血清维生素D水平与男性不育症之间的关系:一项两样本孟德尔随机化研究
Association between Serum Vitamin D Levels and Male Infertility: A Two-Sample Mendelian Randomization Study
DOI: 10.12677/acm.2024.1461864, PDF, HTML, XML, 下载: 37  浏览: 83 
作者: 李 硕*, 赵姣雅, 李瑞林#:西安医学院研工部,陕西 西安
关键词: 不育症孟德尔随机化维生素DSinfertility Mendelian Randomization Vitamin D
摘要: 目的:由于异质性和混杂因素,维生素D (VD)与男性不育症之间的因果关系尚未达成共识,即使在随机对照试验(RCT)中也是如此。本研究旨在通过孟德尔随机化(MR)探究血清VD (25-OH-D)水平与男性不育症之间的因果关系,并为未来RCT的优化提供补充信息。方法:从GAWS数据库中提取了VD和MFI的单核苷酸多态性(SNP),进行两样本孟德尔随机化研究,采用逆方差加权法(Inverse Variance Weighted, IVW)、Egger回归法(MR-Egger)、中位数加权法(Weighted Median)等评估VD与MFI之间的因果关联,同时采用异质性检验(Heterogeneity Test)、水平多效性检验(Horizontal pleiotropy Test)、逐个剔除检验(Leave-one-out sensitivity Test)进行敏感性分析,评估MR分析的可靠性和稳定性。结果:共纳入84个与VD密切相关的SNP,遗传预测的VD水平与MFI的风险无关(OR: 0.728, 95% CI: 0.445~1.191; P = 0.207),这在三种敏感性分析(MR-Egger法,Weighted median法和Weighted mode法)中都是一致的。结论:遗传预测的血清维生素D水平与男性不育症的风险无关,服用VD补充剂可能无法对男性不育症有益。
Abstract: Objective: Due to heterogeneity and confounding factors, there is no consensus on the causal relationship between vitamin D (VD) and male infertility, even in randomized controlled trials (RCTs). This study aims to explore the causal relationship between serum VD (25-OH-D) levels and male infertility through Mendelian randomization (MR) and to provide complementary information for future optimization of RCT. Methods: Single nucleotide polymorphisms (SNP) of VD and MFI were extracted from GAWS database, and two-sample Mendelian randomization study was carried out. Inverse Variance Weighted (IVW), Egger Regression (MR-Egger), Weighted Median (Weighted Median) were used to evaluate the causal association between VD and MFI. Heterogeneity Test, Horizontal pleiotropy Test and Leave-one-out Sensitivity test were used to conduct sensitivity analysis to evaluate the reliability and stability of MR analysis. Results: A total of 84 SNPs closely related to VD were included, and the level of genetically predicted VD was not associated with the risk of MFI (OR: 0.728, 95% CI: 0.445~1.191; P = 0.207), which was consistent with the three sensitivity analyses (MR-Egger, Weighted median and Weighted mode). After excluding SNPs, the conclusion still holds. Conclusion: Genetically predicted serum vitamin D levels are not associated with the risk of male infertility, and taking VD supplements may not be beneficial to male infertility.
文章引用:李硕, 赵姣雅, 李瑞林. 血清维生素D水平与男性不育症之间的关系:一项两样本孟德尔随机化研究[J]. 临床医学进展, 2024, 14(6): 940-946. https://doi.org/10.12677/acm.2024.1461864

1. 介绍

男性因素不育症(MFI)是指男性在无保护后至少12个月内无法使有生育能力的女性怀孕,在美国,这一比例至少为12%,给社会和经济进步带来了巨大障碍[1]。此外,由于COVID-19在一定程度上降低了生育能力,甚至导致一些康复男性的不育,因此寻找男性不育的潜在有效预防方法更为重要[2]

在过去的几十年中,关于维生素D (VD)对人类健康的保护作用的研究较为广泛[3]。VD被认为与MFI密切相关,但临床观察结果仍有争议[4]。尽管观察性研究显示血清VD水平对参数和妊娠结局有积极影响[5],但目前使用VD补充剂的随机对照试验(Randomized Controlled Trials, RCTs)存在研究人群、补充剂剂量和潜在混杂因素的显著异质性,因此对VD与男性因素生育力之间的因果关系尚无共识[6]

从理论上讲,随机对照试验是回答通过补充剂增加VD状态是否会改善MFI的金标准,但现实中,由于一些外界因素,可能无法开展大型的随机对照试验[7]。孟德尔随机化(Mendelian Randomization, MR)被认为是一种天然的随机对照试验[8]。MR将与目标暴露相关的遗传变异作为工具变量,可以避免观察性研究中未测量的混杂因素,并研究潜在可改变的危险因素与健康结局之间的因果关系[9]。因此,MR可以为随机对照试验提供补充信息。

本研究的目的是通过对普通人群进行双样本MR分析,评估血清VD (25-OH-D)水平(通常用于评估体内VD状态)对男性生育能力的因果影响,并为未来RCT的优化提供参考。

2. 材料与方法

双样本MR分析是按照STROBE-MR检查表的说明进行的。在指南下进行敏感性分析和单核苷酸多态性(SNP)筛选[10]

2.1. 数据来源

VD与MFI的遗传变异是从全基因组关联研究(Genome Wide Association Study, GWAS)获得,其中VD共计418,691个样本,共计4,225,238个SNP位点。MFI共计73,479个样本,共计16,377,329个SNP位点(表1)。

Table 1. Summary of GWAS data from two-sample Mendelian randomization analysis

1. 两样本孟德尔随机化分析的GWAS数据汇总

变量

样本量

SNP个数

年份

血统

数据库来源

PMID

统计学效能

VD

418,691

4,225,238

2021

欧洲

IEU数据库

34,226,706

100%

MFI

73,479

16,377,329

2021

欧洲

IEU数据库

/

100%

2.2. 工具变量的选择和孟德尔随机化假设

MR分析应满足三个核心假设以获得无偏倚的结果:1) 变异与暴露显著相关;2)变异与暴露–结果关联的任何混杂因素无关;3) 变异不影响结局,除非暴露可能通其他生物学途径(即水平多效性效应) [10]。为了保证MR分析的稳健性,我们应用SNP作为遗传工具变量。为了确保提取的SNP与血清25OHD水平有力相关(假设1),我们仅包括全基因组显著相关P < 5 × 10−8,F统计量 > 10的SNP,以最大限度地减少弱工具变量偏倚的可能性。其次,我们用r2 ≥ 0.001和LD距离 < 10,000 kb去除了潜在连锁不平衡。

2.3. 孟德尔随机化分析的统计方法

采用目前最常用的四种MR方法进行分析,包括本研究最主要的逆方差加权法(Inverse Variance-Weighted method, IVW)和辅助的MR-Egger法,Weighted median法和Weighted mode法。为衡量MR分析的可靠性和稳定性,还进行了多种敏感性分析,例如:异质性检验(Heterogeneity Test):检测来源于不同GWAS数据的SNP是否存在异质性。水平多效性检验(Horizontal pleiotropy Test):如果SNP与暴露因素和结局都直接相关,那么就存在水平多效性,MR分析的结果就不可信。逐个剔除检验(Leave-one-out sensitivity Test):通过逐个剔除SNP后计算剩余SNP的MR结果,若剔除某个SNP后其它SNP估计出来的MR结果和总结果差异很大,则说明MR结果对该SNP是敏感的。

工具变量的强度通过统计量F计算,其公式为F = R2 × (Nk − 1)/(1 − R2) × k。其中R2代表工具变量解释的变异比例,N为暴露样本的样本量,k为工具变量的数量,而R2 = (2 × EAF × (1 − EAF) × beta2)/(N × SE2),EAF为次要等位基因频率,beta为等位基因效应值,SE为标准误差。MR估计值的功效通过MRnd (https://shiny.cnsgenomics.com/mRnd/)在线网站计算。所有统计分析均使用R软件(4.0.3版本)进行。使用Two sample MR包(0.5.5版本)进行MR分析。

3. 结果

TSMR结果提示VD与MFI的发生风险风管。IVW法提供了主要的因果证据(OR: 0.728, 95% CI: 0.445~1.191; P = 0.207),四种MR统计方法的结果见图1。Weighted median法(OR = 0.944, 95% CI: 0.432~2.061, P = 0.885)、Weighted mode法(OR = 0.874, 95% CI: 0.446~1.713, P = 0.696)支持了IVW法的结果。因此可知VD与MFI无因果关系,TSMR分析的漏斗图见图2。异质性检验结果Q = 2.487,P = 0.647,表明纳入的SNPs无明显异质性。对于水平多效性检验,MR-Egger法截距值为0.059 (P = 0.599),表明纳入的SNPs无明显水平多效性,说明工具变量并不通过暴露以外的途径影响结局。逐个剔除检验显示去除任意SNP后结果存在轻微不稳定(图3)。

Figure 1. Forest map of MR analysis results

1. MR分析结果森林图

Figure 2. Funnel plot of MR analysis results

2. MR分析结果漏斗图

Figure 3. Rejection test results one by one

3. 逐个剔除检验结果

4. 讨论

这项MR研究的结果不支持VD在MFI中的保护作用。Blomberg Jensen的研究小组发现,在接受VD治疗的VD缺陷男性(<25 nmol/L, n = 66)中,精子参数没有显著改善[11]。尽管总体治疗组的自然妊娠和活产率往往较高(n = 269),但没有统计学意义。另一项研究表明,VD干预3个月可改善弱精子症和血清25OHD < 30 ng/mL (n = 86)男性的精子活力,但未见妊娠结局的报道[12]。相反,Amini等[13]进行的研究表明,VD补充剂与MFI之间没有关联,但他们纳入的受试者较少(n = 62),不包括短期干预(12周)的无精子症患者。毕竟,干预研究在干预期、VD补充剂剂量、治疗后血清25OHD水平升高、研究人群和主要结局方面存在显著异质性,导致对VD在男性生殖中的作用没有达成共识。在患有VD缺乏症的特发性不育男性中,VDR基因的甲基化显著升高,这与精子浓度和进行性运动呈负相关[14]。此外,另一项研究表明,与1,25(OH)2D孵育30分钟可以增强精子活力,可能是通过cAMP/PKA途径促进三磷酸腺苷的合成[15]。近年来,氧化应激标志物在VD和MFI中的作用受到广泛关注[16]。精子由于其固有的抗氧化防御和DNA修复机制降低而容易受到氧化应激的影响,而VD作为膜抗氧化剂具有潜在的清除能力。Shahid及其同事发现,当精子参数改变时,4-羟基壬烯醛(一种氧化应激标志物)显著升高,并且在一项横断面研究中与VD呈负相关[16]。作为活性氧的第二信使,4-羟基壬烯醛也与精子活力和形态呈强负相关,但在其他出版物中用VD处理时会降低[17]

5. 结论

我们的研究提供了遗传证据,不支持普通人群中血清25OHD水平升高作为MFI的因果保护因素。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Chandra, A., Copen, C.E. and Stephen, E.H. (2013) Infertility and Impaired Fecundity in the United States, 1982-2010: Data from the National Survey of Family Growth. National Health Statistics Reports, No. 67, 1-18.
[2] Ardestani Zadeh, A. and Arab, D. (2021) COVID-19 and Male Reproductive System: Pathogenic Features and Possible Mechanisms. Journal of Molecular Histology, 52, 869-878.
https://doi.org/10.1007/s10735-021-10003-3
[3] Zhang, Y., Fang, F., Tang, J., Jia, L., Feng, Y., Xu, P., et al. (2019) Association between Vitamin D Supplementation and Mortality: Systematic Review and Meta-analysis. BMJ, 366, L4673.
https://doi.org/10.1136/bmj.l4673
[4] Rehman, R., Lalani, S., Baig, M., Nizami, I., Rana, Z. and Gazzaz, Z.J. (2018) Association between Vitamin D, Reproductive Hormones and Sperm Parameters in Infertile Male Subjects. Frontiers in Endocrinology, 9, Article 607.
https://doi.org/10.3389/fendo.2018.00607
[5] Akhavizadegan, H. and Karbakhsh, M. (2017) Comparison of Serum Vitamin D between Fertile and Infertile Men in a Vitamin D Deficient Endemic Area: A Case-Control Study. Urologia Journal, 84, 218-220.
https://doi.org/10.5301/uj.5000248
[6] Maghsoumi-Norouzabad, L., Zare Javid, A., Mansoori, A., Dadfar, M. and Serajian, A. (2021) The Effects of Vitamin D3 Supplementation on Spermatogram and Endocrine Factors in Asthenozoospermia Infertile Men: A Randomized, Triple Blind, Placebo-Controlled Clinical Trial. Reproductive Biology and Endocrinology, 19, Article No. 102.
https://doi.org/10.1186/s12958-021-00789-y
[7] Scragg, R. (2018) Limitations of Vitamin D Supplementation Trials: Why Observational Studies Will Continue to Help Determine the Role of Vitamin D in Health. The Journal of Steroid Biochemistry and Molecular Biology, 177, 6-9.
https://doi.org/10.1016/j.jsbmb.2017.06.006
[8] Ference, B.A., Holmes, M.V. and Smith, G.D. (2021) Using Mendelian Randomization to Improve the Design of Randomized Trials. Cold Spring Harbor Perspectives in Medicine, 11, a040980.
https://doi.org/10.1101/cshperspect.a040980
[9] Davies, N.M., Holmes, M.V. and Davey Smith, G. (2018) Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for Clinicians. BMJ, 362, k601.
https://doi.org/10.1136/bmj.k601
[10] Sanderson, E., Glymour, M.M., Holmes, M.V., Kang, H., Morrison, J., Munafò, M.R., et al. (2022) Mendelian randomization. Nature Reviews Methods Primers, 2, Article No. 6.
https://doi.org/10.1038/s43586-021-00092-5
[11] Blomberg Jensen, M., Lawaetz, J.G., Petersen, J.H., Juul, A. and Jørgensen, N. (2017) Effects of Vitamin D Supplementation on Semen Quality, Reproductive Hormones, and Live Birth Rate: A Randomized Clinical Trial. The Journal of Clinical Endocrinology & Metabolism, 103, 870-881.
https://doi.org/10.1210/jc.2017-01656
[12] Maghsoumi-Norouzabad, L., Zare Javid, A., Mansoori, A., Dadfar, M. and Serajian, A. (2021) Vitamin D3 Supplementation Effects on Spermatogram and Oxidative Stress Biomarkers in Asthenozoospermia Infertile Men: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. Reproductive Sciences, 29, 823-835.
https://doi.org/10.1007/s43032-021-00769-y
[13] Amini, L., Mohammadbeigi, R., Vafa, M., Haghani, H., Vahedian-Azimi, A., Karimi, L., et al. (2020) Evaluation of the Effect of Vitamin D3 Supplementation on Quantitative and Qualitative Parameters of Spermograms and Hormones in Infertile Men: A Randomized Controlled Trial. Complementary Therapies in Medicine, 53, Article ID: 102529.
https://doi.org/10.1016/j.ctim.2020.102529
[14] Hussein, T.M., Eldabah, N., Zayed, H.A. and Genedy, R.M. (2021) Assessment of Serum Vitamin D Level and Seminal Vitamin D Receptor Gene Methylation in a Sample of Egyptian Men with Idiopathic Infertility. Andrologia, 53, e14172.
https://doi.org/10.1111/and.14172
[15] Yao, B., Jueraitetibaike, K., Ding, Z., Wang, D., Peng, L., Jing, J., et al. (2019) The Effect of Vitamin D on Sperm Motility and the Underlying Mechanism. Asian Journal of Andrology, 21, 400-407.
https://doi.org/10.4103/aja.aja_105_18
[16] Shahid, M., Khan, S., Ashraf, M., Akram Mudassir, H. and Rehman, R. (2021) Male Infertility: Role of Vitamin D and Oxidative Stress Markers. Andrologia, 53, e14147.
https://doi.org/10.1111/and.14147
[17] Ke, C., Yang, F., Wu, W., Chung, C., Lee, R., Yang, W., et al. (2016) Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise. International Journal of Medical Sciences, 13, 147-153.
https://doi.org/10.7150/ijms.13746