β,γ-不饱和-α-酮酸酯在有机合成中的应用研究进展
Research Progress in the Organic Synthesis of β,γ-Unsaturated-α-Ketoesters
DOI: 10.12677/jocr.2024.122028, PDF, HTML, XML, 下载: 34  浏览: 59 
作者: 孔祥南, 郑 玥, 张虎虎:兰州交通大学化学化工学院,甘肃 兰州
关键词: βγ-不饱和-α-酮酸酯合成子有机中间体βγ-Unsaturated-α-Ketoesters Building Blocks Organic Intermediates
摘要: β,γ-不饱和-α-酮酸酯是一类具有特殊共轭结构的有机中间体,其在有机合成中可以充当C1、C2、C3和C4合成子,可以用于合成具有手性结构或者非手性结构的化合物,因此,β,γ-不饱和-α-酮酸酯已成为现代有机合成中极具吸引力且用途广泛的合成子。本文重点介绍了β,γ-不饱和-α-酮酸酯作为不同合成子在有机合成中的应用,如不对称1,4-加成反应、[2 + 3]环加成反应、[3 + 2]环加成反应以及构建螺环化合物和六元杂环化合物的应用。
Abstract: β,γ-Unsaturated-α-ketoesters are a class of organic intermediates with a unique conjugated structure, which can serve as C1, C2, C3, and C4 synthons in organic synthesis, and can be used to synthesize compounds with chiral or non-chiral structures. Therefore, β,γ-unsaturated-α-ketoesters have become highly attractive and versatile building blocks in modern organic chemistry. This review focuses on introducing β,γ-Unsaturation-α- the application of ketone esters as different synthons in organic synthesis, such as asymmetric 1,4-addition reactions, [2 + 3] cycloaddition reactions, [3 + 2] cycloaddition reactions, as well as the construction of spirocyclic compounds and hexagonal heterocyclic compounds.
文章引用:孔祥南, 郑玥, 张虎虎. β,γ-不饱和-α-酮酸酯在有机合成中的应用研究进展[J]. 有机化学研究, 2024, 12(2): 306-317. https://doi.org/10.12677/jocr.2024.122028

1. 引言

β,γ-不饱和-α-酮酸酯是一类特殊的不饱和羰基衍生物,因为它们具有独特的1,2-二羰基体系。这种大的共轭体系具有反应位点多的独特优势,使反应方式多样化并拓宽了其在有机合成中的应用[1] [2]。此外,1,2-二羰基体系可以与Lewis酸配位,提高底物的反应活性。因此,β,γ-不饱和-α-酮酸酯已成为现代有机合成中极具吸引力且用途广泛的合成子[3] [4]。对于合成手性Michael加成产物来说,β,γ-不饱和-α-酮酸酯是优良的底物,同时该化合物可作为多种有用的手性功能化有机分子的合成砌块[5] [6]。不饱和酮酸酯可参与的不同反应如(图1)所示。

Figure 1. Different reaction modes of β,γ-unsaturated-α-ketoesters

1. β,γ-不饱和-α-酮酸酯的不同反应模式

2. β,γ-不饱和-α-酮酸酯作为不同合成子的应用

2.1. 不饱和酮酸酯作为C1合成子的应用

Michael加成反应是有机化学家最常用的反应之一[7]。反应过程通常意味着一个或多个立体中心的产生,并且大量研究致力于控制化合物的绝对构型,其中有机催化是最成功的方法[8]。在Michael加成反应中,硝基烷烃与α,β-不饱和羰基化合物之间的反应引人注目,这是因为催化剂有可能产生特定的相互作用,从而诱导对映选择性和产物的多功能性质[9] [10]。2020年,Bonne和Bugaut等人[11]报道了环状不饱和酮酸酯与硝基烷烃进行的不对称1,4-加成反应。反应如(图2)所示,该反应以奎宁衍生的方酰胺2.1为催化剂,在温和的反应条件下以中等至良好的产率和高对映选择性得到目标化合物。

Figure 2. Asymmetric 1,4-addition reaction of cyclic unsaturated ketoesters catalyzed by square amide

2. 方酰胺催化的环状不饱和酮酸酯不对称1,4-加成反应

在过去的几十年里,开发高效实用的构建具有手性叔醇结构化合物的策略引起了人们的极大关注[12]。然而,芳香酮作为可以直接羟醛缩合反应的亲核试剂,用来形成具有高度立体选择性的结构基序,仍然是非常具有挑战性的。因此,在利用有机催化剂进行这方面的发展方面已经作出了相当大的努力,然而金属催化的过程却很少进行研究[13]。2021年,张凤莲课题组[14]报道了一种铜催化的β,γ-不饱和-α-酮酸酯和香豆素-3-酮的不对称羟醛缩合反应。该反应用手性催化剂2.2与铜(I)的配合物,以优良的产率和高对映选择性获得了含手性三级醇结构的香豆素-3-酮衍生物(图3)。

Figure 3. Synthesis of coumarin-3-one derivatives through β,γ-unsaturation-α-ketoesters

3. 通过β,γ-不饱和-α-酮酸酯合成香豆素-3-酮衍生物

不饱和酮酸酯是重要的有机合成子,可以转化为多种结构单元,在天然产物合成中具有广泛的用途[15] [16]。2022年,宋振雷小组[17]报道了一种(Ph3C) [BPh(F)4]催化的烯丙基硅烷与不饱和酮酸酯的Hosomi-Sakurai烯丙基化反应,反应如(图4)所示。该反应以优良的产率和良好的化学选择性合成了γ,γ-二取代-α-酮酸酯化合物,且具有反应条件温和,反应普适性良好等特点。

Figure 4. Synthesis of unsaturated ketone esters γ,γ-disubstituted-α-ketoester compounds

4. 不饱和酮酸酯合成γ,γ-二取代-α-酮酸酯化合物

亚烷基环丙烷(ACP)由于其易于获得和高反应活性,已作为有价值的结构单元并且广泛应用于合成化学[18]。同年,彭金宝课题组[19]报道了钯催化下配体控制的β,γ-不饱和-α-酮酸酯与亚烷基环丙烷的选择性1,4-加成反应和环加成反应。该反应以烷基环丙烷和不饱和酮酸酯为起始原料,通过使用不同的配体和溶剂,以中等至优良的产率和优异的区域选择性合成了两种不同的目标化合物:第一种是以甲苯做溶剂,BuPAd2为配体,70℃时获得了了一系列多取代α-酮酸酯化合物2.3;第二种是用四氢呋喃做溶剂,PPh3做配体,90℃时生获得了一系列二氢-2H-吡喃化合物2.4,反应如(图5)所示。

Figure 5. Selective 1,4-addition and cycloaddition reactions of unsaturated ketoesters with alkylene cyclopropane

5. 不饱和酮酸酯与亚烷基环丙烷的选择性1,4-加成反应和环加成反应

Michael加成反应是形成C-C键和组装复杂有机化合物的最重的要方法之一。特别是不对称Michael加成反应已经发展成为制备光学活性手性分子的重要工具[20]。在2023年,李月明课题组[21]报道了一种手性联萘基脯氨酸杂化配体2.5与铜(II)的配合物催化的丙二酸酯与β,γ-不饱和-α-酮酸酯的对映选择性Michael加成反应。该反应条件温和,以高产率和高对映选择性合成目标化合物,具体反应如(图6)所示。

Figure 6. Chiral copper(II) complex-catalysed enantioselective Michael addition of malonates to β,γ-unsaturated-α-ketoesters

6. 手性铜(II)配合物催化丙二酸酯与β, γ-不饱和-α-酮酯的对映选择性Michael加成反应

2.2. 不饱和酮酸酯作为C2合成子的应用

2017年,罗三中课题组[22]报道了一种β,γ-不饱和-α-酮酸酯与简单烯烃的直接共轭加成反应和[2 + 2]环加成反应。他们通过不同的反应条件,分别得到了两种不同结构的化合物:第一种是以1,4-二氧六环为溶剂,在室温下用蓝色LED光照得到了一系列多官能团取代的环丁烷化合物2.6;第二种是以对二甲苯为溶剂,Hf(OTf)4为催化剂,室温下得到了一系列共轭加成产物2.7。这两种反应具有产率高,区域选择性好,反应条件温和的特点(图7)。

Figure 7. β,γ-Unsaturation-α-Conjugated addition reactions and [2 + 2] cycloaddition reactions of ketoesters

7. β,γ-不饱和-α-酮酸酯的共轭加成反应和[2 + 2]环加成反应

吡唑啉及其衍生物广泛存在于多种药物活性分子中,它们具有多种生物活性,如非核苷类HIV逆转录酶抑制剂[23]、具有止痛功能的神经降压素受体[24]和非甾体类盐皮质激素受体拮抗剂[25]。2018年,张金峰课题组[26]报道了一种合成吡唑啉衍生物的简便方法。该方法以三苯基膦为促进剂,偶氮二甲酸二烷基酯与不饱和酮酸酯作为原料进行分子间的[2 + 3]环加成反应。如(图8)所示,该反应的产率良好(61~94%)且反应条件温和,操作简便,是吡唑啉衍生物不错的合成策略之一。

Figure 8. Synthesis of pyrazoline derivatives by unsaturated ketoesters [2 + 3] cycloaddition reaction

8. 不饱和酮酸酯[2 + 3]环加成反应合成吡唑啉衍生物

近年来,不对称[3 + 2]环加成反应已成为合成各种五元碳环和杂环化合物的经典方法[27]。然而,在这些反应中的挑战点是,结构上合适的1,3-偶极子和电子匹配的C2合成子通常是必要的。研究表明,Lewis碱对靛红衍生的MBH碳酸酯的亲核进攻可以生成一类优良的1,3-偶极子,它们在与缺电子烯烃/亚胺的不对称[3 + 2]环加成反应中显示出优良的反应活性和巨大的潜力,可用于构建螺环戊烯/吡咯烷氧吲哚衍生物[28]。2019年,陈永正课题组[29]报道了一种螺环吲哚衍生物的合成方法。反应如(图9)所示,该反应在温和的反应条件下,由靛红衍生的MBH碳酸酯和β,γ不饱和-α-酮酸酯在手性叔胺催化剂2.8的作用下进行分子间[3 + 2]环加成反应。该反应以优异的非对映选择性和对映选择性合成了相应的螺环吲哚衍生物。

Figure 9. Synthesis of spiro indole derivatives through unsaturated ketoester compounds

9. 通过不饱和酮酸酯化合物合成螺环吲哚衍生物

2021年Radovan Šebesta小组[30]报道了一种不饱和酮酸酯与靛红衍生物和苄胺原位生成的酮酰胺的对映选择性[2 + 3]环加成反应。反应如(图10)所示,该反应以方酰胺2.9为催化剂,在温和的反应条件下顺利进行,以中等至优良的产率合成了目标化合物。值得注意的是,该反应首先将靛红衍生物与苄胺进行反应,随后再加入不饱和酮酸酯,这样可以以防止苄胺与不饱和酮酸酯之间发生非预期的竞争性反应。

Figure 10. Enantioselective [2 + 3] cycloaddition reaction of unsaturated ketoesters for the synthesis of spirocyclic compounds

10. 不饱和酮酸酯对映选择性[2 + 3]环加成反应合成螺环化合物

吲哚里嗪化合物是由吡啶和吡咯单元组成的环状结构,主要存在于植物、动物和微生物的代谢产物中,在医药领域、有机光电材料和工业领域发挥着重要作用[31]。此外,由于其重要的杂环空间结构和生物活性,该结构已被广泛用作许多具有抗癌和抗菌特性的物质的核心结构[32]。2022年,彭金宝课题组[33]报道了一种碱促进的吡咯-2-甲醛衍生物与β,γ-不饱和-α-酮酸酯的分子间[4 + 2]环加成反应合成5,6-二氢吲哚里嗪化合物的方法。该反应以DBN为碱,反应条件较为温和,以中等至优良的产率(52~95%)合成了一系列多取代的5,6-二氢吲哚里嗪衍生物,反应的普适性良好(图11)。

Figure 11. Synthesis of dihydroindolizine compounds through [4 + 2] cycloaddition reaction between unsaturated ketoesters

11. 通过不饱和酮酸酯分子间[4 + 2]环加成反应合成二氢吲哚里嗪化合物

2.3. 不饱和酮酸酯作为C3合成子的应用

β,γ-不饱和-α-酮酸酯由于含有1,3-双亲电反应的位点,通过双亲核试剂(Nu-Nu)的处理,故可以作为[3+n]环加成反应中的C3合成子。

芳基砜是有机合成中有用的结构单元,广泛存在于具有生物活性的化合物中。例如,磺酰基取代的苯已被证明具有抗菌[34]、抗抑郁[35]、和抗炎活性[36]。张学景小组[37]于2018年报道了一种碱介导的分子间[3 + 3]环化反应策略高效合成多取代二芳基砜化合物的方法。反应如(图12)所示,该反应将1,3-双(磺酰基)丙烯和β,γ-不饱和-α-酮酸酯为原料合成目标化合物。该方法操作简便、反应体系无金属催化且有效地获得多取代的二芳基砜化合物,且产率中等至优良。此外,分子中的磺酰基可以通过其他方法轻松脱除或转化为其他官能团,对于合成多取代二芳基砜化合物具有很强的实用性。

Figure 12. Synthesis of poly substituted diaryl sulfone compounds through [3 + 3] cyclization reaction between unsaturated ketoester molecules

12. 通过不饱和酮酸酯分子间[3 + 3]环化反应合成多取代二芳基砜化合物

Figure 13. Unsaturated ketoesters as C3 synthons for synthesizing spirocyclic compounds

13. 不饱和酮酸酯作为C3合成子合成螺环化合物

2019年,冯小明课题组[38]发展了一种使用手性双氮氧配体2.10与Sc(OTf)3配合物催化的α-亚芳基吡唑啉酮与不饱和酮酸酯的不对称Michael-Aldol串联反应。反应如(图13)所示,该反应以水和二氯甲烷作为混合溶剂,在温和的反应条件下得合成了螺环化合物,此方法为该类化合物提供了一条高效、便捷的途径。该反应具有产率优良,良好的对映体选择性和非对映体选择性的特点。

2020年,Smith小组[39]报道了一种异硫脲2.11催化的对映选择性合成新型四氢吲哚里嗪衍生物的一锅法串联反应。该反应将1H-吡咯-1-乙酸与三氟甲基烯酮或不饱和酮酸酯组合应用于对映选择性Michael加成–内酯化过程中,然后加入醇或胺进行原位开环反应和环化反应,得到了一系列四氢吲哚里嗪衍生物。反应如(图14)所示。

Figure 14. Unsaturated ketoesters as C3 synthons for the synthesis of novel tetrahydroindolizine compounds

14. 不饱和酮酸酯作为C3合成子合成新型四氢吲哚里嗪化合物

烯胺催化在有机催化中发挥了重要作用[40] [41]。传统上认为,仲(2˚)脂肪胺在烯胺催化中用作胺催化剂。2021年,Jacqkis Davis小组[42]发展了一种新的α-烯胺酮与不饱和酮酸酯的[3 + 3]环加成反应(图15)。该反应以四氢呋喃做溶剂,三氟甲磺酸钇做催化剂,以中等至良好的产率(58~85%)合成了一系列二氢吡啶衍生物。该反应为二氢吡啶衍生物的合成提供了反应条件温和的合成策略。

Figure 15. Synthesis of dihydropyridine derivatives by cycloaddition reaction of α-enamine ketone and unsaturated ketoesters [3 + 3]

15. α-烯胺酮与不饱和酮酸酯[3 + 3]环加成反应合成二氢吡啶衍生物

2.4. 不饱和酮酸酯作为C4合成子的应用

Figure 16. Synthesis of tetrahydropyran derivatives and dihydropyran derivatives from unsaturated ketoesters

16. 不饱和酮酸酯合成四氢吡喃衍生物和二氢吡喃衍生物

六元环是天然产物、药物和功能材料中最常见的结构单元之一。催化不对称[4 + 2]环加成反应是合成含碳环和杂环的六元环最直接、最方便的方法。通过不饱和酮酸酯作为C4合成子来合成这样的化合物具有重要意义。

2012年,施敏课题组[43]报道了一种DABCO催化的β,γ-不饱和-α-酮酸酯或β,γ-不饱和-α-酮膦酸酯与丙二烯酯的[4 + 2]环加成反应。该反应在温和的反应条件下以良好至优异的产率和中等至良好的区域选择性合成了相应的多官能化的四氢吡喃和二氢吡喃衍生物,该类化合物是许多天然产物和生物活性分子中的结构亚单元,具体反应如(图16)所示。

富含对映体的2,3-二氢呋喃骨架存在于多种天然和合成产品中,据报道其中许多产物表现出有趣的生物活性。具有该结构类型的化合物也被认为是有用的合成中间体[44]。2017年,李鹏飞课题组[45]首次报道了手性膦2.12催化的不饱和酮酸酯与Morita-Baylis-Hillman碳酸酯之间的[4 + 1]环化反应。该反应以中等至良好的收率合成了一系列具有光学活性的2,3-二氢呋喃化合物,并且该催化体系也适用于其他缺电子的烯烃,反应普适性良好,反应如(图17)所示。

Figure 17. Unsaturated ketoesters as C4 synthons for the synthesis of dihydrofuran compounds

17. 不饱和酮酸酯作为C4合成子合成二氢呋喃化合物

在过去的十年中,均相金催化引起了化学家的极大关注,该催化体系并被证明是有机化学中有用的合成工具[46]。特别是,金催化剂与酸催化剂的组合是一种非常强大的策略,它可以促进前所未有的新反应,这是通过单一催化体系无法实现的[47]。康强课题组[48]于2018年发展了一种新型催化体系,将非手性金(I)催化剂和手性Rh(III)路易斯酸催化剂2.13相结合,用于促进不饱和酮酸酯与炔醇之间的[4 + 2]环化反应。该反应具有操作简单、催化剂用量少、底物范围广、反应条件温和等优点,而且反应具有良好的非对映选择性和对映选择性。具体反应如(图18)所示。

Figure 18. Non chiral gold (I) catalysts and chiral Rh (III) Lewis acid catalysts promote the cyclization reaction of unsaturated ketoesters with alkyne alcohols [4+2]

18. 非手性金(I)催化剂和手性Rh(III)路易斯酸催化剂促进不饱和酮酸酯与炔醇[4 + 2]环化反应

此外,串联环化或环加成反应为方便地获得多环化合物提供了一种强有力的方法。2019年,冯小明课题组[49]报道了重氮酰亚胺和不饱和酮酸酯[4 + 3]环加成反应。该反应在手性双氮氧配体2.14与Zn(OTf)2配合物为催化剂,在温和条件下,以中等至优良的产率和优良的对映选择性合成了含氧桥环结构的噁唑嗪化合物,反应如(图19)所示。

Figure 19. Unsaturated ketoesters as C4 synthons for the synthesis of Oxa-bridged oxazocines compound

19. 不饱和酮酸酯作为C4合成子合成含氧桥环结构的噁唑嗪化合物

4H-吡喃和2,3-二氢-4H-吡喃是许多天然产物、药物活性化合物、香料和纳米颗粒材料中的共同的基础结构[50] [51]。2022年,杨道山课题组[52]发展了一种HfCl4催化的β,γ-不饱和-α-酮酸酯与对称或不对称炔烃化合物的[4 + 2]环加成反应,以良好至高产率和优异的区域选择性合成了一系列4H-吡喃化合物,反应如(图20)所示。

Figure 20. Synthesis of 4H pyran compounds through β,γ-unsaturated-α-ketoesters

20. 通过β, γ-不饱和-α-酮酸酯合成4H-吡喃化合物

3. 结论

随着有机催化、包括巧妙的手性配体以及路易斯酸阳离子的新催化体系的发展,β,γ-不饱和-α-酮酸酯已成为参与多种催化不对称转化的多功能有机合成子。尽管取得了巨大的成就,但仍需要坚持不懈的努力来应对该研究领域仍然存在的一些挑战,某些手性化合物具有可进一步衍生的官能团,是重要且有用的合成中间体。这些化合物在天然产物合成、药物化学、材料科学等领域有巨大的应用潜力有待挖掘。总的来说,β,γ-不饱和-α-酮酸酯具有广泛的应用前景,可以在有机合成、药物研发和其他领域中发挥重要作用。通过进一步的研究和开发,有望发现更多的应用和潜在的用途。

参考文献

[1] Yu, S., Cai, Q., Wang, C., Hou, J., Liang, J., Jiao, Z., et al. (2023) Enantioselective Friedel—Crafts Alkylation of Indoles with Β, γ-Unsaturated α-Ketoesters Catalyzed by New Copper(I) Catalysts. The Journal of Organic Chemistry, 88, 3046-3053.
https://doi.org/10.1021/acs.joc.2c02749
[2] Sahoo, S.C., Maity, R. and Pan, S.C. (2019) DBU-Mediated Addition of α-Nitroketones to α-Cyano-Enones and α, β-Unsaturated α-Ketoesters: Synthesis of Dihydrofurans and Conjugated Dienes. ACS Omega, 4, 2792-2803.
https://doi.org/10.1021/acsomega.8b03651
[3] Lv, X., Zhao, W., Chen, Y., Wan, S. and Liu, Y. (2019) Organocatalytic Asymmetric Synthesis of Both Cis-and Trans-Configured Pyrano[2,3-b]Chromenes via Different Dehydration Pathways. Organic Chemistry Frontiers, 6, 1972-1976.
https://doi.org/10.1039/c9qo00366e
[4] Chen, J., Xu, M., Zhang, J., Sun, B., Hu, J., Yu, J., et al. (2020) Modular Chiral Bisoxalamide-Copper-Catalyzed Asymmetric Oxo-Diels-Alder Reaction: Carbonyl Coordination for High Enantio-and Diastereocontrols. ACS Catalysis, 10, 3556-3563.
https://doi.org/10.1021/acscatal.9b05606
[5] Fan, W., Yang, X., Lv, H., Wang, X. and Wang, Z. (2020) Chiral Binaphthyl Box-Copper-Catalyzed Enantioselective Tandem Michael-Ketalization Annulations for Optically Active Aryl and Heteroaryl Fused Bicyclicnonanes. Organic Letters, 22, 3936-3941.
https://doi.org/10.1021/acs.orglett.0c01221
[6] Mo, Y., Zhang, X., Yao, Y., Duan, C., Ye, L., Shi, Z., et al. (2021) Construction of Chiral Isotetronic Acid-Fused Thiochromane via Doubly Annulative Strategy. The Journal of Organic Chemistry, 86, 4448-4456.
https://doi.org/10.1021/acs.joc.0c02878
[7] Tokoroyama, T. (2010) Cheminform Abstract: Discovery of the Michael Reaction. ChemInform, 41.
https://doi.org/10.1002/chin.201027218
[8] Dalko, P.I. (2013) Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, 3 Volume Set. John Wiley & Sons., Hoboken.
[9] Ballini, R., Bosica, G., Fiorini, D., Palmieri, A. and Petrini, M. (2005) Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results. Chemical Reviews, 105, 933-972.
https://doi.org/10.1021/cr040602r
[10] Malerich, J.P., Hagihara, K. and Rawal, V.H. (2008) Chiral Squaramide Derivatives Are Excellent Hydrogen Bond Donor Catalysts. Journal of the American Chemical Society, 130, 14416-14417.
https://doi.org/10.1021/ja805693p
[11] Fofana, M., Dudognon, Y., Bertrand, L., Constantieux, T., Rodriguez, J., Ndiaye, I., et al. (2020) Enantioselective Organocatalyzed Michael Additions of Nitroalkanes to 4-Arylidenedihydrofuran-2,3-Diones and 4-Arylidenepyrrolidine-2,3-Diones. European Journal of Organic Chemistry, 2020, 3486-3490.
https://doi.org/10.1002/ejoc.202000460
[12] Collados, J.F., Solà, R., Harutyunyan, S.R. and Maciá, B. (2016) Catalytic Synthesis of Enantiopure Chiral Alcohols via Addition of Grignard Reagents to Carbonyl Compounds. ACS Catalysis, 6, 1952-1970.
https://doi.org/10.1021/acscatal.5b02832
[13] Wei, A., Nie, J., Zheng, Y. and Ma, J. (2015) Ni-Catalyzed Highly Chemo-, Regio-, and Enantioselective Decarboxylative Aldol Reaction of β,γ-Unsaturated α-Ketoesters with β-Ketoacids. The Journal of Organic Chemistry, 80, 3766-3776.
https://doi.org/10.1021/jo502741z
[14] Li, K., Sun, X., Li, L., Zha, Z., Zhang, F. and Wang, Z. (2020) Stereoselective Copper-Catalyzed Direct Aldol Reaction of β,γ-Unsaturated α-Ketoesters with Coumaran-3-Ones. ChemistryA European Journal, 27, 581-584.
https://doi.org/10.1002/chem.202003510
[15] Ohshima, T., Morisaki, K., Morimoto, H. and Mashima, K. (2017) Direct Enantioselective Alkynylation of α-Ketoesters and α-Ketiminoesters Catalyzed by [Bis(Oxazoline)Phenyl]Rhodium(III) Complexes. Heterocycles, 95, 637-661.
[16] Deng, R., Han, T., Gao, X., Yang, Y. and Mei, G. (2022) Further Developments of β,γ-Unsaturated α-Ketoesters as Versatile Synthons in Asymmetric Catalysis. iScience, 25, Article 103913.
https://doi.org/10.1016/j.isci.2022.103913
[17] Gan, Z., Cui, D., Zhang, H., Feng, Y., Huang, L., Gui, Y., et al. (2022) Trityl Cation-Catalyzed Hosomi-Sakurai Reaction of Allylsilane with β,γ-Unsaturated α-Ketoester to Form γ,γ-Disubstituted α-Ketoesters. Molecules, 27, Article 4730.
https://doi.org/10.3390/molecules27154730
[18] Rubin, M., Rubina, M. and Gevorgyan, V. (2007) Transition Metal Chemistry of Cyclopropenes and Cyclopropanes. Chemical Reviews, 107, 3117-3179.
https://doi.org/10.1021/cr050988l
[19] Liu, X., Zhang, Y., Li, L., Tan, L., Huang, Y., Ma, A., et al. (2022) Palladium-Catalyzed Nucleophilic Reaction of Alkylidenecyclopropanes with β,γ-Unsaturated α-Ketoesters: Ligand-Controlled Divergent Synthesis. Organic Letters, 24, 6692-6696.
https://doi.org/10.1021/acs.orglett.2c02839
[20] Li, N., Lu, W., Gu, W., Li, K., Li, J., Lu, Y., et al. (2022) Construction of Spirocyclic Oxindole Derivatives by Copper-Catalyzed Enantioselective Michael/Hemiketalization in Aqueous Media. Chemical Communications, 58, 10957-10960.
https://doi.org/10.1039/d2cc04370j
[21] Yu, S., Cai, Q., Li, J., Yu, T., Liang, J., Jiao, Z., et al. (2023) Enantioselective Michael Addition of Malonates to β,γ-Unsaturated α-Ketoesters Catalysed by Cu(II) Complexes Bearing Binaphthyl-Proline Hybrid Ligands. Organic & Biomolecular Chemistry, 21, 1764-1770.
https://doi.org/10.1039/d2ob02305a
[22] Wang, L., Lv, J., Li, S. and Luo, S. (2017) Divergent Coupling of β,γ-Unsaturated α-Ketoesters with Simple Olefins: Vinylation and [2+2] Cycloaddition. Organic Letters, 19, 3366-3369.
https://doi.org/10.1021/acs.orglett.7b01291
[23] Mowbray, C.E., Burt, C., Corbau, R., Perros, M., Tran, I., Stupple, P.A., et al. (2009) Pyrazole NNRTIs 1: Design and Initial Optimisation of a Novel Template. Bioorganic & Medicinal Chemistry Letters, 19, 5599-5602.
https://doi.org/10.1016/j.bmcl.2009.08.039
[24] Thomas, J.B., Giddings, A.M., Wiethe, R.W., Olepu, S., Warner, K.R., Sarret, P., et al. (2014) Identification of 1-({[1-(4-Fluorophenyl)-5-(2-Methoxyphenyl)-1H-Pyrazol-3-yl]Carbonyl}Amino)Cyclohexane Carboxylic Acid as a Selective Nonpeptide Neurotensin Receptor Type 2 Compound. Journal of Medicinal Chemistry, 57, 5318-5332.
https://doi.org/10.1021/jm5003843
[25] Casimiro-Garcia, A., Piotrowski, D.W., Ambler, C., Arhancet, G.B., Banker, M.E., Banks, T., et al. (2014) Identification of (R)-6-(1-(4-Cyano-3-Methylphenyl)-5-Cyclopentyl-4,5-Dihydro-1H-Pyrazol-3-yl)-2-Methoxynicotinic Acid, a Highly Potent and Selective Nonsteroidal Mineralocorticoid Receptor Antagonist. Journal of Medicinal Chemistry, 57, 4273-4288.
https://doi.org/10.1021/jm500206r
[26] Zhang, J., Pan, H. and Liu, T. (2018) Facile Strategy for the Preparation of Pyrazoline Derivatives through Phosphine-Promoted [2+3] Cycloaddition of Dialkyl Azodicarboxylates with β,γ-Unsaturated α-Keto Esters. Synthetic Communications, 48, 1085-1091.
https://doi.org/10.1080/00397911.2018.1435819
[27] Hashimoto, T. and Maruoka, K. (2015) Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chemical Reviews, 115, 5366-5412.
https://doi.org/10.1021/cr5007182
[28] Chen, Y., Cui, B., Wang, Y., Han, W., Wan, N., Bai, M., et al. (2018) Asymmetric [3+2] Cycloaddition Reaction of Isatin-Derived MBH Carbonates with 3-Methyleneoxindoles: Enantioselective Synthesis of 3,3′-Cyclopentenyldispiroox-indoles Incorporating Two Adjacent Quaternary Spirostereocenters. The Journal of Organic Chemistry, 83, 10465-10475.
https://doi.org/10.1021/acs.joc.8b01506
[29] Chen, Y., Cui, B., Bai, M., Han, W., Wan, N. and Chen, Y. (2019) Synthesis of Chiral Spiro-Cyclopentene/Cyclopen-tadiene-Oxindoles through an Asymmetric [3+2] Cycloaddition of Isatin-Derived MBH Carbonates and β,γ-Unsaturated α-Keto Esters. Tetrahedron, 75, 2971-2979.
https://doi.org/10.1016/j.tet.2019.04.040
[30] Peňaška, T., Palchykov, V., Rakovský, E., Addová, G. and Šebesta, R. (2021) Stereoselective Organocatalytic Construction of Spiro Oxindole Pyrrolidines Using Unsaturated α-Ketoesters and α-Ketoamides. European Journal of Organic Chemistry, 2021, 1693-1703.
https://doi.org/10.1002/ejoc.202100022
[31] Ong, C.W., Lai, M.C., Jan, J.J. and Chang, Y.A. (2002) Pyrrolizine and Indolizine Derivatives from 1,6-Dioxo-2,4-Diene by Inter-and Intramolecular Ring Closure. Heterocycles, 33, 125.
https://doi.org/10.1002/chin.200245125
[32] Yang, R., Chen, Y., Pan, L., Yang, Y., Zheng, Q., Hu, Y., et al. (2018) Design, Synthesis and Structure-Activity Relationship Study of Novel Naphthoindolizine and Indolizinoquinoline-5,12-Dione Derivatives as IDO1 Inhibitors. Bioorganic & Medicinal Chemistry, 26, 4886-4897.
https://doi.org/10.1016/j.bmc.2018.08.028
[33] Zhang, Y., Li, L., Ma, A., Wang, W. and Peng, J. (2022) Base-Promoted [4+2] Annulation of Pyrrole-2-Carbaldehyde Derivatives with β,γ-Unsaturated α-Ketoesters: Syntheses of 5,6-Dihydroindolizines. Organic & Biomolecular Chemistry, 20, 8633-8637.
https://doi.org/10.1039/d2ob01903e
[34] Zhu, Y.I. and Stiller, M.J. (2001) Dapsone and Sulfones in Dermatology: Overview and Update. Journal of the American Academy of Dermatology, 45, 420-434.
https://doi.org/10.1067/mjd.2001.114733
[35] Fowler, J.S., Logan, J., Azzaro, A.J., Fielding, R.M., Zhu, W., Poshusta, A.K., et al. (2009) Reversible Inhibitors of Monoamine Oxidase-A (RIMAs): Robust, Reversible Inhibition of Human Brain MAO-A by Cx157. Neuropsychopharmacology, 35, 623-631.
https://doi.org/10.1038/npp.2009.167
[36] Madhava, G., Ramana, K.V., Sudhana, S.M., Rao, D.S., Kumar, K.H., Lokanatha, V., et al. (2017) Aryl/Heteroaryl Substituted Celecoxib Derivatives as COX-2 Inhibitors: Synthesis, Anti-Inflammatory Activity and Molecular Docking Studies. Medicinal Chemistry, 13, 484-497.
https://doi.org/10.2174/1573406413666170221093740
[37] Tang, X., Tong, L., Liang, H., Liang, J., Zou, Y., Zhang, X., et al. (2018) Facile Synthesis of Substituted Diaryl Sulfones via a [3+3] Benzannulation Strategy. Organic & Biomolecular Chemistry, 16, 3560-3563.
https://doi.org/10.1039/c8ob00662h
[38] Xu, J., Hu, L., Hu, H., Ge, S., Liu, X. and Feng, X. (2019) Enantioselective Vinylogous Michael-Aldol Reaction to Synthesize Spirocyclohexene Pyrazolones in Aqueous Media. Organic Letters, 21, 1632-1636.
https://doi.org/10.1021/acs.orglett.9b00168
[39] Zhang, S., Greenhalgh, M.D., Slawin, A.M.Z. and Smith, A.D. (2020) Tandem Sequential Catalytic Enantioselective Synthesis of Highly-Functionalised Tetrahydroindolizine Derivatives. Chemical Science, 11, 3885-3892.
https://doi.org/10.1039/d0sc00432d
[40] Mukherjee, S., Yang, J.W., Hoffmann, S. and List, B. (2007) Asymmetric Enamine Catalysis. Chemical Reviews, 107, 5471-5569.
https://doi.org/10.1021/cr0684016
[41] Bertelsen, S. and Jørgensen, K.A. (2009) Organocatalysis—After the Gold Rush. Chemical Society Reviews, 38, 2178-2189.
https://doi.org/10.1039/b903816g
[42] Fernando, E.H.N., Cortes Vazquez, J., Davis, J., Luo, W., Nesterov, V.N. and Wang, H. (2021) Can Primary Arylamines Form Enamine? Evidence, α-Enaminone, and [3+3] Cycloaddition Reaction. The Journal of Organic Chemistry, 86, 14617-14626.
https://doi.org/10.1021/acs.joc.1c01462
[43] Pei, C., Wu, L., Lian, Z. and Shi, M. (2012) Dabco-Catalyzed Regioselective Cyclization Reactions of β,γ-Unsaturated α-Ketophosphonates or β,γ-Unsaturated α-Ketoesters with Allenic Esters. Organic & Biomolecular Chemistry, 10, 171-180.
https://doi.org/10.1039/c1ob06507f
[44] Kilroy, T.G., O’Sullivan, T.P. and Guiry, P.J. (2005) Synthesis of Dihydrofurans Substituted in the 2-Position. European Journal of Organic Chemistry, 2005, 4929-4949.
https://doi.org/10.1002/ejoc.200500489
[45] Cheng, Y., Han, Y. and Li, P. (2017) Organocatalytic Enantioselective [1+4] Annulation of Morita-Baylis-Hillman Carbonates with Electron-Deficient Olefins: Access to Chiral 2,3-Dihydrofuran Derivatives. Organic Letters, 19, 4774-4777.
https://doi.org/10.1021/acs.orglett.7b02144
[46] Liu, L. and Zhang, J. (2016) Gold-Catalyzed Transformations of α-Diazocarbonyl Compounds: Selectivity and Diversity. Chemical Society Reviews, 45, 506-516.
https://doi.org/10.1039/c5cs00821b
[47] Zhang, S., Wei, F., Song, C., Jia, J. and Xu, Z. (2014) Recent Advances of the Combination of Au/Acid Catalysis. Chinese Journal of Chemistry, 32, 937-956.
https://doi.org/10.1002/cjoc.201400428
[48] Gong, J., Wan, Q. and Kang, Q. (2018) Gold(I)/Chiral Rh(III) Lewis Acid Relay Catalysis Enables Asymmetric Synthesis of Spiroketals and Spiroaminals. Advanced Synthesis & Catalysis, 360, 4031-4036.
https://doi.org/10.1002/adsc.201800492
[49] Xu, C., Wang, K., Li, D., Lin, L. and Feng, X. (2019) Asymmetric Synthesis of Oxa-bridged Oxazocines through a Catalytic RhII/znII Relay [4+3] Cycloaddition Reaction. Angewandte Chemie International Edition, 58, 18438-18442.
https://doi.org/10.1002/anie.201910898
[50] Flematti, G.R., Scaffidi, A., Goddard-Borger, E.D., Heath, C.H., Nelson, D.C., Commander, L.E., et al. (2010) Structure—Activity Relationship of Karrikin Germination Stimulants. Journal of Agricultural and Food Chemistry, 58, 8612-8617.
https://doi.org/10.1021/jf101690a
[51] Khafagy, M.M., Abd El-Wahab, A.H.F., Eid, F.A. and El-Agrody, A.M. (2002) Synthesis of Halogen Derivatives of Benzo[h]Chromene and Benzo[a]Anthracene with Promising Antimicrobial Activities. Il Farmaco, 57, 715-722.
https://doi.org/10.1016/s0014-827x(02)01263-6
[52] Duan, D., Qiu, H., Tang, M., Song, R., Si, W., Yang, D., et al. (2022) HfCl4-Catalyzed [4+2] Cycloaddition of β,γ-Unsaturated α-Keto Esters with Alkynes. The Journal of Organic Chemistry, 87, 5188-5198.
https://doi.org/10.1021/acs.joc.2c00007