯大部分肠系膜上静脉的近侧端空肠引流支。胰体尾部肿瘤:肿瘤侵犯肠系膜上动脉或腹腔干超过180˚;肿瘤侵犯腹腔干和腹主动脉。肿瘤侵犯或栓塞(瘤栓或血栓)导致肠系膜上静脉或门静脉不可切除重建。此外,合并远处转移的胰腺癌均视为UR-PDAC [7]

3. 化疗

3.1. 姑息性化学疗法

局部晚期或转移性PDAC患者通常被认为是非治愈性的,并以姑息治疗为目的进行管理。30%的患者在诊断时即为局部晚期或转移性病变,需行姑息性化学疗法(化疗) [8]。在1997年前,以5-FU为基础的化疗统治了晚期胰腺癌的一线治疗领域长达几十年,但治疗应答率普遍低于20% [9]。此后数十年,晚期胰腺癌治疗陷入瓶颈,各种化疗方案及靶向药物的尝试基本以失败告终。直到2011年,因为在PRODIGE4/ACCORD11研究中的优异表现,FOLFIRINOX方案替代吉西他滨成为晚期胰腺癌新的一线标准推荐方案[中位总生存时间(overall survival, OS):11.8个月vs 6.8个月,中位无进展生存期(progression-free survival, PFS):6.4个月vs 3.3个月)] [10]。2年后,MPACT研究中,GN方案对比单药吉西他滨,OS从6.7个月提高到8.5个月,也因此GN方案成为继FOLFIRINOX后,另一个晚期胰腺癌一线推荐化疗方案[11]。在临床实践中,FOLFIRINOX通常用于体质较好的患者,而GN则用于体质较差、有合并症或年老的患者。回顾性数据显示,FOLFIRINOX可改善OS,但对易感人群的毒性更大[12]。因此,对于体能状态较差(ECOG ≥ 2)的PDAC患者,吉西他滨单药或FOLFOX被认为是合理的治疗方案。在以吉西他滨为基础的一线治疗进展后,NAPOLI-1研究显示纳米脂质体伊立替康联合5FU与单用5FU相比,在PDAC患者中具有生存优势(MOS为6.1个月vs 4.2个月) [13]。现在这种组合是标准的二线治疗[14]

3.2. 纳米药物递送系统

PDAC的基质包括细胞外基质、血管系统和肿瘤相关成纤维细胞,它们可以形成致密的肿瘤间质,阻碍药物递送[15]。纳米药物递送系统具有克服肿瘤间质屏障实现靶向药物递送的潜力[16]。纳米颗粒具有表面积大、孔径可调、载药量高、生物相容性好、靶向高效递送肿瘤组织等几个优点[17]。用于胰腺癌的纳米药物递送系统可以减轻副作用并提高治疗效果,纳米颗粒的大小和独特的表面特性在调节药物释放中起着关键作用[18]。脂质体等纳米级药物递送系统已广泛用于胰腺癌的治疗[19]

3.2.1. 介孔二氧化硅纳米颗粒

介孔二氧化硅纳米颗粒(MSNs)已获得FDA批准,并在介导药物递送方面受到广泛关注。它们的特点是表面积大,药物负荷高,并且能够控制生物活性物质的释放。此外,如果对官能团和配体进行修饰,它们的靶向能力可能会得到改善[20] [21] [22]。当使用叶酸修饰的介孔二氧化硅纳米颗粒时,特异性靶向肿瘤细胞上的叶酸受体可以提高治疗效果[23] [24]。Tarannum等人开发了两种版本的基于MSN的平台:富含SHh抑制剂的环巴胺介孔二氧化硅纳米颗粒和由化疗药物吉西他滨和顺铂组成的PEG-Gem-cis Pt-MSNs,它们可以减少肿瘤基质并改善PDAC的疗效[25]。作为一种很有前途的纳米药物递送平台,MSNs促进了肿瘤细胞中的药物积累,同时减少了毒副作用[26]。因此,MSNs介导的纳米药物递送系统代表了治疗胰腺癌的一种非常有前途的策略。

3.2.2. 乳酸–乙醇酸共聚物

乳酸–乙醇酸共聚物(PLGA)因其优异的生物降解性、生物相容性、表面改性能力和控释性能而获得FDA批准[27]。当被设计为特异性靶向分子时,PLGA纳米颗粒可以封装专门靶向肿瘤细胞的化疗药物,以实现精确的药物递送[28] [29]

3.2.3. 白蛋白纳米颗粒

白蛋白纳米颗粒通过递送药物治疗PDAC,实验结果证明其安全性和抗肿瘤功效高[28]。为了抑制肿瘤微环境,可以将疏水性天竺葵和亲水性1-甲基色氨酸包裹在涂有透明质酸的阳离子白蛋白纳米颗粒中。实验表明,这些纳米颗粒可以穿透小鼠异种移植模型的肿瘤组织,在肿瘤内积累,并逐渐增强,显著抑制小鼠肿瘤生长[30]。此外,含有免疫检查点抑制剂的小尺寸白蛋白纳米颗粒被封装在大小可调的热纤维化和纤维化基质敏感脂质体中。双管齐下的治疗显著增强了胰腺癌的免疫治疗效果[31]。因此,基于白蛋白的纳米颗粒的利用为靶向药物递送提供了一种非常有前途的方法[32]

3.2.4. 天然聚合物

天然聚合物制备的纳米颗粒在胰腺癌治疗中的应用引起了广泛关注。褐藻多糖是一种从褐藻中提取的天然活性多糖,具有抗菌、抗病毒、抗癌等药理作用,可直接抑制细胞增殖相关信号通路,诱导细胞凋亡,抑制细胞迁移和侵袭[33]。此外,它具有很强的杀死胰腺癌细胞的能力[34] [35]。为了增强该聚合物的抗胰腺癌活性,以新型岩藻多糖聚合物为原料制备了一种新型岩藻多糖纳米颗粒溶液,该溶液显著抑制了胰腺癌细胞的增殖、迁移和侵袭[36]

3.2.5. 外泌体

外泌体是细胞衍生的纳米囊泡,直径范围为30至150 nm。由于外泌体具有良好的生物相容性、稳定性、低免疫原性等特性,已被广泛用作递送化疗药物和核酸的纳米载体平台。作为细胞间通讯的一种形式,外泌体可以将分子物质转运到靶细胞中并激活信号通路[37]。来自各种来源的外泌体已被广泛用作治疗胰腺癌的药物递送载体。

4. 肝动脉输液治疗

胰腺各部分供血动脉主要来自腹腔干发出的肝总动脉、脾动脉和肠系膜上动脉。胰头部主要由胰十二指肠上、下动脉形成的动脉弓供血,胰体尾部主要由脾动脉、腹腔动脉或肝动脉发出的分支供血。肝动脉灌注(HAI)治疗是将导管置入供应肝脏的肝动脉血管(经胃十二指肠动脉途径),并将化疗药物直接注入肝脏。HAI的益处表现在较低的全身毒性和使用某些药物在肝脏中较高的化疗梯度[38]。在结直肠癌肝转移的情况下进行HAI治疗的好处早已得到认可[39]。一些小型研究 ,将HAI用作及转移性PDAC [40]。这些研究都在一定程度上显示了其益处。

5. 免疫治疗

近年来,胰腺癌的免疫治疗取得了一定进展,主要包括单克隆抗体治疗、肿瘤疫苗和CAR-T细胞疗法。

5.1. 单克隆抗体疗法

单克隆抗体治疗是一种利用人工合成的单克隆抗体来阻止肿瘤细胞生长和扩散的方法。基于免疫检查点程序性死亡受体1 (programmed cell death-1, PD-1)/程序性死亡受体–配体1 (programmed cell death-ligand 1, PD-L1)及细胞毒性T淋巴细胞相关蛋白4 (cytotoxic T lymphocyte-associated antigen-4, CTLA-4)的相继发现,肿瘤诱导机体免疫微环境发生免疫逃逸现象的相关机制得到进一步阐明。在胰腺癌的治疗中,免疫检查点抑制剂(immune checkpoint inhibitor, ICI)是最常用的单克隆抗体治疗方法。例如,PD-1抑制剂帕博利珠单抗(Pembrolizumab)和CTLA-4抑制剂伊匹木单抗(Ipilimumab)已经被用于胰腺癌的治疗[41]。由于大多数胰腺癌患者对上述治疗方案产生耐药性,因此在临床试验中单克隆治疗方案仅对部分患者有效。这可能是因为胰腺癌微环境中存在大量的免疫抑制性细胞,如髓样抑制细胞、调节性T细胞和肿瘤相关巨噬细胞[42],同时人类组织相容性抗原表达的缺失,也可能是限制胰腺癌ICI治疗或药物治疗的重要因素[43]

5.2. 肿瘤疫苗疗法

胰腺癌肿瘤疫苗是一种将特异性抗原注入患者体内,以刺激免疫系统攻击肿瘤的治疗方法。GVAX疫苗是由胰腺癌细胞经辐照后制备的疫苗。临床试验结果显示,GVAX疫苗可延长部分胰腺癌患者的生存期,已经在临床试验中展示出一定的疗效[44]。肿瘤相关抗原疫苗:针对特定胰腺癌细胞的特异性抗原进行疫苗治疗也取得了一些有希望的结果,但仍需进一步研究和验证[45]

5.3. CAR-T细胞疗法

CAR-T细胞疗法是一种通过改造患者的T细胞,使其能够识别并杀死肿瘤细胞的方法。尽管CAR-T细胞疗法在血液肿瘤如白血病和淋巴瘤的治疗中取得了显著效果,但在实体肿瘤包括胰腺癌的治疗中,效果仍然有限。这可能是由于实体肿瘤微环境的高度异质性及丰富的肿瘤间质组织,在很大程度上限制了T细胞到达肿瘤部位,影响其杀伤效应[46]

6. 靶向治疗

靶向治疗旨在以高选择性杀死癌细胞,因此其主要目标是识别某些患者亚组并确定肿瘤特异性靶点[47]。在胰腺癌中,四个主要驱动基因及其多效性信号网络为探索理想靶点提供了框架[48]。KRAS无疑是胰腺癌的一个有吸引力的目标[49]。特定的KRAS突变体残基,如KRAS G12C中的半胱氨酸残基,可以被小分子化合物(如MRTX849和ARS853)修饰。在临床试验中,MEK抑制剂(如selumetinib和trametinib)的单药治疗并未改善胰腺癌患者的预后。一种新兴趋势是将MEK抑制剂与其他药物联合使用[50],例如ABT-263、BKM120、SHP099和Ulixertinib。MEK还参与调节胰腺癌中的TME和调节EMT,因此可用于各种治疗策略。NRG1和NTRK等基因融合是KRAS野生型胰腺癌中的重要致癌基因,过度激活的嵌合TRK蛋白和异位ERBB信号通路分别代表了NTRK和NRG1功能异常的PDAC患者的潜在治疗靶点[51]。肿瘤抑制基因的突变,主要是TP53、SMAD4和CDKN2A的改变,也有助于PDAC的肿瘤发生。TP53是PDAC中最常见的灭活肿瘤抑制因子,TP53再激活剂包括cys靶向药物,如CP-31398和APR-246、Zn2+螯合剂(如COTI-2)和其他可能稳定p53、帮助p53复折叠或抑制异常p53聚集的蛋白质[52]。SMAD4介导转化生长因子-β (TGF-β)通路下游的多效性信号网络,并对肿瘤发生产生反常的影响。SMAD4可阻止促进细胞因子的肿瘤促进活性,并诱导癌前细胞的细胞周期停滞和凋亡。然而,在PDAC中,SMAD4突变会干扰其C末端结构域的三聚体组装,而C末端结构域对其转导活性很重要[53]。因此阻止了TGF-β信号的正常转导,使得癌细胞从免疫系统中逃逸[54]。由于SMAD4在癌细胞中的双重作用,药物被设计用于抑制而不是激活SMAD4缺陷肿瘤中的TGF-β。加洛尼司替布是一种TGF-β抑制剂,在一项临床前研究中显示出疗效[55]

7. 消融疗法

胰腺解剖位置特殊,且胰腺癌经介入治疗后复发率较高,故消融技术较少用于治疗胰腺癌[56];但对基础疾病较多、不欲接受手术或术后复发以及合并梗阻性黄疸、多发转移、剧烈疼痛及不耐受全身化疗的胰腺癌患者,局部消融治疗可提高肿瘤局部控制率和缓解疼痛[57]。依赖温度的物理消融技术包括高强度聚焦超声(high-intensity focused ultrasound, HIFU)、冷冻消融、射频消融(radio frequency ablation, RFA)、微波消融(micro wave ablation, MWA)和激光诱导热治疗(laser-induced thermotherapy, LITT),非温度消融技术包括光动力治疗(photo dynamic therapy, PDT)、近距离放疗和不可逆电穿孔(Irreversible electroporation, IRE)等。胰周存在较多温度敏感结构,如胆管、门静脉、十二指肠及肠系膜动静脉等,因此非温度消融技术对于治疗胰腺病变尤为重要。

7.1. 高强度聚焦超声

HIFU治疗胰腺癌主要用于缓解疼痛,并发症包括黄疸、胰瘘、胰腺炎、胃肠道出血、肠穿孔和严重皮肤灼伤,发生率为0%~23.2%,可针对特定人群用作个体化治疗方案[58]

7.2. 冷冻消融

冷冻消融通过开放手术或经皮穿刺 将冷冻针刺入肿瘤进行治疗,可使靶组织温度降至40℃以下而引起细胞凋亡、坏死。CT或超声引导下经皮穿刺冷冻消融后,LAPC患者1年生存率超过50% [59]。冷冻消融可激活抗肿瘤免疫效应、调控表面抗原,联合特异性抗体免疫治疗可增强上述免疫效应并抑制肿瘤生长,亦可用于控制胰腺癌疼痛[60]

7.3. 射频消融

RFA是一种成熟的技术,它可以在肿瘤内部产生高水平的热,导致坏死,然后用瘢痕组织替代死亡的肿瘤细胞。在治疗肝癌、肺癌、肾癌等多种类型的癌症中效果良好,副作用小,且不影响患者的生活质量[61]。RFA已被用于不能手术的胰腺癌的姑息性治疗[62]。尽管如此,切除部分胰腺由于其复杂的解剖结构和精确定位目标的困难,可能是相当具有挑战性的。此外,胰腺组织具有高度的生物热敏性,当受到高热量刺激时,会引起炎症反应,继而发生水肿、纤维化改变,最后发生囊性变。随着线阵超声内镜(EUS)的发展,超声内镜引导下的射频消融(EUS-RFA)可在胰腺深部实时成像,避免了对邻近组织的损伤。然而,由于胰腺的最佳热动力学特性尚未确定,目前尚无胰腺RFA的标准化方案。对于较大的胰腺肿块,仍然难以安全地诱导完全的凝固性坏死。目前可实现的凝固直径为8~10 mm [63]。这种新的治疗方法的长期疗效还需要在设计合理的研究中进一步评估。

7.4. 微波消融

MWA使肿瘤组织内的水、蛋白质等极性分子在微波电磁场作用下高速振荡,短时间内温度达到60℃~150℃,致细胞凝固性坏死[64]。相比RFA,MWA消融功率高、速度快、范围大,且受热沉效应的影响较小,但温度较难控制;其并发症包括重症胰腺炎、假性囊肿及胃十二指肠动脉假性动脉瘤等[65]

7.5. 激光诱导热治疗

相比其他热消融技术,LITT采用光波能量,所用针和光纤极细,具有侵入性较小和精确度较高等优势,目前主要用于治疗肝、颅内、甲状腺和前列腺肿瘤。一项针对9例化疗无效LAPC患者进行的超声引导下姑息性LITT治疗研究证实其具有临床可行性,而其有效性尚待观察[66]

7.6. 光动力治疗

PDT是依赖氧气的非热技术,将光敏剂与可见光结合,使光波能量作用于目标靶点并产生氧自由基(oxygen free radical, ROS)而破坏周围组织,目前主要用于治疗腔内早期恶性肿瘤,如食管、胃、结直肠和膀胱癌[67]。胰腺癌瘤周间质密集、周围环境乏氧,光穿透受限,导致PDT有效性降低,故临床应用较少。对于LAPC,PDT适于作为辅助或局部治疗手段。有学者以超声引导下PDT联合卟吩姆钠治疗12例首诊LAPC,之后予吉西他滨联合白蛋白紫杉醇,患者中位OS为11.5个月,主要并发症为皮肤损伤和色素沉着[68]

7.7. 近距离放疗

近距离放疗是于CT、MRI或超声引导下以专门套管针将放射性粒子植入肿瘤组织,使其发生坏死;用于治疗LAPC的放射性核素主要为125I、32P、198金、192铱和90钇,以125I最常用[69]。经皮125I粒子植入术是指在局麻下,采用CT扫描等影像定位技术,依据模拟内放射治疗系统(treatment planning system, TPS)确定靶区和粒子植入的数目,采用直接穿刺的方法将125I粒子植入到胰腺癌和转移病灶组织中,使肿瘤组织细胞发生坏死的治疗方法。胰腺癌组织属于乏氧性肿瘤,对常规放疗不敏感。而125I粒子半衰期60.14 d,能持续释放γ射线。γ射线是原子核受激辐射的,比X射线光子能量高、波长更短,穿透能力更强,可持续破坏肿瘤细胞的DNA合成,从而阻止肿瘤细胞增殖;同时125I粒子所释放的γ射线为低能量射线,有效照射距离在5~20 mm,不容易对周围正常组织造成损伤[70]

7.8. 不可逆电穿孔

IRE是一种很有前途的新型非热消融方式,最近被引入临床实践,用于治疗不能手术的胰腺癌,是一种更安全、更有效的局部治疗选择[71]。不可逆电穿孔是通过应用电脉冲来破坏细胞膜和细胞稳态,从而导致癌细胞坏死和凋亡,从而提供更安全有效的消融。根据美国癌症联合委员会分期标准(第8版),目前使用IRE治疗胰腺癌的主要适应症如下:局部晚期胰腺癌Ⅱ期或Ⅲ期(T4N1M0),区域淋巴结阳性数 ≤ 3枚;肿瘤最大径 ≤ 5 cm;以及肿瘤不适合根治性切除的患者或拒绝此手术的患者。IRE也有一些绝对和相对的禁忌证。如果金属植入物距离消融区域小于2.5 cm,或门静脉闭塞、门静脉高压、腹水、胆管梗阻或高胆红素血症的患者不能使用[72]

8. 展望

胰腺癌是一种高度恶性肿瘤,对治疗提出了重大挑战。虽然手术切除仍然是主要方法,但其疗效并未随着时间的推移而改善。化疗仍是胰腺癌的一线疗法。然而,耐药性、致密的肿瘤间质和异质性往往限制了治疗结果。随着各种新型生物技术的不断创新和发展,以及医学、药学、生物学、材料科学等学科的高度交叉融合发展,我们相信在治疗胰腺癌方面将取得突破性进展,从而造福更多患者。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 徐近. 中国抗癌协会胰腺癌整合诊治指南(精简版) [J]. 中国肿瘤临床, 2023, 50(10): 487-496.
[2] Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48.
https://doi.org/10.3322/caac.21763
[3] 孔冉. 胰腺导管腺癌的定量蛋白质组学研究[D]: [博士学位论文]. 北京: 军事科学院, 2023.
https://doi.org/10.27193/d.cnki.gjsky.2022.000061
[4] 孙素芹, 叶婷, 樊蓉, 等. 《中国肿瘤整合诊治指南胰腺癌》出版: 山甲白花汤联合吉西他滨对胰腺癌小鼠肿瘤生长的抑制作用及其机制的研究[J]. 介入放射学杂志, 2023, 32(7): 727.
[5] 韩家伟. 胰腺癌新辅助/转化治疗后影响预后临床因素的筛选及预后模型的建立和验证[D]: [硕士学位论文]. 重庆: 中国人民解放军海军军医大学, 2023.
https://doi.org/10.26998/d.cnki.gjuyu.2023.000192
[6] Mostafa, M.E., Erbarut-Seven, I., Pehlivanoglu, B. and Adsay, V. (2017) Pathologic Classification of “Pancreatic Cancers”: Current Concepts and Challenges. Chinese Clinical Oncology, 6, 59-59.
https://doi.org/10.21037/cco.2017.12.01
[7] 郝以杰, 高恒军, 牛哲禹, 等. 胰腺癌综合治疗的现状与进展[J]. 腹部外科, 2020, 33(6): 468-473.
[8] Barros, A., Pulido, C., Machado, M., Brito, M., Couto, N., Sousa, O., et al. (2021) Treatment Optimization of Locally Advanced and Metastatic Pancreatic Cancer (Review). International Journal of Oncology, 59, 110.
https://doi.org/10.3892/ijo.2021.5290
[9] Burris, H.A., Moore, M.J., Andersen, J., Green, M.R., Rothenberg, M.L., Modiano, M.R., et al. (2023) Improvements in Survival and Clinical Benefit with Gemcitabine as First-Line Therapy for Patients with Advanced Pancreas Cancer: A Randomized Trial. Journal of Clinical Oncology, 41, 5482-5492.
https://doi.org/10.1200/jco.22.02777
[10] Conroy, T., Desseigne, F., Ychou, M., Bouché, O., Guimbaud, R., Bécouarn, Y., et al. (2011) FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. New England Journal of Medicine, 364, 1817-1825.
https://doi.org/10.1056/nejmoa1011923
[11] Von Hoff, D.D., Ervin, T., Arena, F.P., Chiorean, E.G., Infante, J., Moore, M., et al. (2013) Increased Survival in Pancreatic Cancer with Nab-Paclitaxel plus Gemcitabine. New England Journal of Medicine, 369, 1691-1703.
https://doi.org/10.1056/nejmoa1304369
[12] Raphael, M.J., Raskin, W., Habbous, S., Tai, X., Beca, J., Dai, W.F., et al. (2021) The Association of Drug-Funding Reimbursement with Survival Outcomes and Use of New Systemic Therapies among Patients with Advanced Pancreatic Cancer. JAMA Network Open, 4, e2133388.
https://doi.org/10.1001/jamanetworkopen.2021.33388
[13] Wang-Gillam, A., Li, C., Bodoky, G., Dean, A., Shan, Y., Jameson, G., et al. (2016) Nanoliposomal Irinotecan with Fluorouracil and Folinic Acid in Metastatic Pancreatic Cancer after Previous Gemcitabine-Based Therapy (NAPOLI-1): A Global, Randomised, Open-Label, Phase 3 Trial. The Lancet, 387, 545-557.
https://doi.org/10.1016/s0140-6736(15)00986-1
[14] 陈哲然, 辛磊, 王洛伟. 《2023年欧洲肿瘤内科学会临床实践指南: 胰腺癌的诊断、治疗和随访》意见要点[J]. 临床肝胆病杂志, 2023, 39(12): 2804-2808.
[15] Hosein, A.N., Brekken, R.A. and Maitra, A. (2020) Pancreatic Cancer Stroma: An Update on Therapeutic Targeting Strategies. Nature Reviews Gastroenterology & Hepatology, 17, 487-505.
https://doi.org/10.1038/s41575-020-0300-1
[16] Moradi Kashkooli, F., Soltani, M. and Souri, M. (2020) Controlled Anti-Cancer Drug Release through Advanced Nano-Drug Delivery Systems: Static and Dynamic Targeting Strategies. Journal of Controlled Release, 327, 316-349.
https://doi.org/10.1016/j.jconrel.2020.08.012
[17] 戴亮亮. 纳米介孔硅及聚合物胶束智能药物递送系统制备与抗肿瘤效应研究[D]: [博士学位论文]. 重庆: 重庆大学, 2019.
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2019&filename=1018852833.nh, 2024-04-30.
[18] Liu, L., Kshirsagar, P.G., Gautam, S.K., Gulati, M., Wafa, E.I., Christiansen, J.C., et al. (2022) Nanocarriers for Pancreatic Cancer Imaging, Treatments, and Immunotherapies. Theranostics, 12, 1030-1060.
https://doi.org/10.7150/thno.64805
[19] Raza, F., Evans, L., Motallebi, M., Zafar, H., Pereira-Silva, M., Saleem, K., et al. (2023) Liposome-Based Diagnostic and Therapeutic Applications for Pancreatic Cancer. Acta Biomaterialia, 157, 1-23.
https://doi.org/10.1016/j.actbio.2022.12.013
[20] Su, J., Sun, H., Meng, Q., Zhang, P., Yin, Q. and Li, Y. (2017) Enhanced Blood Suspensibility and Laser-Activated Tumor-Specific Drug Release of Theranostic Mesoporous Silica Nanoparticles by Functionalizing with Erythrocyte Membranes. Theranostics, 7, 523-537.
https://doi.org/10.7150/thno.17259
[21] Hoang Thi, T.T., Cao, V.D., Nguyen, T.N.Q., Hoang, D.T., Ngo, V.C. and Nguyen, D.H. (2019) Functionalized Mesoporous Silica Nanoparticles and Biomedical Applications. Materials Science and Engineering: C, 99, 631-656.
https://doi.org/10.1016/j.msec.2019.01.129
[22] Kankala, R.K., Han, Y., Na, J., Lee, C., Sun, Z., Wang, S., et al. (2020) Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Advanced Materials, 32, Article ID: 1907035.
https://doi.org/10.1002/adma.201907035
[23] Yin, F., Zhang, B., Zeng, S., Lin, G., Tian, J., Yang, C., et al. (2015) Folic Acid-Conjugated Organically Modified Silica Nanoparticles for Enhanced Targeted Delivery in Cancer Cells and Tumor in Vivo. Journal of Materials Chemistry B, 3, 6081-6093.
https://doi.org/10.1039/c5tb00587f
[24] Wang, C.E., Stayton, P.S., Pun, S.H. and Convertine, A.J. (2015) Polymer Nanostructures Synthesized by Controlled Living Polymerization for Tumor-Targeted Drug Delivery. Journal of Controlled Release, 219, 345-354.
https://doi.org/10.1016/j.jconrel.2015.08.054
[25] Tarannum, M., Holtzman, K., Dréau, D., Mukherjee, P. and Vivero-Escoto, J.L. (2022) Nanoparticle Combination for Precise Stroma Modulation and Improved Delivery for Pancreatic Cancer. Journal of Controlled Release, 347, 425-434.
https://doi.org/10.1016/j.jconrel.2022.05.019
[26] Asefa, T. and Tao, Z. (2012) Biocompatibility of Mesoporous Silica Nanoparticles. Chemical Research in Toxicology, 25, 2265-2284.
https://doi.org/10.1021/tx300166u
[27] Patra, A., Satpathy, S. and Hussain, M.D. (2019) Nanodelivery and Anticancer Effect of a Limonoid, Nimbolide, in Breast and Pancreatic Cancer Cells. International Journal of Nanomedicine, 14, 8095-8104.
https://doi.org/10.2147/ijn.s208540
[28] Feltrin, F.d.S., Agner, T., Sayer, C. and Lona, L.M.F. (2022) Curcumin Encapsulation in Functional PLGA Nanoparticles: A Promising Strategy for Cancer Therapies. Advances in Colloid and Interface Science, 300, Article ID: 102582.
https://doi.org/10.1016/j.cis.2021.102582
[29] Mir, M., Ahmed, N. and Rehman, A.U. (2017) Recent Applications of PLGA Based Nanostructures in Drug Delivery. Colloids and Surfaces B: Biointerfaces, 159, 217-231.
https://doi.org/10.1016/j.colsurfb.2017.07.038
[30] Hu, Y., Chen, X., Xu, Y., Han, X., Wang, M., Gong, T., et al. (2019) Hierarchical Assembly of Hyaluronan Coated Albumin Nanoparticles for Pancreatic Cancer Chemoimmunotherapy. Nanoscale, 11, 16476-16487.
https://doi.org/10.1039/c9nr03684a
[31] Yu, Q., Tang, X., Zhao, W., Qiu, Y., He, J., Wan, D., et al. (2021) Mild Hyperthermia Promotes Immune Checkpoint Blockade-Based Immunotherapy against Metastatic Pancreatic Cancer Using Size-Adjustable Nanoparticles. Acta Biomaterialia, 133, 244-256.
https://doi.org/10.1016/j.actbio.2021.05.002
[32] Bhushan, B., Khanadeev, V., Khlebtsov, B., Khlebtsov, N. and Gopinath, P. (2017) Impact of Albumin Based Approaches in Nanomedicine: Imaging, Targeting and Drug Delivery. Advances in Colloid and Interface Science, 246, 13-39.
https://doi.org/10.1016/j.cis.2017.06.012
[33] 张俊. 褐藻多糖硫酸酯对人黑色素瘤A375系细胞活性的影响及其机制探讨[D]: [硕士学位论文]. 泸州: 西南医科大学, 2021.
https://doi.org/10.27215/d.cnki.glzyu.2017.000059
[34] Barbosa, A.I., Costa Lima, S.A. and Reis, S. (2019) Application of Ph-Responsive Fucoidan/Chitosan Nanoparticles to Improve Oral Quercetin Delivery. Molecules, 24, Article No. 346.
https://doi.org/10.3390/molecules24020346
[35] Wang, Y., Xing, M., Cao, Q., Ji, A., Liang, H. and Song, S. (2019) Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Marine Drugs, 17, Article No. 183.
https://doi.org/10.3390/md17030183
[36] Etman, S.M., Abdallah, O.Y. and Elnaggar, Y.S.R. (2020) Novel Fucoidan Based Bioactive Targeted Nanoparticles from Undaria Pinnatifida for Treatment of Pancreatic Cancer. International Journal of Biological Macromolecules, 145, 390-401.
https://doi.org/10.1016/j.ijbiomac.2019.12.177
[37] Channon, L.M., Tyma, V.M., Xu, Z., Greening, D.W., Wilson, J.S., Perera, C.J., et al. (2022) Small Extracellular Vesicles (Exosomes) and Their Cargo in Pancreatic Cancer: Key Roles in the Hallmarks of Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1877, Article ID: 188728.
https://doi.org/10.1016/j.bbcan.2022.188728
[38] Ensminger, W.D. (2002) Intrahepatic Arterial Infusion of Chemotherapy: Pharmacologic Principles. Seminars in Oncology, 29, 119-125.
https://doi.org/10.1053/sonc.2002.31679
[39] Groot Koerkamp, B., Sadot, E., Kemeny, N.E., Gönen, M., Leal, J.N., Allen, P.J., et al. (2017) Perioperative Hepatic Arterial Infusion Pump Chemotherapy Is Associated with Longer Survival after Resection of Colorectal Liver Metastases: A Propensity Score Analysis. Journal of Clinical Oncology, 35, 1938-1944.
https://doi.org/10.1200/jco.2016.71.8346
[40] Ohigashi, H., Ishikawa, O., Eguchi, H., Sasaki, Y., Yamada, T., Noura, S., et al. (2005) Feasibility and Efficacy of Combination Therapy with Preoperative and Postoperative Chemoradiation, Extended Pancreatectomy, and Postoperative Liver Perfusion Chemotherapy for Locally Advanced Cancers of the Pancreatic Head. Annals of Surgical Oncology, 12, 629-636.
https://doi.org/10.1245/aso.2005.05.028
[41] Schizas, D., Charalampakis, N., Kole, C., Economopoulou, P., Koustas, E., Gkotsis, E., et al. (2020) Immunotherapy for Pancreatic Cancer: A 2020 Update. Cancer Treatment Reviews, 86, Article ID: 102016.
https://doi.org/10.1016/j.ctrv.2020.102016
[42] Bayne, L.J., Beatty, G.L., Jhala, N., Clark, C.E., Rhim, A.D., Stanger, B.Z., et al. (2012) Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor Regulates Myeloid Inflammation and T Cell Immunity in Pancreatic Cancer. Cancer Cell, 21, 822-835.
https://doi.org/10.1016/j.ccr.2012.04.025
[43] Michelakos, T., Cai, L., Villani, V., Sabbatino, F., Kontos, F., Fernández-del Castillo, C., et al. (2020) Tumor Microenvironment Immune Response in Pancreatic Ductal Adenocarcinoma Patients Treated with Neoadjuvant Therapy. JNCI: Journal of the National Cancer Institute, 113, 182-191.
https://doi.org/10.1093/jnci/djaa073
[44] Li, K., Tandurella, J.A., Gai, J., Zhu, Q., Lim, S.J., Thomas, D.L., et al. (2022) Multi-Omic Analyses of Changes in the Tumor Microenvironment of Pancreatic Adenocarcinoma Following Neoadjuvant Treatment with Anti-PD-1 Therapy. Cancer Cell, 40, 1374-1391.e7.
https://doi.org/10.1016/j.ccell.2022.10.001
[45] Ott, P.A., Hu, Z., Keskin, D.B., Shukla, S.A., Sun, J., Bozym, D.J., et al. (2017) An Immunogenic Personal Neoantigen Vaccine for Patients with Melanoma. Nature, 547, 217-221.
https://doi.org/10.1038/nature22991
[46] Beatty, G.L., Haas, A.R., Maus, M.V., Torigian, D.A., Soulen, M.C., Plesa, G., et al. (2014) Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Antitumor Activity in Solid Malignancies. Cancer Immunology Research, 2, 112-120.
https://doi.org/10.1158/2326-6066.cir-13-0170
[47] O'Neil, N.J., Bailey, M.L. and Hieter, P. (2017) Synthetic Lethality and Cancer. Nature Reviews Genetics, 18, 613-623.
https://doi.org/10.1038/nrg.2017.47
[48] Jones, S., Zhang, X., Parsons, D.W., et al. (2008) Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science (New York, N.Y.), 321, 1801-1806.
[49] Qian, Z.R., Rubinson, D.A., Nowak, J.A., Morales-Oyarvide, V., Dunne, R.F., Kozak, M.M., et al. (2018) Association of Alterations in Main Driver Genes with Outcomes of Patients with Resected Pancreatic Ductal Adenocarcinoma. JAMA Oncology, 4, e173420.
https://doi.org/10.1001/jamaoncol.2017.3420
[50] Corcoran, R.B., Cheng, K.A., Hata, A.N., Faber, A.C., Ebi, H., Coffee, E.M., et al. (2013) Synthetic Lethal Interaction of Combined BCL-XL and MEK Inhibition Promotes Tumor Regressions in KRAS Mutant Cancer Models. Cancer Cell, 23, 121-128.
https://doi.org/10.1016/j.ccr.2012.11.007
[51] Cocco, E., Scaltriti, M. and Drilon, A. (2018) NTRK Fusion-Positive Cancers and TRK Inhibitor Therapy. Nature Reviews Clinical Oncology, 15, 731-747.
https://doi.org/10.1038/s41571-018-0113-0
[52] Bykov, V.J.N., Eriksson, S.E., Bianchi, J. and Wiman, K.G. (2017) Targeting Mutant P53 for Efficient Cancer Therapy. Nature Reviews Cancer, 18, 89-102.
https://doi.org/10.1038/nrc.2017.109
[53] Shi, Y., Hata, A., Lo, R.S., Massagué, J. and Pavletich, N.P. (1997) A Structural Basis for Mutational Inactivation of the Tumour Suppressor Smad4. Nature, 388, 87-93.
https://doi.org/10.1038/40431
[54] Sanjabi, S., Oh, S.A. and Li, M.O. (2017) Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harbor Perspectives in Biology, 9, a022236.
https://doi.org/10.1101/cshperspect.a022236
[55] Shi, L., Sheng, J., Wang, M., Luo, H., Zhu, J., Zhang, B., et al. (2019) Combination Therapy of TGF-β Blockade and Commensal-Derived Probiotics Provides Enhanced Antitumor Immune Response and Tumor Suppression. Theranostics, 9, 4115-4129.
https://doi.org/10.7150/thno.35131
[56] Heger, U. and Hackert, T. (2021) Can Local Ablative Techniques Replace Surgery for Locally Advanced Pancreatic Cancer? Journal of Gastrointestinal Oncology, 12, 2536-2546.
https://doi.org/10.21037/jgo-20-379
[57] 李茂全. 晚期胰腺癌介入治疗临床操作指南(试行) (第六版) [J]. 临床肝胆病杂志, 2022, 38(6): 1242-1251.
[58] Ruarus, A., Vroomen, L., Puijk, R., Scheffer, H. and Meijerink, M. (2018) Locally Advanced Pancreatic Cancer: A Review of Local Ablative Therapies. Cancers, 10, Article No. 16.
https://doi.org/10.3390/cancers10010016
[59] He, L., Niu, L., Korpan, N.N., Sumida, S., Xiao, Y., Li, J., et al. (2017) Clinical Practice Guidelines for Cryosurgery of Pancreatic Cancer. Pancreas, 46, 967-972.
https://doi.org/10.1097/mpa.0000000000000878
[60] 李竞, 张肖, 张啸波, 等. 纳米刀消融联合程序性死亡蛋白-1/程序性死亡蛋白配体-1治疗胰腺癌及其免疫学机制研究进展[J/OL]. 中国介入影像与治疗学, 2020, 17(10): 628-631.
https://doi.org/10.13929/j.issn.1672-8475.2020.10.012
[61] Wang, J., Wang, Y., Zhao, Y., Wu, X., Zhang, M., Hou, W., et al. (2021) Endoscopic Ultrasound-Guided Radiofrequency Ablation of Unresectable Pancreatic Cancer with Low Ablation Power and Multiple Applications: A Preliminary Study of 11 Patients. Annals of Palliative Medicine, 10, 1842-1850.
https://doi.org/10.21037/apm-20-1468
[62] Yang, J., Zhang, X., Jiang, J. and Lou, Q. (2021) Feasibility and Safety of EUS-Guided Radiofrequency Ablation in Treatment of Locally Advanced, Unresectable Pancreatic Cancer. Endoscopic Ultrasound, 10, 398-399.
https://doi.org/10.4103/eus-d-21-00013
[63] Pai, M. (2015) Endoscopic Ultrasound Guided Radiofrequency Ablation, for Pancreatic Cystic Neoplasms and Neuroendocrine Tumors. World Journal of Gastrointestinal Surgery, 7, 52-59.
https://doi.org/10.4240/wjgs.v7.i4.52
[64] Poulou, L.S. (2015) Percutaneous Microwave Ablation vs Radiofrequency Ablation in the Treatment of Hepatocellular Carcinoma. World Journal of Hepatology, 7, 1054-1063.
https://doi.org/10.4254/wjh.v7.i8.1054
[65] Glassberg, M.B., Ghosh, S., Clymer, J.W., Qadeer, R.A., Ferko, N.C., Sadeghirad, B., et al. (2019) Microwave Ablation Compared with Radiofrequency Ablation for Treatment of Hepatocellular Carcinoma and Liver Metastases: A Systematic Review and Meta-Analysis. OncoTargets and Therapy, 12, 6407-6438.
https://doi.org/10.2147/ott.s204340
[66] Di Matteo, F.M., Saccomandi, P., Martino, M., Pandolfi, M., Pizzicannella, M., Balassone, V., et al. (2018) Feasibility of EUS-Guided ND:YAG Laser Ablation of Unresectable Pancreatic Adenocarcinoma. Gastrointestinal Endoscopy, 88, 168-174.e1.
https://doi.org/10.1016/j.gie.2018.02.007
[67] Wang, Y., Wang, H., Zhou, L., Lu, J., Jiang, B., Liu, C., et al. (2020) Photodynamic Therapy of Pancreatic Cancer: Where Have We Come from and Where Are We Going? Photodiagnosis and Photodynamic Therapy, 31, Article ID: 101876.
https://doi.org/10.1016/j.pdpdt.2020.101876
[68] DeWitt, J.M., Sandrasegaran, K., O’Neil, B., House, M.G., Zyromski, N.J., Sehdev, A., et al. (2019) Phase 1 Study of EUS-Guided Photodynamic Therapy for Locally Advanced Pancreatic Cancer. Gastrointestinal Endoscopy, 89, 390-398.
https://doi.org/10.1016/j.gie.2018.09.007
[69] Iwasaki, E., Fukuhara, S., Horibe, M., Kawasaki, S., Seino, T., Takimoto, Y., et al. (2021) Endoscopic Ultrasound-Guided Sampling for Personalized Pancreatic Cancer Treatment. Diagnostics, 11, Article No. 469.
https://doi.org/10.3390/diagnostics11030469
[70] Tempero, M.A., Malafa, M.P., Al-Hawary, M., Behrman, S.W., Benson, A.B., Cardin, D.B., et al. (2021) Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 19, 439-457.
https://doi.org/10.6004/jnccn.2021.0017
[71] Spiliopoulos, S., Reppas, L., Filippiadis, D., Delvecchio, A., Conticchio, M., Memeo, R., et al. (2023) Irreversible Electroporation for the Management of Pancreatic Cancer: Current Data and Future Directions. World Journal of Gastroenterology, 29, 223-231.
https://doi.org/10.3748/wjg.v29.i2.223
[72] Xiao, Y., Wang, Z., Hu, X., Wei, Y., Chen, G., Ding, X., et al. (2021) Chinese Expert Consensus of Image-Guided Irreversible Electroporation for Pancreatic Cancer. Journal of Cancer Research and Therapeutics, 17, 613-618.
https://doi.org/10.4103/jcrt.jcrt_1663_20