全激基复合物材料的有机发光二极管实现了高效率
Organic Light-Emitting Diodes with All-Exciplex Materials Achieve High Efficiency
DOI: 10.12677/jocr.2024.122025, PDF, HTML, XML, 下载: 16  浏览: 32 
作者: 谢相琼:上海理工大学理学院,上海
关键词: OLED激基复合物效率OLED Exciplex Efficiency
摘要: 在本文中,我基于空穴传输材料和电子传输材料形成的激基复合物制备了一系列单色和双色器件。通过改变两侧蓝激基复合物层的厚度,可以很容易地提高器件效率。在单色器件G1中实现了最大电流效率(CE)为11.66 cd/A,功率效率(PE)为11.14 lm/W,亮度高达12,570 cd/m2。优化的双色OLED器件B14的CE、PE和分别为,11.69 cd/A和14.81 lm/W。外量子效率(EQE)更是达到了5.95%,超过了传统荧光OLED的理论极限(5%)。这种简单的结构为以激基复合物为基础实现高效率低成本的OLED器件提供了一种新思路。
Abstract: In this paper, a series of monochromatic and bicolor devices are prepared based on exciplex formed by hole transport materials and electron transport materials. The device efficiency can be easily improved by changing the thickness of the blue exciter complex layer on both sides. A maximum current efficiency (CE) of 11.66 cd/A, a power efficiency (PE) of 11.14 lm/W, and a Luminance of up to 12570 cd/m² are achieved in the monochrome device G1. The CE and PE values of the optimized two-color OLED device B14 are 11.69 cd/A and 14.81 lm/W, respectively. The external quantum efficiency (EQE) reached 5.95%, exceeding the theoretical limit of traditional fluorescent OLEDs (5%). This simple structure provides a new way to realize high efficiency and low cost OLED devices based on exciplex.
文章引用:谢相琼. 全激基复合物材料的有机发光二极管实现了高效率[J]. 有机化学研究, 2024, 12(2): 283-290. https://doi.org/10.12677/jocr.2024.122025

1. 引言

有机发光器件是一种新型的发光技术,因为它具有自发光、宽视角、重量轻和可弯曲等特性,在显示与固态照明领域拥有广阔的应用前景[1] [2] [3] [4]。在有机发光二级管(OLED)中器件效率的重要性不言而喻,效率直接影响到设备的能耗和性能。高效率的OLED器件能够以更少的能量实现相同的亮度和色彩表现,从而延长电池寿命、降低功耗、减少发热,有助于减少生产成本和资源消耗[5]

根据所用材料的不同,OLED可以分为三种类型:荧光OLED、磷光OLEDs、和热激活延迟荧光(TADF) OLED [6] [7]。荧光材料由于只能利用25%的激子而效率偏低。磷光材料虽然理论上可以利用100%的激子,但是磷光材料往往含有稀有重金属元素(如铱或铂),从而导致材料合成成本的增加,并带来环境污染问题,对人体健康也产生不利影响[8]。TADF材料是一种创新的荧光材料,其单重态–三重态能隙(ΔEs-t)非常小,使得通过热效应可以将激子从低能级(三重态)转移到稍高能级(单重态),实现反系间窜越(RISC),从而达到100%的激子利用率[9]。但TADF材料的设计和合成较为困难,所以价格昂贵[10]。激基复合物是由某些空穴传输材料和电子传输材料复合而成的。不仅成本低,还具有RISC效应[11],所以受到众多研究者的探究。Chen等人使用mCP,TAPC和PO-T2T三种有机化合物通过调节厚度调节三种激基复合物发光强度的策略开发了四色可调谐电致发光器件,最大效率CE、PE、EQE分别达到5.02 cd/A、4.40 Im/W、2.19%,显色指(CRI)为75 [12]。Miao等人采用两个蓝色发光层(EML)中间夹一个黄色EML这种简单的结构实现了双色WOLED,其显色指数达到88,但效率PE、CE和EQE仅达到7.15 Im/W、6.48 cd/A和3.06% [13]

在本文中,首先选择了蓝色激基复合物(mCBP:PO-T2T)和绿色激基复合物(TCTA:PO-T2T)作为发光层,制备了单色器件B1和G1。接着在单色器件的基础上,通过改变mCBP:PO-T2T的厚度从而改变TCTA:PO-T2T在发光层中的位置制备了双色全激基复合物OLED器件B11~B14。

2. 实验

在本文的实验中,所有器件都在预先涂有氧化铟锡(ITO)层的玻璃基板上制作。在进行沉积之前,需要对玻璃基板进行超声波清洗。这个清洗过程包括将基板依次置于去离子水、异丙醇和乙醇中进行超声波清洗。清洗完成后,需要干燥30分钟,并进行30分钟的冷却。接着采用热蒸镀法,进行器件制备。蒸镀时腔体的真空值保持在5 × 104 Pa以下,所有有机物的蒸镀速率保持在0.05 Å/s~2 Å/s之间,实验完成后,冷却1小时充入氮气开仓取出器件,采用由计算机控制的Keithley2400数字电源和PR655光谱仪进行EL光谱等光电数据的测量和记录。为了确保测试结果的精确性和可靠性,所有测试均在黑暗且室温恒定的环境中进行。

本论文所用的OLED制备方法是热真空蒸镀法。如图1(a)所示,盛放实验材料的坩埚放置在下方12个蒸发源上的石英钟罩内。为了减少材料位置的变化对实验重复性的影响,3号、5号和9号的蒸发源上一般放客体放光材料,其他位置放传输材料或阴极所需的金属材料。腔体内有一个主探头和三个副探头用来探测材料蒸镀速率。三个副探头分别用来探测放在3号、5号和9号上的客体材料的蒸镀速率。主探头可以探测所有位置的材料蒸镀速率。在上方的基片盘上有用来放置玻璃的四个玻璃槽。玻璃槽的下方有不同形状的掩膜板,通过计算机控制。

实验中使用ITO和Al分别阳极和阴极。HAT-CN和Liq分别作为空穴和电子注入层[14] [15]。TAPC和TmPyPB分别作为空穴和电子传输层[14] [16]。mCBP、TCTA和PO-T2T作为发光层中激基复合物的组成材料[11] [17]。所有的材料都是通过商业途径购买,后期没有任何加工。本文涉及的主要发光层材料的分子结构如图1(b)所示。

(a)

(b)

Figure 1. (a) Schematic diagram of vacuum evaporation; (b) Molecular structure diagram of self-luminous layer materials

1. (a) 真空蒸镀原理图;(b)发光层材料的分子结构图

3. 结果和讨论

首先,选择了mCBP:PO-T2T和TCTA:PO-T2T作为发光层(EML)的组成材料,分别制备了两种不同的激基复合物单色器件B1、G1。探索了不同材料组合下单色器件的发光性能,并对其进行比较分析。为了保证实验的可比性,除了在器件B1和G1中,发光层的总厚度均保持在13 nm,还选择了固定的材料作为器件的其它层,并在图2的结构图中展示了这些材料的选择和厚度。

器件B1和G1的亮度和电流密度随电压电变化曲线以及PE和CE随电流密度变化曲线如图3(a)图3(b)所示。表1则提供器件B1和G1的部分光电数据的具体值。如器件B1的最大CE为1.47 cd/A,PE为1.51 lm/W,亮度为608 cd/m2,器件G1的CE和PE则显著提高至11.66 cd/A和11.14 lm/W,最大亮度更是达到了12,570 cd/m2。这些数据突显了器件G1在光电性能方面的优势。

Figure 2. Device structure diagram

2. 器件结构示意图

(a) (b)

Figure 3. (a) Current density-voltage-brightness curves of devices B1, G1; (b) Power efficiency-current density-current efficiency curves of devices B1, G1

3. (a) 器件B1、和G1的电流密度–电压–亮度曲线;(b) 器件B1、和G1的功率效率–电流密度–电流效率曲线

Table 1. Electro-optical performance of all devices

1. 所有器件的电光性能

器件

电压

电流密度

亮度

电流效率

功率效率

外量子效率

CRI

CIE (x,y)

V

(mA/cm2)

(cd/m2)

(cd/A)

(lm/W)

%


7.5 V

B1

4.00

188.36

608

1.47

1.51

0.65

0

(0.1794,0.2354)

G1

2.75

224.41

12570

11.66

11.14

5.02

0

(0.4507,0.5212)

B11

3.00

201.89

7110

10.08

12.83

4.33

48

(0.3437,0.5158)

B12

3.00

197.27

7449

10.36

13.19

4.45

46

(0.3483,0.5340)

B13

3.00

158.86

7253

10.56

13.46

4.51

45

(0.3502,0.5290)

B14

3.00

157.30

7526

11.69

14.81

5.95

44

(0.3573,0.5432)

图4(a)图4(b),显示了器件B1和G1随电压变化的光谱曲线,根据光谱曲线可知它们产生的光均为单色光,B波峰位于蓝光波段,G1的波峰位于绿光波段。图4(a)图4(b)中的插图显示了器件B1和G1被点亮时的发光图,从插图中也可以清晰的看到B1为蓝光器件,G1为绿光器件。随着电压的变光谱几乎不发生移动,仅有轻微的蓝移。图5(a)显示了器件B1和G1在7.5 V下的归一化光谱。

(a) (b)

Figure 4. (a) and (b) show the normalized spectra of devices B1 and G1 at different voltages, respectively

4. (a)和(b)分别显示了器件B1和G1在不同电压下的归一化光谱

(a) (b)

Figure 5. (a) Normalized spectra of devices B1 and G1 at 7.5 V; (b) Normalized spectra of devices B11~B14 at 7.5 V

5. (a) 器件B1和G1在7.5 V电压下的归一化光谱;(b) 器件B11~B14在7.5 V电压下的归一化光谱

在单色器件的基础上,为了优化双色器件的效率,制作了一系列由mCBP:PO-T2T和TCTA:PO-T2T组成的双色OLEDs。器件的基本结构如图2所示,其中器件绿色发光层厚度1 nm保持不变,蓝色发光层的总厚度为12 nm保持不变。随着靠近电子传输(ETL)侧的蓝色发射层厚度(x nm)逐渐增大,靠近空穴传输(HTL)侧的蓝色发光层厚度相应减小。设备B11、B12、B13、B14的x值分别为3 nm、5 nm、7 nm、9 nm。

器件B11至B14的亮度和电流密度随电压电变化曲线以及PE和CE随电流密度变化曲线如图6(a)图6(b)所示。根据表1给出的光电数据和图6(a)图6(b)的光电曲线图,可以看出在器件B11至B14中,器件B14显示出了最高的亮度,达到7526 cd/m2,并且具有最大的效率。CE为11.69 cd/A,PE为14.81 lm/W,EQE为5.95%。从器件B11至B14效率呈现逐渐增长的趋势,这是因为PO-T2T的电子迁移率(4.2 × 103)大于TCTA (3.0 × 103)和mCBP的(2.0 × 103)空穴迁移率[17] [18] [19],所以B系列器件中的复合区(RZ)靠近HTL侧,因此随着ETL侧第一蓝色发光层厚度逐渐增加,TCTA:PO-T2T层逐渐靠近HTL侧,也就是逐渐靠近RZ,从而获得了更多的能量,使得器件的效率逐渐提高。在单色器件中TCTA:PO-T2T的亮度和效率远高于mCBP:PO-T2T。所以只要让TCTA:PO-T2T尽可能多的获得能量,器件光电性能就会有所提升。

(a) (b)

Figure 6. (a) Current density-voltage-brightness curves of device B11~B14; (b) Power efficiency-current density-current efficiency curves of devices B1 and G1

6. (a) 器件B11~B14的电流密度–电压–亮度曲线;(b) 器件B1、和G1的功率效率–电流密度–电流效率曲线

图7(a)图7(d)显示了器件B11至B14在不同电压下的光谱变化,CRI和色坐标(CIE)情况。所有器件的光谱变化都呈现出一致的趋势,即随着电压的增加,复合区向ETL侧移动,远离绿色发光层,绿光获得能量减少,蓝光获得能量增多,所以光谱都出现轻微的蓝移。在7.5 V电压下,从B11到B14的光谱逐渐呈现红移趋势,即蓝光逐渐减少,而绿光则增多,如图5(b)所示,这也从侧面证明了B11到B14的效率和亮度增加的原因。器件B14在7.5 V时的CIE为(0.3573, 0.5432)。

(a) (b)

(c) (d)

Figure 7. (a)~(b) show the normalized spectra of devices B11~B14 at different voltages, respectively

7. (a)至(d)分别显示了器件B11~B14在不同电压下的归一化光谱

4. 结论

在本文中,系统研究了一系列基于纯激基复合物的单色器件和双色OLED器件的性能。首先制备了两种不同激基复合物的单色器件B1和G1。并实验结果进行比较分析可知,器件G1在光电性能方面表现出明显优势,其最大CE和PE和亮度分别达到11.66 cd/A,11.14 lm/W,和12,570 cd/m²。接着在单色器件的基础上,制备了一系列双色器件B11~B14。实验结果表明,当绿色发光层最靠RZ时,器件B14实现了最大的效率,其最大CE、PE和EQE分别111.69 cd/A,14.81 lm/W,5.95%。这一系列性能的提升归因于TCTA:PO-T2T在器件结构中的优化位置,有效提高了能量利用效率。

参考文献

[1] Wei, X., Gao, L., Miao, Y., Zhao, Y., Yin, M., Wang, H., et al. (2020) A New Strategy for Structuring White Organic Light-Emitting Diodes by Combining Complementary Emissions in the Same Interface. Journal of Materials Chemistry C, 8, 2772-2779.
https://doi.org/10.1039/c9tc06198c
[2] Reineke, S., Lindner, F., Schwartz, G., Seidler, N., Walzer, K., Lüssem, B., et al. (2009) White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency. Nature, 459, 234-238.
https://doi.org/10.1038/nature08003
[3] Su, S., Gonmori, E., Sasabe, H. and Kido, J. (2008) Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier-and Exciton-Confining Structure for Reduced Efficiency Roll-Off. Advanced Materials, 20, 4189-4194.
https://doi.org/10.1002/adma.200801375
[4] 张唯诚. 从LED到OLED——人类照明技术的未来[J]. 百科知识, 2015(1): 33-34.
[5] Ying, S., Yang, D., Qiao, X., Dai, Y., Sun, Q., Chen, J., et al. (2018) Improvement of Efficiency and Its Roll-Off at High Brightness in White Organic Light-Emitting Diodes by Strategically Managing Triplet Excitons in the Emission Layer. Journal of Materials Chemistry C, 6, 10793-10803.
https://doi.org/10.1039/c8tc03823f
[6] Zhang, D., Cao, X., Wu, Q., Zhang, M., Sun, N., Zhang, X., et al. (2018) Purely Organic Materials for Extremely Simple All-TADF White OLEDs: A New Carbazole/Oxadiazole Hybrid Material as a Dual-Role Non-Doped Light Blue Emitter and Highly Efficient Orange Host. Journal of Materials Chemistry C, 6, 3675-3682.
https://doi.org/10.1039/c7tc04969b
[7] Li, H., Xie, N., Wang, J., Zhao, Y. and Liang, B. (2021) Highly Efficient Full-Fluorescence Organic Light-Emitting Diodes with Exciplex Cohosts. Organic Electronics, 88, Article 106004.
https://doi.org/10.1016/j.orgel.2020.106004
[8] Grybauskaite-Kaminskiene, G., Ivaniuk, K., Bagdziunas, G., Turyk, P., Stakhira, P., Baryshnikov, G., et al. (2018) Contribution of TADF and Exciplex Emission for Efficient “Warm-White” OLEDs. Journal of Materials Chemistry C, 6, 1543-1550.
https://doi.org/10.1039/c7tc05392d
[9] Zhang, D., Song, X., Li, H., Cai, M., Bin, Z., Huang, T., et al. (2018) High-Performance Fluorescent Organic Light-Emitting Diodes Utilizing an Asymmetric Anthracene Derivative as an Electron-Transporting Material. Advanced Materials, 30, Article 1707590.
https://doi.org/10.1002/adma.201707590
[10] Huang, T., Jiang, W. and Duan, L. (2018) Recent Progress in Solution Processable TADF Materials for Organic Light-Emitting Diodes. Journal of Materials Chemistry C, 6, 5577-5596.
https://doi.org/10.1039/c8tc01139g
[11] Ning, S., Wu, Y., Wu, C., Zhang, Y., Luo, M., Wang, X., et al. (2022) Overcome Energy Loss of Exciplex-Sensitized Fluorescence OLEDs with Separating Exciton Generation and Fluorescence Emission Zone. Current Applied Physics, 39, 166-172.
https://doi.org/10.1016/j.cap.2022.04.017
[12] Li, M., Tao, Z., Peng, Y., Pan, F., Tang, S., Lv, W., et al. (2022) Facile Fabrication of Multi-Color Electroluminescent Devices by Tricomponent Exciplex Regulation. Organic Electronics, 101, Article 106421.
https://doi.org/10.1016/j.orgel.2021.106421
[13] Guo, Y., Zhao, Y., Miao, Y., Wang, L., Li, T., Wang, H., et al. (2020) All-Exciplex-Based White Organic Light-Emitting Diodes by Employing an Interface-Free Sandwich Light-Emitting Unit Achieving High Electroluminescence Performance. Journal of Materials Chemistry C, 8, 12247-12256.
https://doi.org/10.1039/d0tc02915g
[14] Wang, L., Kou, Z., Wang, B., Zhou, J., Lu, Z. and Li, L. (2021) Realizing High Efficiency/CRI/Color Stability in the Hybrid White Organic Light Emitting Diode by Manipulating Exciton Energy Transfer. Optical Materials, 115, Article 111059.
https://doi.org/10.1016/j.optmat.2021.111059
[15] Xue, C., Zhang, G., Jiang, W., Lang, J. and Jiang, X. (2020) High Performance Non-Doped Blue-Hazard-Free Hybrid White Organic Light-Emitting Diodes with Stable High Color Rendering Index and Low Efficiency Roll-Off. Optical Materials, 106, Article 109991.
https://doi.org/10.1016/j.optmat.2020.109991
[16] Xu, T., Zhou, J., Huang, C., Zhang, L., Fung, M., Murtaza, I., et al. (2017) Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency. ACS Applied Materials & Interfaces, 9, 10955-10962.
https://doi.org/10.1021/acsami.6b16094
[17] Ying, S., Xiao, S., Peng, L., Sun, Q., Dai, Y., Qiao, X., et al. (2022) Exciton Regulation for Organic Light-Emitting Diodes with Improved Efficiency and Roll-Off by Managing the Bipolar Spacer Layers Based on Interfacial Exciplexes. ACS Applied Electronic Materials, 4, 3088-3098.
https://doi.org/10.1021/acsaelm.2c00483
[18] Jang, E., Choi, G., Bae, E., Ju, B. and Park, Y. (2023) Doping-Free Phosphorescent and Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with an Ultra-Thin Emission Layer. Nanomaterials, 13, Article 2366.
https://doi.org/10.3390/nano13162366
[19] Tang, Z., Lü, Z., Zheng, Y. and Wang, J. (2022) Management of Exciton Recombination Zone and Energy Loss for 4CzTPN-Based Organic Light-Emitting Diodes via Engineering Hosts. Physica B: Condensed Matter, 644, Article 414206.
https://doi.org/10.1016/j.physb.2022.414206