超声心动图评价室性早搏患者射频导管消融术后疗效的研究进展
Progress in Echocardiography for Evaluating the Efficacy of Radiofrequency Catheter Ablation in Patients with Premature Ventricular Complexes
DOI: 10.12677/acm.2024.1461857, PDF, HTML, XML, 下载: 32  浏览: 56 
作者: 杜 欢, 刘姝靖:宁夏医科大学第一临床医学院,宁夏 银川;王 琴*:宁夏医科大学总医院心脏中心,宁夏 银川
关键词: 室性早搏射频导管消融超声心动图Premature Ventricular Complexes Radiofrequency Catheter Ablation Echocardiography
摘要: 室性早搏/室早是临床上最常见的心律失常之一。射频导管消融是目前室早患者最常用的治疗方法,具有成功率高,并发症少等优点。超声心动图是临床检查室早患者心脏结构和功能的首选影像学检查技术,利用超声心动图了解室早患者术后左室功能恢复情况,评价其远期临床疗效,可为临床进一步制定干预方案提供客观参考依据。
Abstract: The premature ventricular complexes is one of the most common arrhythmias. Radiofrequency catheter ablation is the most commonly used treatment method for patients, which has the advantages of high success rate and fewer complications. Echocardiography is the preferred imaging technique for the cardiac structure and function. It is also used to understand the recovery of left ventricular function and evaluate its long-term clinical efficacy in postoperative patients, which can provide objective reference for further development of clinical intervention programs.
文章引用:杜欢, 刘姝靖, 王琴. 超声心动图评价室性早搏患者射频导管消融术后疗效的研究进展[J]. 临床医学进展, 2024, 14(6): 891-899. https://doi.org/10.12677/acm.2024.1461857

1. 引言

室性期前收缩(室性早搏/室早Ventricular Premature Contract, PVC),是指希氏束及其分支以下心室肌的异位兴奋灶提前除极而产生的心室期前收缩,是临床上最常见的心律失常之一[1]。通过普通心电图筛查,室早在一般人群中检出率为1%~4% [2],24 h或48 h动态心电图检出率高达40%~75% [3]。频发室早可损害左室心肌功能,随着病情进展可发展至心肌病[4]。目前,射频导管消融术(Radiofrequency Catheter Ablation, RFCA)已逐渐成为室早患者的一线治疗方法[1],研究表明RFCA可以有效减少室早负荷、改善左室心肌功能及总体预后,具有良好的安全性以及有效性[5] [6],但是目前关于其远期临床疗效尚不明确。超声心动图因其价廉、操作简便、无创性等优点已成为临床上评估室早患者RFCA术后左室功能恢复程度最常用的检查方法。本文就超声心动图对室早患者RFCA术后的疗效评估做一综述。

2. 室性早搏与射频导管消融术

2.1. 室性早搏病理生理学机制

室性早搏是指心室的某个或多个部位存在异位起搏点,在正常窦性心率之前提前发生一次激动,进而引起心室肌细胞提前去极化。室早主要机制为自律性异常、触发活动和折返,造成心率不规则、收缩不同步等,导致左室心肌功能障碍。其原因一方面是由于心室同步性变差,心排血量降低,促使冠脉微循环障碍,导致心肌功能受损。另一方面是由于室性早搏患者心肌氧化应激和神经–激素系统失衡[7] [8]。过度氧化应激会通过刺激信号转导造成心肌细胞损伤,导致左室心肌功能障碍[8]

2.2. 射频导管消融

RFCA是目前临床上治疗室早最有效和应用最广泛方法,该治疗方式通过静脉或动脉途径将电极导线送入心腔内,先行电生理标测定位,后通过射频电流产生热量造成局部心肌细胞(心内膜及心内膜下)坏死,以达到阻断异位起源点和异常传导束的心血管介入技术。2020室性心律失常中国专家共识[9]中指出对于有严重症状的室早或抗心律失常药物治疗无效的患者,应积极行RFCA,且对于无症状的室早患者,亦可以尝试行RFCA。多项临床研究发现[10] [11],通过RFCA治疗室早,有助于患者室早减少或消失,改善患者症状,阻止室早发展为室早相关心肌病,且该手术成功率高,术后复发率低。随着RFCA应用的广泛化,关于治疗后的临床效果以及对于左室心肌功能的改善情况等问题成为了目前讨论的热点。

3. 超声心动图评价室早患者消融术后左心功能

3.1. 常规超声心动图

专家共识中指出[9],室早患者需常规进行超声心动图评估心脏的结构和功能、瓣膜的形态与功能等,这在室早的危险分层和治疗策略中具有重要价值。对于拟行RFCA患者,通过超声心动图检查可了解左心功能恢复情况。目前临床上应用最广泛且最便捷的方法是常规超声心动图,包括:M型超声心动图、二维超声心动图及超声多普勒成像。

3.1.1. M型超声心动图

M型超声具有较高的时间分辨率,可连续记录多个心动周期的运动变化,由M型曲线的活动轨迹及其斜率能准确了解室壁和瓣膜运动状态等。通常于胸骨旁左心室长轴切面测量左室舒张末期、收缩末期容积、左室后壁舒张期厚度、室间隔舒张期厚度等[12],以此观察室早患者的左心室是否增大、室壁运动情况等。Sadron Blaye-Felice M等学者[13]研究发现,室早患者左心室各径线虽在正常范围内,但较正常对照组仍增大,这说明室早患者早期已经发生了心室重构。研究显示[14] [15]室早患者经RFCA术后,左室舒张末期内径和收缩末期内径较术前缩小,这表明RFCA术可以促使室早患者心室反向重构,而利用超声心动图可以监测这些变化。

3.1.2. 二维超声心动图(Two-Dimensional Echocardiography, 2DE)

二维超声心动图能实时观察心脏轮廓、大小及不同心动周期的变化。2DE评估左室收缩功能最常用、最有效的指标是左心室射血分数(Left Ventricular Ejection Fraction, LVEF),通常由Simpson法获取。欧洲心血管影像学会和美国超声心动图学会在相关指南与共识中指出了心脏各腔室的正常值[16]。Baman TS等学者[17]发现,室早消融后患者LVEF显著改善。Lakkireddy D等学者[18]研究心力衰竭患者室早消融后LVEF有改善,且消融后无反应者心脏再同步化治疗(CRT)的有效性亦得到提高,说明室早成功消融可改善左心室功能,且促进CRT无反应者的心室反向重塑。Sarrazin JF等[18]及Penela D [19]的研究显示室早合并心肌梗死患者成功消融后LVEF增加,RFCA显著改善了该类患者的左心室收缩功能。以上研究均利用2DE评价室早患者RFCA术后疗效,表明2DE在评估室早患者左室结构及RFCA术后左心功能恢复情况等方面发挥重要作用。然而,2DE虽然易于获得,但LVEF的测量是以一个假定的左心室几何体模型为基础,通过公式计算所得的,易受心脏几何形态及心率影响[20]

3.1.3. 组织多普勒超声(Doppler Tissue Imaging, DTI)

组织多普勒技术[21]能将心肌运动产生的低频多普勒频移用彩色编码或频谱实时显示出来,如同血流彩色成像那样,将组织的运动信息检测后进行彩色编码成像,有效地反映心肌运动的方向与速度、局部室壁运动和增厚的程度,提示心肌局部缺血和损伤的范围。DTI可以记录局部心肌运动的速度,如心室壁各节段收缩期和舒张期的心肌运动速度、位移、应变率和应变,这些参数可用以评价心肌局部功能。研究发现,DTI测量的二尖瓣环收缩期运动速度及位移与射血分数以及二尖瓣环下移距离呈高度相关性,从而可以准确评价左心整体收缩功能。且传统的多普勒二尖瓣口血流频谱评价左室舒张功能受心率、前后负荷等多种因素影响而存在假性正常化,而DTI受这些因素影响较小。近年来运用组织多普勒结合脉冲多普勒技术,对心肌功能的评价取得越来越多的临床应用价值。王志耘[22]等学者利用DTI技术,研究室早对于心肌功能的影响,发现室早时心肌收缩速度、舒张速度均分别明显低于正常时。顾翔[23]及刘阳贵[24]等学者研究发现组织多普勒参数可以在术前明确室早起源位置,对室早定位诊断准确。因此,应用DTI技术记录患者术前、术后局部心肌运动速度,可以帮助评价预后,了解患者心肌功能恢复情况。DTI突破了既往超声心动图目测分析室壁运动的局限性,为心脏生理学、病理学和临床研究提供了一个新的方法。

3.2. 实时三维超声心动图(Real-Time Three-Dimensional Echocardiography, RT3DE)

与二维超声心动图不同,实时三维超声是不间断地持续截取全方位的心脏二维截面图,并经相关软件以图形学方法进行图像重建,最终显示出整个心脏三维立体图像,其不仅可以直观、实时、准确地显示出受检者心脏结构的变化,而且还可以全面定量分析心脏形态和容积,从而能够判定其功能异常情况[25]。王媛媛等学者[26]的研究评估了RT3DE在心肌梗死患者左心室收缩功能评价中的应用价值,最终结果认为,RT3DE能够准确反映心肌梗死患者的左心室收缩功能宋焱等学者[27]研究发现RT3DE能够对预激综合征患者的左心室收缩功能进行量化,并且能够对其左心室收缩同步性进行有效评估。周忠寅等学者[28]利用RT3DE技术分析心律失常患者机械不同步性(LVSDI)与左室收缩功能障碍之间的关系,发现LVSDI与LVEF减少关系更密切。以上研究均说明RT3DE可以准确地判定心脏结构和功能变化。RT3DE具有操作简单、省时、可重复性高等优点,且其不需要对心室进行任何几何学设定,而是直接对心室固有的容积进行测量,并评价心功能,相比于传统二维超声心动图,结果更加全面准确。

3.3. 超声斑点追踪成像(Speckle Tracking Echocardiography, STE)

斑点追踪技术(Speckle Tracking Echocardiography, STE)是新近兴起的超声技术,以常规超声心动图获取的二维图像为基础,通过追踪心动周期每帧图中自然声学标记的灰度即“斑点”来成像。这些斑点是超声波与心脏组织相互作用产生的,可以独立于观察角度进行跟踪。STE克服了常规超声心动图的一些局限性,具有无角度依赖性、较高的可行性和可重复性等优势,能够早期识别细微心肌损害,可提供额外提示预后评估的信息,在心脏超声方面表现为二维/三维斑点追踪超声心动图(2D/3D-STE)。其单独或联合常规心脏超声在心脏疾病的多个方面均有应用。近几年发现室早可对心脏的结构和功能产生影响,进而发展成室早诱导的心肌病(PVC-ICM),增加心血管事件的发病率及病死率,故早期发现室早导致的心脏异常具有重要意义。

3.3.1. 二维斑点追踪成像技术(Two-Dimensional Speckle Tracking Imaging, 2D-STI)

二维斑点追踪成像技术在左心室的纵向、轴向和径向形成节段应变和应变率曲线,进而区分病态心肌收缩段和正常心肌段,以期评估纵向、轴向和径向心脏局部和整体功能[29]。相关指南中推荐了基于2D-STI的正常参考值[16] [30]。其中心肌纵向应变(LS)是继LVEF后最具临床应用前景的心功能评价指标之一[31]。Wijnmaalen AP等[32]的研究中,射血分数保留的室早患者经RFCA术后,其LVEF、LVEDd没有明显变化,然而,利用2D-STI得出的左室纵向、轴向和径向应变表现出显著改善,说明对于LVEF正常的患者,通过2D-STI可以检测到早期左心室收缩功能障碍,且可以评估患者术后疗效。聂建明等学者[33]利用2D-STI研究LVEF正常室早患者RFCA术后疗效,随访术后3个月,LVEF、左室舒张末期内径均未见显著改变,而各应变参数均较术前有显著改善,提示利用2D-STI可以发现室早患者早期隐匿的左室功能损害并了解其术后疗效。罗麟等学者[34]研究同样发现2D-STI在LVEF正常的室性早搏患者RFCA术后左室收缩功能评估中具有较高的应用价值,可为临床进一步制定干预方案提供客观参考依据。2D-STI较常规超声心动图参数可早期、敏感地评估室早患者亚临床左心室收缩功能障碍,对患者亚临床左心室收缩功能减低的评价及预后评估方面优于常规超声心动图,可为行RFCA的室早患者进行术后评估,协助制订诊疗计划。同时,2D-STI也用于评价糖尿病、高血压、心肌病和冠心病等患者的心力衰竭风险[35] [36] [37] [38] [39]。对LVEF保留心力衰竭患者进行分层,并评估其预后和随访疗效。

2D-STI通过测定心肌形变能更加准确评估心肌收缩功能,不受声束方向与室壁运动方向间夹角的影响,克服了角度依赖性。但2D-STI技术是在二维空间内追踪心肌组织的运动轨迹评估心肌的运动,而真实的心肌运动是在三维空间内,心肌的旋转不可避免地导致部分声学斑点移出2D-STI追踪平面以外,从而导致测量数值偏差。而且,Reant P等学者[40]建立猪模型,证明后负荷增加可以降低心肌应变,2D-STI具有负荷依赖性,对心肌功能评估的准确性有一定影响,故应寻找一种新的方式来避免这种偏差。

3.3.2. 三维斑点追踪成像技术(Three-Dimensional Speckle Tracking Imaging, 3D-STI)

三维斑点追踪成像技术利用三维超声心动图技术获取连续心脏全容积图像,采用软件自动追踪心肌斑点的三维空间运动轨迹,准确定位心脏空间结构,并进行心肌应变成像,定量分析心肌伸缩、增窄、扭转的三维运动[41]。相较2D-STI,3D-STI可同时测量所有空间方向的心肌形变参数,反映三维空间的变化,测得的参数能更准确地评估心肌功能[42]。Nesser HJ等学者的研究[43]中,分别应用2D-STI、3D-STI及心脏磁共振扫描(CMR)测量左室收缩末及舒张末容积,发现3D-STI与CMR的相关性明显高于2D-STI与CMR的相关性,证明3D-STI具有更高的准确性及可重复性。3D-STI可显示出心脏结构的整体形态、大小、范围、毗邻结构以及心动周期动态变化,从而能够更为直观与准确地对心脏病变进行定量分析与定性诊断,可应用于诸多心脏疾病诊断中。Ling Y [44]利用3D-STI研究LVEF保留的室早患者,显示室早组整体及区域应变值均低于健康对照组。Castelvecchio S等学者[45]研究心力衰竭患者左心室成形术后心脏收缩功能的改善情况,发现术后左心室整体收缩功能显著恢复,且左心室改善基底区域更明显,这说明利用3D-STI技术可以更准确、更精细地分析心肌功能情况。Tatsumi K等[46]应用3D-STI对接受CRT治疗的患者术前及术后6个月随访发现,心肌面积应变增加与CRT患者预后具有良好相关性。3D-STI可以直观地对心脏病变进行定量分析与定性诊断,对于术后评价疗效及随访观察同样具有重要的临床价值。但是,3D-STI亦具有负荷依赖性,对心肌功能评估的准确性有一定影响。

3.4. 左室压力应变环(Left Ventricula Pressure-Strain Loop, LVPSL)

左室左室压力–应变环结合左室压力(LVP)与整体纵向应变(GSL)无创定量评价左室心肌做功,克服了负荷依赖性,对左室功能进行有效定量评估,可对心血管疾病进行早期诊断及预后评估。Russell K [47]证明基于无创LVPSL测量的心肌功能与心导管介入测量得出的结果有很好的相关性。Bergman BC以及Wehrl HF等学者的研究证明心肌葡萄糖代谢反映了心肌做功,支持了LVPSL评估左室心肌做功的可靠性[48] [49]。根据欧洲心血管成像协会的推荐方案[50]进行图像采集,获取心脏标准二维灰阶图像,然后使用软件处理标准心尖两腔、三腔、四腔心声像图,软件自动计算出GLS [51]。LVPSL指标包括GWI (整体做功指数)、GCW (整体有用功)、GWW (整体无用功)、GWE (整体做功效率),反映了一个心动周期左室内压力与应变的变化关系。由二尖瓣关闭至二尖瓣开放时间间期内沿逆时针方向形成的闭环,曲线下的面积近似等于左室做功总和GWI。GCW为心脏收缩及舒张时做的有用功,有利于心室射血。GWW为心脏做的无用功。GWE为GCW占GCW与GWW相加之和的百分比[52] [53]

目前,左室压力—应变环已应用于很多心血管疾病中[54] [55] [56] [57],如心肌梗死、淀粉样变性、严重主动脉瓣狭窄、心力衰竭等疾病的诊疗中。Chan J等[58]研究发现扩张性心肌病患者的GWI和GWE明显降低,Cui C等[59]发现扩心病患者经治疗后GWI明显升高而LVEF无明显变化,提示GWI在疗效评价方面比LVEF更敏感。Galli E等[60]研究发现心力衰竭患者心脏再同步化治疗(CRT)中,发生应答的患者GCW明显增高,GCW有助于识别CRT应答者。Riolet C等[61]发现术前低GWW心力衰竭患者CRT的应答反应率相对较低,GWW为心力衰竭患者是否选择CRT治疗的参考因素之一。黄军等[62]研究发现利用左室压力–应变环可以早期识别LVEF正常患者左室心肌功能损害。

LVPSL通过测量2D-STI和后负荷,将心肌应变和心室压力进行了联合,在评价心肌功能时消除了后负荷的影响,能更加客观准确地对整体和节段心肌功能进行定量分析,可用于亚临床左心室收缩功能障碍评估及评价预后。

4. 总结与展望

目前关于室早与心电图参数的相关性研究较多,但是对于超声心电图评估患者RFCA术后疗效的研究较少。超声心动图操作简便、可重复、经济安全,在心脏结构和功能评估方面发挥重要作用,利用超声心动图可为临床进一步制定干预方案提供客观参考依据,利于保证疾病治疗效果,促使疾病良好转归。随着超声医学的发展,超声心动图将在室早患者结构和功能评价中发挥更大价值。

NOTES

*通讯作者。

参考文献

[1] 曹克将, 陈柯萍, 陈明龙, 等. 室性心律失常中国专家共识基层版[J]. 实用心电学杂志, 2022, 31(2): 77-98.
[2] Kennedy, H.L., Whitlock, J.A., Sprague, M.K., Kennedy, L.J., Buckingham, T.A. and Goldberg, R.J. (1985) Long-Term Follow-up of Asymptomatic Healthy Subjects with Frequent and Complex Ventricular Ectopy. New England Journal of Medicine, 312, 193-197.
https://doi.org/10.1056/nejm198501243120401
[3] Ng, G.A. (2006) Treating Patients with Ventricular Ectopic Beats. Heart, 92, 1707-1712.
https://doi.org/10.1136/hrt.2005.067843
[4] Huizar, J.F., Ellenbogen, K.A., Tan, A.Y. and Kaszala, K. (2019) Arrhythmia-Induced Cardiomyopathy. Journal of the American College of Cardiology, 73, 2328-2344.
https://doi.org/10.1016/j.jacc.2019.02.045
[5] Stevenson, W.G. and Soejima, K. (2007) Catheter Ablation for Ventricular Tachycardia. Circulation, 115, 2750-2760.
https://doi.org/10.1161/circulationaha.106.655720
[6] Ouyang, F., Fotuhi, P., Ho, S.Y., et al. (2002) Repetitive Monomorphic Ventricular Tachycardia Originating from the Aortic Sinus Cusp: Electrocardiographic Characterization for Guiding Catheter Ablation. Journal of the American College of Cardiology, 39, 500-508.
https://doi.org/10.1016/S0735-1097(01)01767-3
[7] Gopinathannair, R., Etheridge, S.P., Marchlinski, F.E., Spinale, F.G., Lakkireddy, D. and Olshansky, B. (2015) Arrhythmia-Induced Cardiomyopathies. Journal of the American College of Cardiology, 66, 1714-1728.
https://doi.org/10.1016/j.jacc.2015.08.038
[8] Della Rocca, D.G., Santini, L., Forleo, G.B., Sanniti, A., Del Prete, A., Lavalle, C., et al. (2015) Novel Perspectives on Arrhythmia-Induced Cardiomyopathy. Cardiology in Review, 23, 135-141.
https://doi.org/10.1097/crd.0000000000000040
[9] 曹克将, 陈柯萍, 陈明龙, 等. 2020室性心律失常中国专家共识(2016共识升级版) [J]. 中国心脏起搏与心电生理杂志, 2020, 34(3): 189-253.
[10] De Silva, K., Haqqani, H., Mahajan, R., Qian, P., Chik, W., Voskoboinik, A., et al. (2023) Catheter Ablation vs Antiarrhythmic Drug Therapy for Treatment of Premature Ventricular Complexes. JACC: Clinical Electrophysiology, 9, 873-885.
https://doi.org/10.1016/j.jacep.2023.01.035
[11] Fichtner, S., Senges, J., Hochadel, M., Tilz, R., Willems, S., Eckardt, L., et al. (2016) Safety and Efficacy in Ablation of Premature Ventricular Contraction: Data from the German Ablation Registry. Clinical Research in Cardiology, 106, 49-57.
https://doi.org/10.1007/s00392-016-1022-9
[12] Mitchell, C., Rahko, P.S., Blauwet, L.A., Canaday, B., Finstuen, J.A., Foster, M.C., et al. (2019) Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. Journal of the American Society of Echocardiography, 32, 1-64.
https://doi.org/10.1016/j.echo.2018.06.004
[13] Sadron Blaye-Felice, M., Hamon, D., Sacher, F., Pascale, P., Rollin, A., Duparc, A., et al. (2016) Premature Ventricular Contraction-Induced Cardiomyopathy: Related Clinical and Electrophysiologic Parameters. Heart Rhythm, 13, 103-110.
https://doi.org/10.1016/j.hrthm.2015.08.025
[14] 申玉静, 邹玉宝, 王靖, 马亚哲, 张澍, 唐闽. 频发性室性早搏伴心脏扩大患者行射频消融术的预后特点分析[J]. 中国分子心脏病学杂志, 2019, 19(4): 2993-2995.
[15] Lakkireddy, D., Di Biase, L., Ryschon, K., Biria, M., Swarup, V., Reddy, Y.M., et al. (2012) Radiofrequency Ablation of Premature Ventricular Ectopy Improves the Efficacy of Cardiac Resynchronization Therapy in Nonresponders. Journal of the American College of Cardiology, 60, 1531-1539.
https://doi.org/10.1016/j.jacc.2012.06.035
[16] (2016) Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of, Cardiovascular Imaging. European Heart Journal-Cardiovascular Imaging, 17, 412.
https://doi.org/10.1093/ehjci/jew041
[17] Baman, T.S., Lange, D.C., Ilg, K.J., Gupta, S.K., Liu, T., Alguire, C., et al. (2010) Relationship between Burden of Premature Ventricular Complexes and Left Ventricular Function. Heart Rhythm, 7, 865-869.
https://doi.org/10.1016/j.hrthm.2010.03.036
[18] Sarrazin, J., Labounty, T., Kuhne, M., Crawford, T., Armstrong, W.F., Desjardins, B., et al. (2009) Impact of Radiofrequency Ablation of Frequent Post-Infarction Premature Ventricular Complexes on Left Ventricular Ejection Fraction. Heart Rhythm, 6, 1543-1549.
https://doi.org/10.1016/j.hrthm.2009.08.004
[19] Penela, D., Teres, C., Fernández-Armenta, J., Aguinaga, L., Tercedor, L., Soto-Iglesias, D., et al. (2021) Premature Ventricular Complex Site of Origin and Ablation Outcomes in Patients with Prior Myocardial Infarction. Heart Rhythm, 18, 27-33.
https://doi.org/10.1016/j.hrthm.2020.07.037
[20] Luis, S.A., Chan, J. and Pellikka, P.A. (2019) Echocardiographic Assessment of Left Ventricular Systolic Function: An Overview of Contemporary Techniques, Including Speckle-Tracking Echocardiography. Mayo Clinic Proceedings, 94, 125-138.
https://doi.org/10.1016/j.mayocp.2018.07.017
[21] Boyd, A.C., Schiller, N.B. and Thomas, L. (2015) Principles of Transthoracic Echocardiographic Evaluation. Nature Reviews Cardiology, 12, 426-440.
https://doi.org/10.1038/nrcardio.2015.57
[22] 王志耘, 何秀波. 室性早搏对心肌运动速度的影响观察[J]. 中国医药指南, 2011, 9(21): 41-42.
[23] 顾翔, 曹克将, 陈勇, 等. 4种多普勒组织成像方式确定室性异位起搏点部位的比较性研究[J]. 实用临床医药杂志, 2007, 11(1): 26-30, 49.
[24] 刘阳贵, 栗魁生. 组织多普勒对室性早搏定位诊断的价值[J]. 中国现代医药杂志, 2004, 6(4): 39-40.
[25] Pino, P.G., Madeo, A., Lucà, F., Ceravolo, R., di Fusco, S.A., Benedetto, F.A., et al. (2023) Clinical Utility of Three-Dimensional Echocardiography in the Evaluation of Mitral Valve Disease: Tips and Tricks. Journal of Clinical Medicine, 12, Article 2522.
https://doi.org/10.3390/jcm12072522
[26] 王媛媛, 褚静洁, 赵航一, 谢志明. 实时三维超声心动图评价心肌梗死患者左心室收缩功能的应用价值[J]. 临床和实验医学杂志, 2021, 20(19): 2120-2123.
[27] 宋焱, 耿峰, 王永. 实时三维超声心动图及二维斑点追踪成像技术评估预激综合征患者左心室收缩同步性[J]. 皖南医学院学报, 2024, 43(1): 60-63.
[28] Zhou, Z., Ma, F., Zhu, J., Wang, J., Zhang, J. and Zhao, D. (2024) Potential Underestimation of Left Ventricular Mechanical Dyssynchrony in Dyssynchrony and Outcomes Assessment. Journal of Multidisciplinary Healthcare, 17, 1721-1729.
https://doi.org/10.2147/jmdh.s450264
[29] Pokharel, P., Fujikura, K. and Bella, J.N. (2015) Clinical Applications and Prognostic Implications of Strain and Strain Rate Imaging. Expert Review of Cardiovascular Therapy, 13, 853-866.
https://doi.org/10.1586/14779072.2015.1056163
[30] Badano, L.P., Kolias, T.J., Muraru, D., Abraham, T.P., Aurigemma, G., Edvardsen, T., et al. (2018) Standardization of Left Atrial, Right Ventricular, and Right Atrial Deformation Imaging Using Two-Dimensional Speckle Tracking Echocardiography: A Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. European Heart Journal-Cardiovascular Imaging, 19, 591-600.
https://doi.org/10.1093/ehjci/jey042
[31] Potter, E. and Marwick, T.H. (2018) Assessment of Left Ventricular Function by Echocardiography. JACC: Cardiovascular Imaging, 11, 260-274.
https://doi.org/10.1016/j.jcmg.2017.11.017
[32] Wijnmaalen, A.P., Delgado, V., Schalij, M.J., van Huls van Taxis, C.F.B., Holman, E.R., Bax, J.J., et al. (2010) Beneficial Effects of Catheter Ablation on Left Ventricular and Right Ventricular Function in Patients with Frequent Premature Ventricular Contractions and Preserved Ejection Fraction. Heart, 96, 1275-1280.
https://doi.org/10.1136/hrt.2009.188722
[33] 聂建明, 任学军, 李腾飞, 张烨, 陈娇阳. 应用二维斑点追踪成像技术评价射频消融术对左室射血分数正常的频发室性早搏患者的影响[J]. 中国心脏起搏与心电生理杂志, 2014, 28(3): 233-235.
[34] 罗麟, 罗燕萍. 斑点追踪成像评价左室射血分数正常的室性早搏患者射频消融术前后左室收缩功能变化的价值[J]. 中国社区医师, 2022, 38(32): 104-106.
[35] Holland, D.J., Marwick, T.H., Haluska, B.A., Leano, R., Hordern, M.D., Hare, J.L., et al. (2015) Subclinical LV Dysfunction and 10-Year Outcomes in Type 2 Diabetes Mellitus. Heart, 101, 1061-1066.
https://doi.org/10.1136/heartjnl-2014-307391
[36] Nogi, S., Ito, T., Kizawa, S., Shimamoto, S., Sohmiya, K., Hoshiga, M., et al. (2015) Association between Left Ventricular Postsystolic Shortening and Diastolic Relaxation in Asymptomatic Patients with Systemic Hypertension. Echocardiography, 33, 216-222.
https://doi.org/10.1111/echo.13022
[37] Halabi, A., Yang, H., Wright, L., Potter, E., Huynh, Q., Negishi, K., et al. (2021) Evolution of Myocardial Dysfunction in Asymptomatic Patients at Risk of Heart Failure. JACC: Cardiovascular Imaging, 14, 350-361.
https://doi.org/10.1016/j.jcmg.2020.09.032
[38] Paldino, A., De Angelis, G., Dal Ferro, M., Faganello, G., Porcari, A., Barbati, G., et al. (2021) High Prevalence of Subtle Systolic and Diastolic Dysfunction in Genotype-Positive Phenotype-Negative Relatives of Dilated Cardiomyopathy Patients. International Journal of Cardiology, 324, 108-114.
https://doi.org/10.1016/j.ijcard.2020.09.036
[39] Shehata, I.E., Eldamanhory, A.S. and Shaker, A. (2020) Early Predictors of Left Ventricular Dysfunction in Hypertensive Patients: Comparative Cross-Section Study. The International Journal of Cardiovascular Imaging, 36, 1031-1040.
https://doi.org/10.1007/s10554-020-01790-z
[40] Reant, P., Metras, A., Detaille, D., Reynaud, A., Diolez, P., Jaspard-Vinassa, B., et al. (2016) Impact of Afterload Increase on Left Ventricular Myocardial Deformation Indices. Journal of the American Society of Echocardiography, 29, 1217-1228.
https://doi.org/10.1016/j.echo.2016.09.006
[41] Seo, Y., Ishizu, T., Atsumi, A., Kawamura, R. and Aonuma, K. (2014) Three-Dimensional Speckle Tracking Echocardiography. Circulation Journal, 78, 1290-1301.
https://doi.org/10.1253/circj.cj-14-0360
[42] Luis, S.A., Yamada, A., Khandheria, B.K., Speranza, V., Benjamin, A., Ischenko, M., et al. (2014) Use of Three-Dimensional Speckle-Tracking Echocardiography for Quantitative Assessment of Global Left Ventricular Function: A Comparative Study to Three-Dimensional Echocardiography. Journal of the American Society of Echocardiography, 27, 285-291.
https://doi.org/10.1016/j.echo.2013.11.002
[43] Nesser, H.-J., Mor-Avi, V., Gorissen, W., Weinert, L., Steringer-Mascherbauer, R., Niel, J., et al. (2009) Quantification of Left Ventricular Volumes Using Three-Dimensional Echocardiographic Speckle Tracking: Comparison with MRI. European Heart Journal, 30, 1565-1573.
https://doi.org/10.1093/eurheartj/ehp187
[44] Ling, Y., Wan, Q., Chen, Q. and Zhu, W. (2017) Assessment of Subtle Cardiac Dysfunction in Patients with Frequent Premature Ventricular Complexes by Real-Time Three-Dimensional Speckle Tracking Echocardiography. Clinical Cardiology, 40, 554-558.
https://doi.org/10.1002/clc.22697
[45] Castelvecchio, S., Frigelli, M., Sturla, F., Milani, V., Pappalardo, O.A., Citarella, M., et al. (2023) Elucidating the Mechanisms Underlying Left Ventricular Function Recovery in Patients with Ischemic Heart Failure Undergoing Surgical Remodeling: A 3-Dimensional Ultrasound Analysis. The Journal of Thoracic and Cardiovascular Surgery, 165, 1418-1429.e4.
https://doi.org/10.1016/j.jtcvs.2021.02.067
[46] Tatsumi, K., Tanaka, H., Tsuji, T., Kaneko, A., Ryo, K., Yamawaki, K., et al. (2011) Strain Dyssynchrony Index Determined by Three-Dimensional Speckle Area Tracking Can Predict Response to Cardiac Resynchronization Therapy. Cardiovascular Ultrasound, 9, Article No. 11.
https://doi.org/10.1186/1476-7120-9-11
[47] Russell, K., Eriksen, M., Aaberge, L., Wilhelmsen, N., Skulstad, H., Remme, E.W., et al. (2012) A Novel Clinical Method for Quantification of Regional Left Ventricular Pressure-Strain Loop Area: A Non-Invasive Index of Myocardial Work. European Heart Journal, 33, 724-733.
https://doi.org/10.1093/eurheartj/ehs016
[48] Bergman, B.C., Tsvetkova, T., Lowes, B. and Wolfel, E.E. (2009) Myocardial Glucose and Lactate Metabolism during Rest and Atrial Pacing in Humans. The Journal of Physiology, 587, 2087-2099.
https://doi.org/10.1113/jphysiol.2008.168286
[49] Wehrl, H.F., Wiehr, S., Divine, M.R., Gatidis, S., Gullberg, G.T., Maier, F.C., et al. (2014) Preclinical and Translational PET/MR Imaging. Journal of Nuclear Medicine, 55, 11S-18S.
https://doi.org/10.2967/jnumed.113.129221
[50] Cosyns, B., Garbi, M., Separovic, J., Pasquet, A. and Lancellotti, P. (2013) Update of the Echocardiography Core Syllabus of the European Association of Cardiovascular Imaging (EACVI). European Heart Journal-Cardiovascular Imaging, 14, 837-839.
https://doi.org/10.1093/ehjci/jet140
[51] Voigt, J.-U., Pedrizzetti, G., Lysyansky, P., Marwick, T.H., Houle, H., Baumann, R., et al. (2014) Definitions for a Common Standard for 2D Speckle Tracking Echocardiography: Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. European Heart Journal-Cardiovascular Imaging, 16, 1-11.
https://doi.org/10.1093/ehjci/jeu184
[52] Manganaro, R., Marchetta, S., Dulgheru, R., Ilardi, F., Sugimoto, T., Robinet, S., et al. (2018) Echocardiographic Reference Ranges for Normal Non-Invasive Myocardial Work Indices: Results from the EACVI NORRE Study. European Heart Journal-Cardiovascular Imaging, 20, 582-590.
https://doi.org/10.1093/ehjci/jey188
[53] Galli, E., John-Matthwes, B., Rousseau, C., Schnell, F., Leclercq, C. and Donal, E. (2019) Echocardiographic Reference Ranges for Myocardial Work in Healthy Subjects: A Preliminary Study. Echocardiography, 36, 1814-1824.
https://doi.org/10.1111/echo.14494
[54] 李亚南, 崔存英, 刘园园, 等. 左室压力-应变环评估慢性心力衰竭患者左心室心肌做功的价值[J]. 中华超声影像学杂志, 2020, 29(1): 13-18.
[55] Fortuni, F., Butcher, S.C., van der Kley, F., Lustosa, R.P., Karalis, I., de Weger, A., et al. (2021) Left Ventricular Myocardial Work in Patients with Severe Aortic Stenosis. Journal of the American Society of Echocardiography, 34, 257-266.
https://doi.org/10.1016/j.echo.2020.10.014
[56] 刘春丽, 李一丹, 边晓琳, 等. 压力-应变环评估轻链型淀粉样变性患者左心室收缩功能[J]. 中华超声影像学杂志, 2021, 30(7): 598-603.
[57] Lustosa, R.P., Fortuni, F., van der Bijl, P., Goedemans, L., El Mahdiui, M., Montero-Cabezas, J.M., et al. (2020) Left Ventricular Myocardial Work in the Culprit Vessel Territory and Impact on Left Ventricular Remodelling in Patients with St-Segment Elevation Myocardial Infarction after Primary Percutaneous Coronary Intervention. European Heart Journal-Cardiovascular Imaging, 22, 339-347.
https://doi.org/10.1093/ehjci/jeaa175
[58] Chan, J., Edwards, N.F.A., Khandheria, B.K., Shiino, K., Sabapathy, S., Anderson, B., et al. (2018) A New Approach to Assess Myocardial Work by Non-Invasive Left Ventricular Pressure-Strain Relations in Hypertension and Dilated Cardiomyopathy. European Heart Journal-Cardiovascular Imaging, 20, 31-39.
https://doi.org/10.1093/ehjci/jey131
[59] Cui, C., Liu, L., Li, Y., Liu, Y., Huang, D., Hu, Y., et al. (2020) Left Ventricular Pressure-Strain Loop-Based Quantitative Examination of the Global and Regional Myocardial Work of Patients with Dilated Cardiomyopathy. Ultrasound in Medicine & Biology, 46, 2834-2845.
https://doi.org/10.1016/j.ultrasmedbio.2020.06.008
[60] Galli, E., Leclercq, C., Fournet, M., Hubert, A., Bernard, A., Smiseth, O.A., et al. (2018) Value of Myocardial Work Estimation in the Prediction of Response to Cardiac Resynchronization Therapy. Journal of the American Society of Echocardiography, 31, 220-230.
https://doi.org/10.1016/j.echo.2017.10.009
[61] Riolet, C., Menet, A., Mailliet, A., Binda, C., Altes, A., Appert, L., et al. (2021) Clinical Significance of Global Wasted Work in Patients with Heart Failure Receiving Cardiac Resynchronization Therapy. Journal of the American Society of Echocardiography, 34, 976-986.
https://doi.org/10.1016/j.echo.2021.06.008
[62] Huang, J., Li, G., Wang, J., Jiao, Y., Qian, Z., Fan, L., et al. (2023) Evaluation of Subclinical Left Ventricular Systolic Dysfunction in Obese Patients by Global Myocardial Work. Diabetology & Metabolic Syndrome, 15, Article No. 254.
https://doi.org/10.1186/s13098-023-01230-7